(34.201.11.222) 您好!臺灣時間:2021/02/25 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃聖凱
研究生(外文):Sheng-kai Huang
論文名稱:熱流場與勞侖茲力對固化過程所生成表面粗糙度之影響
論文名稱(外文):The Effect of Lorentz force on Fluid Flow and Surface Roughness during Solidification
指導教授:魏蓬生
指導教授(外文):Peng-Sheng Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:44
中文關鍵詞:角落流相位場法兩相流等位函數熱毛細力勞侖茲力
外文關鍵詞:Phase-field methodLevel-set equationTwo-phase flowcorner flowThermocapillaryLorentz force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以二相流模擬金屬受入射高能量電漿,所產生鎔融及固化過程之暫態熱流行為。金屬自由表面之變形以相場法決定。本研究計算質量、動量、能量與等位函數方程式,以模擬金屬內溫度、壓力、流線及等位數之分佈。本研究也探討介於融化區與未融化區之角落流。角落流影響湧起、渦流、漣漪或固化成形。結果顯示,表面粗糙度受到角落流之影響,角落流之驅動力為表面張力、熱毛細力、勞侖茲力。
This study proposes two-phase flow model to simulate the melting and cooling of metal subjected to an incident high energy plasma from upper edge. The surface deformation of molten pool is determined by phase field method. Conservation equation of mass, momentum, energy and level-set equation are solved by Comsol multiphysics. This study is focus on the corner flow between the edge of molten pool and the solidified region. The corner flow region is responsible for the surface humping, gouging, rippling etc. The present study focus on the effect of Lorentz force in the surface roughness during solidification.
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
符號說明 v
目錄 viii
圖次 x
第一章 緒論 1
1.1 研究背景 1
1.2 二相流、相位場法模擬方法簡介 1
1.3 本論文研究內容簡介 2
1.4 論文架構 3
第二章 4
2.1模型之統御方程式 4
2.1.1相位場法方程式 4
2.1.2質量守恆方程式 5
2.1.3動量方程式 6
2.1.4能量方程式 10
2.1.5磁場方程式 10
2.2模型區域設定 11
2.2.1模型幾何 11
2.2.2 模型網格分佈 12
2.2.3初始值設定 13
2.2.4模型區域邊界設定 14
2.2.5各流體性質 16
第三章 模擬結果與討論 17
3.1 模擬條件與說明 17
3.2基本性質模擬圖 17
3.3 模擬結果與討論 20
第四章 結論 29
參考文獻 30
[1]K. Ishizaki, N. Araki, and H. Murai, 1965, “Penetration in arc welding and convection in molten metal”, J. Japan Welding Society, Vol. 34, pp.146-153.
[2]E. Friedman, 1978, “Analysis of weld puddledistortion and its effect on penetration”, J. Welding, Vol.57, pp.161-s-166-s.
[3]S. Kuo and Y. H. Wang, 1986, “Weld pool convection and its Effect”, J. Welding, Vol.65, pp.63-s-70-s.
[4]C. R. Heiple and J. R. Roper, 1982, “Mechanism for minor element effect on GTA fusion zone geometry”, J. Welding, Vol.61, pp.97-s-102-s
[5]C. Chan, J. Mazumder and M. M. Chan, 1984, “ A two-dimension transient modle for convection inlaser Melted Pool”, Metal. Trans., Vol.15A, pp.2175-2184.
[6]A. Paul and T. Debroy, 1988, “Free surface flow and heat transfer in conduction mode laser welding”, Metal. Trans. Vol.19B, pp.851-858.
[7]L. C. Wrobel and M. H. Aliabadi, 2003, The boundary element methods. Wiley, UK.
[8]V. Cristini, J. Bławzdziewicz, and M. Loewenberg, 1998, “Drop breakup in three-dimensional viscous flows”, Phsics fluids, Vol. 10, pp.1781-1783
[9]H. H. Hu, N. A. Patankar and M. Y. Zhu, 2000, “Direct numerical simulations of fluid–solid systems using the arbitrary lagrangian–eulerian technique”, Journal of Computational Physics 169, pp.427-462
[10]S. Ramaswamy and L.G. Leal, 1998, “ The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid”, J. Non-Newtonian fluid mech., 85, pp.127-163
[11]S. Osher and N. Paragios, 2003, Geometric level set methods in imaging, vision, and graphics. Springer- Verlag. New York.
[12]H. Emmerich,2003, The diffuse interface approach in materials science, Springer-Verlag. New York
[13]J. S. Rowlinson,1979, Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, Vol.20,No.2
[14]O. Penrose and P. C. Fife, 1990, “Thermodynamically consistent models of phase-field type for the kinetic of phase transitions”, Physica D, North-Holland.
[15]P. Yue and J. J. Feng, 2004, “A diffuse-interface method for simulating two-phase flows of complex fluids”, J. Fluid Mech, Vol. 515, pp.293-317.
[16]P. C. Hohenberg and B. I. Halperin, 1977: “Theory of dynamic critical phenomena”, Rev. Mod. Phy., Vol. 49, pp.435-479.
[17]D. Jacqmin, 1999: “Calculation of two-phase Navier–Stokes flows using Phase-Field modeling”, Journal of Computational Physics, 155, pp.96-127
[18]M. Verschueren, F. N. Van De Vosse and H. E. H. Meijer, 2001: “Diffuse-interface modolling of thermocapillary flow instabilities in a Hele-Shaw cell”, J. Fluid Mech., Vol434, pp.153-166.
[19]Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, pp.258-267.
[20]F. Kong, H. Zhang and G.Wang,2008“Numerical Simulation of Transient Multiphase Field during Hybird Plasma-Laser Deposition Manufacturing”,J.Heat Transfer,Vol.130,NO.112101,pp.1-7.
[21]S. Karagadde, S. Sundarrij,P.Dutta,2012: “A model for growth and engulfment of gas microporosity during aluminum alloy solidification process”Computational Meterials Science 65,pp.383-394
[22]Y. Sun and C. Beckermann, 2007, “Sharp interface tracking using the phase-field equation”, Journal of Computational Physics 220, pp.626-653.
[23]T. E. Morthland and J. S. Walker, 1999, “Instabilities of dynamic thermocapillary liquid layers with magnetic fields”, Journal of Fluid Mechanics, vol.130, pp.87-108.
[24]Takasu, T., & Toguri, J. (1998). “ Pyrometallurgical Significance of Marangoni Flow: Mechanism and Contributions to Processing”. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 356(1739), 967-980. Retrieved from http://www.jstor.org/stable/54908
[25]N. D. Lang and W. Kohn, 1970. “Theory of Metal Surfaces: Charge Density and Surface Energy” Physical Review B, Vol. 1, Iss. 12, pp.4555-4568. Retrieved from https://doi.org/10.1103/PhysRevB.1.4555
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔