(3.215.180.226) 您好!臺灣時間:2021/03/09 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳暐宗
研究生(外文):Wei-tsung Chen
論文名稱:固化過程中多顆氣泡沉陷於固體形成多個氣孔機制之研究
論文名稱(外文):Mechanism of multiple bubbles entrapped as pores in solid during solidification
指導教授:魏蓬生
指導教授(外文):Peng-Sheng Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:相位場函數熱毛細力表面張力兩相流相位場法對流效應濃度擴散
外文關鍵詞:Surface tensionpore formationPhase fieldtwo-phase flowbubblemultiple bubblesPhase field functionThermocapillary
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用相位場法,以兩相流模擬多個氣泡在固化過程中與固液介面間之動態行為。其中以溫度及相位場函數決定固、液、氣三相。本研究計算質量守恆方程式、動量方程式、能量方程式以及濃度方程式。模擬結果顯示氣泡形狀受對流效應影響及其成長機制極為複雜。
This study applies the phase- field method to simulate multiple pores shapes in solid, and explore mechanisms responsible for pore formation. The simulation method is base on two-dimensional two-phase flow module in the COMSOL software. Conservation equations of mass, momentum, energy and concentration are solved in the entire domain by incorporating with temperature to distinguish solid and liquid phases, and phase field function to distinguish liquid and gas phases. The computed results reveal complicated shapes and mechanisms of the pore shape.
目錄
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
符號說明 ix
下標符號說明 xii
第一章 緒論 1
1-1研究背景 1
1-2相位場法(PFM)及二相流(Two phase flow) 1
1-3 研究內容簡介與架構 2
第二章 模型設定與理論之分析 3
2-1模組之統御方程式 3
2-1-1 相位場法方程式 3
2-1-2質量及動量守恆方程式 5
2-1-3 能量方程式 8
2-1-4 濃度方程式 9
2-2模型架構 10
2-2-1 模型架構設定 10
2-2-2 網格分布與設定 11
2-2-3 初始值與邊界設定 12
2-2-4 流體性質 14
2-3 研究模擬之流程圖 15
第三章 結果與討論 16
3-1 模擬條件與說明 16
3-2 基本性質 17
3-3 固化速度低於界面速度 19
3-3-1 密度圖 19
3-3-2 濃度圖 21
3-3-3 溫度圖 24
3-3-4 密度與流場圖 26
3-4 固化速度高於界面速度 29
3-4-1 密度圖 29
3-4-2 濃度圖 30
3-4-3 溫度圖 32
3-4-4 密度與流場等位圖 33
3-5 對流效應 35
3-6 網格驗證 37
3-7 R(0)與壓力關係 39
第四章 結論與未來展望 40
參考文獻 41
參考文獻
[1]S. Kou, Welding Metallurgy. Wiley, New York, 1987.
[2]M. C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974
[3]Y. Sun and C. Beckermann, 2010,“Phase-field modeling of bubble growth and flowin a Hele-shaw cell”, J. Heat and Mass Transfer, 2969-2978.
[4]David C. Venerus and Nadia Yala,1997,“Transport Analysis of Diffusion-Induced Bubble Growth and Collapse in Viscous
[5]Tanai L. Marin,“Solidification of a Liquid Metal Droplet Impinging on a Cold Surface”,Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston.
[6]V.R.Voller and C.Prakash,“ A fixed grid numerical Modelling Methodology for convection-diffusion mushy region phase-change problem”,Jourmal of Heat and Mass Transfer,30(8),1709-1719(1987).
[7]Luiz C. Wrobel and M. H. Aliabadi, 2003, The boundary element methods. Wiley, UK.
[8]Vittorio Cristini, Jerzy Bławzdziewicz, and Michael Loewenberg, 1998, “Drop breakup in three-dimensional viscous flows”, Phsics fluids, Vol. 10, pp.1781-1783
[9]Howard H. Hu, N. A. Patankar and M. Y. Zhu, 2000, “Direct Numerical Simulations of Fluid–Solid Systems Using the Arbitrary Lagrangian–Eulerian Technique”, Journal of Computational Physics 169, pp.427–462
[10]S. Ramaswamy and L.G. Leal, 1998, “ The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid”, J. Non-Newtonian fluid mech., 85, pp.127-163
[11]Stanley Osher and Nikos Paragios, 2003, Geometric level set methods in imaging, vision, and graphics. Springer-Verlag. New York.
[12]Ruben Scardovelli and Stephane Zaleski,1999,“Direct numerical simulation of free-surface and interfacial flow”,Annu. Rev. Fluid Mech.,Vol.31,567-603.
[13]Y. Sun and C. Beckermann,2007,“Sharp interface tracking using the phase-field equation”, Journal of Computational Physics 220,pp.626-653.
[14]Cahn, J. W. and Hilliard, J. E, 1958, “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys. 28, pp.258-267.
[15]F. Kong, H. Zhang and G. Wang,2008,“Numerical Simulation of Transient Multiphase Field during Hybrid Plasma-Laser Deposition Manufacturing”J. Heat Transfer, Vol.130, NO.112101,pp.1-7.a
[16]Shyamprasad Karagadde, Suresh Sundarraj, Pradip Dutta,2012, “A model for growth and engulfment of gas microporosity during aluminum alloy solidification process”,Computational Materials Science 65 ,pp.383-394.
[17]comsol1998–2008, “Chemical Engineering MODULE”,BOILING WATER ,pp.155-156.
[18]PengtaoYue, JamesJ. Feng, Chun Liu and Jie Shen,2004, “A diffuse-interface method for simulating two-phase flows of complex fluids”, J. Fluid Mech. , Vol. 515,pp.293-317.
[19]S. Karagadde, S. Sundarrij,P.Dutta,2012: “A model for growth and engulfment of gas microporosity during aluminum alloy solidification process”Computational Meterials Science 65,pp.383-394

[20]Christopher J. Forster, Marc K. Smith ,“The Transient Modeling of Single-Bubble Nucleate Boiling in a Sub-Cooled Liquid Using an ALE Moving Mesh”, 2011 COMSOL Conference in Boston
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔