|
[1] Tuckerman, D. B., and Pease, R. F. W., 1981, “High-Performance Heat Sinking for Vlsi,” IEEE Electron Device Lett., ELD-2(5), pp. 126–129. [2] S. G. Kandlikar, “History,Advnces,and Challenges in Liquid Flow and Flow Boiling Heat Transfe in Microchannels:A Critical Review”,2012, ASME.,134 ,pp. 0340011-03400115. [3] Goodling, J. S., 1993, “Microchannel Heat Exchangers: A Review,” Proc. High Heat Flux Engineering II, July 12–13, 1993, San Diego, CA, 1997, pp.66–82. [4] Mehendale, S. S., Jacobi, A. M., and Shah, R. K., 2000, “Fluid Flow and Heat Transfer at Micro and Meso Scales With Application to Heat Exchanger Design.,” Appl. Mech. Rev., 53(7), pp. 175–193. [5] Palm, B., 2001, “Heat Transfer in Microchannels,” Microscale Thermophys. Eng., 5(3), pp. 155–175. [6] Kandlikar, S. G., 2001, “Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators,”Compact Heat Exchangers and Enhancement Technology for the Process Industries, pp. 319–334. [7] Sobhan, C. B., and Garimella, S. V., 2001, “A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels,” Microscale Thermophys. Eng., 5(4), pp. 293–311. [8] Kandlikar, S. G., 2002, “Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators,” Heat Transfer Eng., 23(1), pp. 5–23. [9] Kandlikar, S. G., 2002, “Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels,” Exp. Therm. Fluid Sci., 26(2–4), pp. 389–407. [10] Watel, B., 2003, “Review of Standard Flow Boiling in Small Passages of Compact Heat-Exchangers,” Int. J. Therm. Sci., 42(2), pp. 107–140. [11] Bergles, A. E., Lienhard, J. H. V., Kendall, G. E., and Griffith, P., 2003,“Boiling and Evaporation in Small Diameter Channels,” Heat Transfer Eng.,24(1), pp. 18–40. [12] Thome, J. R., 2004, “Boiling in Microchannels: A Review of Experiment and Theory,” Int. J. Heat Fluid Flow, 25(2), pp. 128–139. [13] Morini, G. L., 2004, “Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results,” Int. J. Therm. Sci., 43(7), pp.631–651. [14] Hassan, I., Phutthavong, P., and Abdelgawad, M., 2004, “Microchannel Heat Sinks: An Overview of the State-of-the-Art,” Microscale Thermophys. Eng.,8(3), pp. 183–205. [15] Bergles, A. E., and Kandlikar, S. G., 2005, “On the Nature of Critical Heat Flux in Microchannels,” ASME J. Heat Transfer, 127(1), pp. 101–107. [16] Royne, A., Dey, C. J., and Mills, D. R., 2005, “Cooling of Photo Voltaic Cells under Concentrated Illumination: A Critical Review,” Sol. Energy Mater. Sol.Cells, 86(4), pp. 451–483. [17] Ohta, H., 2005, “Boiling and Two-Phase Flow in Channels With Extremely Small Dimensions: A Review of Japanese Research,” Microfluid. Nanofluid.,1(2), pp. 94–107. [18] Bayraktar, T., and Pidugu, S. B., 2006, “Characterization of Liquid Flows in Microfluidic Systems,” Int. J. Heat Mass Transfer, 49(5), pp. 815–824. [19] Tardist, L., 2007, “Review on Two-Phase Instabilities in Narrow Spaces,” Int.J. Heat Fluid Flow, 28(1), pp. 54–62. [20] Agostini, B., Fabbri, M., and Park, J. E., 2007, “State of the Art of High Heat Flux Cooling Technologies,” Heat Transfer Eng., 28(4), pp. 258–281. [21] Kandlikar, S. G., and Bapat, A. V., 2007, “Evaluation of Jet Impingement,Spray and Microchannel Chip Cooling Options for High Heat Flux Removal,”Heat Transfer Eng., 28(11), pp. 911–923. [22] Saisorn, S., and Wongwises, S., 2008, “A Review of Two-Phase Gas-Liquid Adiabatic Flow Characteristics in Micro-Channels,” Renewable Sustainable Energy Rev., 12(3), pp. 824–838. [23] Kandlikar, S. G., 2008, “Exploring Roughness Effect on Laminar Internal Flow—Are We Ready for Change?” Nanoscale Microscale Thermophys. Eng., 12(1), pp. 61–82. [24] Fan, Y., and Luo, L. G., 2008, “Recent Applications of Advances in Microchannel Heat Exchangers and Multi-Scale Design Optimization,” Heat Transfer Eng., 29(5), pp. 461–474. [25] Bertsch, S. S., Groll, E. A., and Garimella, S. V., 2008, “Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels,”Nanoscale Microscale Thermophys. Eng., 12(2), pp. 187–227. [26] Roday, A. P., and Jensen, M. K., 2009, “A Review of the Critical Heat Flux Condition in Mini- and Microchannels,” J. Mech. Sci. Technol., 23(9), pp.2529–2547. [27] Rosa, P., Karayiannis, T. G., and Collins, M. W., 2009, “Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects,” Appl. Therm. Eng., 29(17–18), pp. 3447–3468. [28] Saha, S. K., Zummo, G., and Celata, G. P., 2010, “Review on Flow Boiling in Microchannels,” Int. J. Microscale, Nanoscale, Therm. Fluid Transport Phenomena,1(2), pp. 111–178. [29] Obot, N. T., 2002, “Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels—a Literature Review,” Microscale Thermophys.Eng., 6(3), pp. 155–173. [30] Sasaki, S., and Kishimoto, T., 1986, “Optimal Structure for Microgrooved Cooling Fin for High-Power Lsi Devices,” Electron. Lett., 22(25), pp.1332–1334. [31] Kishimoto, T., and Sasaki, S., 1987, “Cooling Characteristics of Diamond-Shaped Interrupted Cooling Fin for High-Power LSI Devices,” Electron. Lett.,23(9), pp. 456–457. [32] Phillips, R. J., Glicksman, L., and Larson, R., 1987, “Forced-Convection,Liquid-Cooled, Microchannel Heat Sinks for High-Power-Density Microelectronics,”Proc. Cooling Technology for Electronic Equipment, W. Aung,ed., Honolulu, HI, pp. 295–316. [33] Walpole, J. N., Liau, Z. L., Diadiuk, V., and Missaggia, L. J., 1988, “Microchannel Heat Sinks and Microlens Arrays for High Average-Power Diode Laser Arrays,” Proc. LEOS ‘88—Lasers and Electro-Optics SocietyAnnual Meeting, November 2–4, 1988, Santa Clara, CA, pp. 447–448. [34] Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., 1992, “Heat Sink Optimization With Application to Microchannels,” IEEE Trans. Compon.,Hybrids, Manuf. Technol., 15(5), pp. 832–842. [35] Peng, X. F., Peterson, G. P., and Wang, B. X., 1994, “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels,” Exp. Heat Transfer, 7(4), pp. 249–264. [36] Peng, X. F., Peterson, G. P., and Wang, B. X., 1994, “Heat Transfer Characteristics of Water Flowing Through Microchannels,” Exp. Heat Transfer, 7(4),pp. 265–283. [37] Harris, C., Despa, M., and Kelly, K., 2000, “Design and Fabrication of a Cross Flow Micro Heat Exchanger,” J. Microelectromech. Syst., 9(4), pp. 502–508. [38] Fedorov, A. G., and Viskanta, R., 2000, “Three-Dimensional Conjugate HeatTransfer in the Microchannel Heat Sink for Electronic Packaging,” Int. J. Heat Mass Transfer, 43(3), pp. 399–415. [39] Judy, J., Maynes, D., and Webb, B. W., 2002, “Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels,” Int. J. Heat Mass Transfer, 45(17), pp. 3477–3489. [40] Qu, W. L., and Mudawar, I., 2002, “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink,”Int. J. Heat Mass Transfer, 45(12), pp. 2549–2565. [41] Kandlikar, S. G., and Grande, W. J., 2003, “Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology,” Heat Transfer Eng., 24(1), pp. 3–17. [42] Wu, H. Y., and Cheng, P., 2003, “An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions,” Int. J.Heat Mass Transfer, 46(14), pp. 2547–2556. [43] Kandlikar, S. G., Joshi, S., and Tian, S., 2003, “Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes,” Heat Transfer Eng., 24(3), pp. 4–16. [44] Guo, Z.-Y., and Li, Z.-X., 2003, “Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale,” Int. J. Heat Fluid Flow, 24(3), pp. 284–298. [45] Kandlikar, S. G., and Grande, W. J., 2004, “Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology,” Int. J. Therm. Sci.,45(11), pp. 1073–1083. [46] Steinke, M. E., and Kandlikar, S. G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” Proc.Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004), June 17–19, 2004, Rochester, NY, pp.141–148. [47] Lelea, D., Nishio, S., and Takano, K., 2004, “The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water,” Int. J. Heat Mass Transfer, 47(12–13), pp. 2817–2830. [48] Sharp, K. V., and Adrian, R. J., 2004, “Transition from Laminar to Turbulent Flow in Liquid Filled Microtubes,” Exp. Fluids, 36(5), pp. 741–747. [49] Koo, J., and Kleinstreuer, C., 2005, “Laminar Nanofluid Flow in Microheat-Sinks,” Int. J. Heat Mass Transfer, 48(13), pp. 2652–2661. [50] Lee, P.-S., Garimella, V., and Dong, L., 2005, “Investigation of Heat Transfer in Rectangular Microchannels,” Int. J. Heat Mass Transfer, 48(9), pp.1688–1704. [51] Colgan, E. G., Furman, B., Gaynes, M., Graham, W., Labianca, N., Magerlein,J. H., Polastre, R. J., Rothwell, M. B., Bezama, R. J., Choudhary, R., Marston,K., Toy, H., Wakil, J., Zitz, J., and Schmidt, R., 2005, “A Practical Implementation of Silicon Microchannel Coolers for High Power Chips,” Proc. 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium, March 15–17, 2005, San Jose, CA, pp. 1–7. [52] Kandlikar, S. G., Schmitt, D., Carrano, A. L., and Taylor, J. B., 2005, “Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels,” Phys. Fluids, 17(10), 100606. [53] Celata, G. P., Cumo, M., Mcphail, S., and Zummo, G., 2006, “Characterization of Fluid Dynamic Behavior and Channel Wall Effects in Microtube,” Int. J. Heat Fluid Flow, 27(1), pp. 135–143. [54] Tuckerman, D. B., 1984, Heat-Transfer Microstructures for Integrated Circuits,Stanford University, Stanford, CA. [55] Mundinger, D., Beach, R., Benett, W., Solarz, R., Krupke, W., Staver, R., and Tuckerman, D., 1988, “Demonstration of High-Performance Silicon Microchannel Heat Exchangers for Laser Diode Array Cooling,” Appl. Phys. Lett.,53(12), pp. 1030–1032. [56] Phillips, R. J., 1987, Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks, MSME Massachusetts Institute of Technology, Cambridge, MA. [57] Phillips, R. J., 1990, Advances in Thermal Modeling of Electronic Components and Systems, ASME, New York, Chap. 3. [58] Missaggia, L. J., Walpole, J. N., Liau, Z. L., and Phillips, R. J., 1989, “Microchannel Heat Sinks for Two-Dimensional High-Power-Density Diode Laser Arrays,” IEEE J. Quantum Electron., 25(9), pp. 1988–1992. [59] Turlik, I., Reisman, A., Darveaux, R., and Hwang, L. T., 1989, “Multichip Packaging for Supercomputers,” Proc. Proceedings of the Technical Program.NEPCON West ‘89, 13–15 June 1989, Anaheim, CA, pp. 37–58. [60] Peng, X. F., and Wang, B. X., 1993, “Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels,” Int. J. Heat MassTransfer, 36(14), pp. 3421–3427. [61] Wang, B. X., and Peng, X. F., 1994, “Experimental Investigation on Liquid Forced Convection Heat Transfer Through Microchannels,” Int. J. Heat Mass Transfer, 37(Suppl. 1), pp. 73–82. [62] Kandlikar, S. G., 2005, “Roughness Effects at Microscale—Reassessing Nikuradse’s Experiments on Liquid Flow in Rough Tubes,” Bull. Pol. Acad.Sci.: Tech. Sci., 53(4), pp. 343–349. [63] Taylor, J. B., Carrano, A. L., and Kandlikar, S. G., 2006, “Characterization of the Effect of Surface Roughness and Texture on Fluid Flow—Past, Present, and Future,” Int. J. Therm. Sci., 45(10), pp. 962–968. [64] Brackbill, T. P., and Kandlikar, S. G., 2010, “Application of Lubrication Theory and Study of Roughness Pitch During Laminar, Transition, and Low Reynolds Number Turbulent Flow at Microscale,” Heat Transfer Eng., 31(8),pp. 635–645. [65] Rawool, A. S., Mitra, S. K., and Kandlikar, S. G., 2006, “Numerical Simulation of Flow Through Microchannels With Designed Roughness,” Microfluid. Nanofluid., 2(3), pp. 215–221. [66] Croce, G., D’agaro, P., and Nonino, C., 2007, “Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop,” Int. J. Heat Mass Transfer, 50(25–26), pp. 5249–5259. [67] Kleinstreuer, C., and Koo, J., 2004, “Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits,” J. Fluids Eng., 126(1), pp.1–9. [68] Bahrami, M., Yovanovich, M. M., and Culham, J. R., 2006, “Pressure Drop of Fully-Developed, Laminar Flow in Microchannel of Arbitrary Cross-Section,”J. Fluids Eng., 128(3), pp. 632–637. [69] Qu, W., Mala, G. M., and Li, D., 2000, “Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels,” Int. J. Heat Mass Transfer, 43(3), pp. 353–364. [70] Qu, W., Mala, G. M., and Li, D., 2000, “Heat Transfer for Water Flow inTrapezoidal Silicon Microchannels,” Int. J. Heat Mass Transfer, 43(21), pp.3925–3936. [71] Xu, J. L., Gan, Y. H., Zhang, D. C., and Li, X. H., 2005, “Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept,” Int. J. Heat Mass Transfer, 48(9), pp. 1662–1674. [72] Chang, S. W., Liou, T.-M., and Juan, W.-C., 2005, “Influence of Channel Height on Heat Transfer Augmentation in Rectangular Channels With Two Opposite Rib-Roughened Walls,” Int. J. Heat Mass Transfer, 48(13), pp.2806–2813. [73] Wei, X. J., Joshi, Y. K., and Ligrani, P. M., 2007, “Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface,” J. Electron. Packag., 129(1), pp. 63–70. [74] Kosar, A., and Peles, Y., 2006, “Thermal-Hydraulic Performance of Mems-Based Pin Fin Heat Sink,” ASME J. Heat Transfer, 128(2), pp. 121–131. [75] Taylor,J.R.,1997, ”An introduction to error analysis”,Unversity Science Books, Sausalito. [76] Hsieh, S.S., Li, S.Y., and Hsieh, Y.C., 2017, “Nominvasive temperature measurements of RLIF and nPIT in DI water flow microchannels,”Appl. Therm. Eng.,117, pp. 30-38. [77] Choi, S.B., Barren, R.R., and Warrington, R.Q.,1991, “Fluid flow and heat transfer in micro-tubes, ”ASME Stud. Profess. Dev. Conf., 40, pp. 89-93. [78] Qu, W., Mala, G.M., and Li, D.,2000, “ Heat transfer for water flow in trapezoidal silicon microchannels, ”Int. J. Heat Mass Transfer, 43, pp.3925-3936. [79] Steinke, M. E., and Kandlikar, S. G.,2004, “ Heat transfer for water flow in trapezoidal silicon microchannels, ”
|