(3.238.7.202) 您好!臺灣時間:2021/03/02 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何建凱
研究生(外文):Chien-kai Ho
論文名稱:IC封裝材料與金屬脫層之研究
論文名稱(外文):Delamination Between Compound Materials and Metals in IC Package
指導教授:潘正堂
指導教授(外文):Pan, Cheng-Tang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:接觸角X射線光電子能譜儀脫層現象塑膠球柵陣列有限元素模擬分析薄型細間距球柵陣列
外文關鍵詞:LFBGAPBGADelaminationContact AngleXPSFinite Element Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:618
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
封裝脫層在電子封裝中為常見的現象,因此本研究主要探討在薄型細間距球柵陣列 (Low Profile Fine Pitch Ball Grid Array, LFBGA) 以及塑膠球柵陣列 (Plastic Ball Grid Array, PBGA) 封裝中的複合材料與金屬結合力以及鍵結機制。在LFBGA中,進行物理與化學特性的探討,在物理性質方面,透過掃描式電子顯微鏡觀察表面之粗糙度,並且利用不同粗糙度接合實驗,得知粗糙度與脫層現象之關係。在化性特性探討中,利用接觸角量測表面能,並且透過電漿以及酸洗來清洗材料表面,達到增加表面能以及接合性之效果。再透過EDS得知材料表面成份以及X射線光電子能譜儀來分析表面化合物,最後進行純銅/鎳接合之實驗,並改善脫層現象。在PBGA中,在散熱片之角座與環氧樹酯發生脫層現象,因此透過有限元素法模擬PBGA封裝過程,利用電腦軟體ANSYS進行模型的建立以及模擬。並且改善PBGA散熱片的原始設計,其中在角座部份,把原始形狀改變成倒角的形狀,再透過模擬結果得知新的倒角的設計可以降低應力值。除此之外,改變散熱片肩寬的長度,由模擬結果得知肩寬長度越大,應力值會越小。最後由這兩種因子進行全因子實驗模擬,可以得到散熱片應力最小值。最後由實驗結果得知肩寬大小對於應力值呈現負相關性;且當倒角半徑越大時,應力值也會隨著下降。
Package delamination is a common problem in electronic packaging, and this study focused on the plastic ball grid array (PBGA) and low profile fine pitch ball grid array (LFBGA) package of composite and metal bonding and bonding mechanism to decrease delamination. In the LFBGA process, the physical and chemical properties are discussed; such as the surface roughness was observed via scanning electron microscopy (SEM), and the relationship between roughness and delamination was obtained by different roughness bonding experiment. In the discussion of chemical properties, the surface energy is obtained by measuring the contact angle, and the material surface is cleaned by plasma and acid to enhance the surface energy for a good adhesive properties. In addition, the compositions and compounds of the surface is analyzed through the energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). Finally, the pure copper/nickel bonding experiment was carried out and delamination problem has obviously been improved. In the PBGA process, the delamination between the corner of the heat sink and the epoxy resin is observed, then the PBGA package process was established by using the finite element analysis simulation software ANSYS. In order to improve the heat sink of the original PBGA, the new chamfer design in the corner seat is effective to decrease the stress value. In addition, the simulation results show that the stress value was decreased after increase the length of the shoulder. The results showed that the stress value is inversely proportional to the shoulder width and the chamfer radius.
致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 4
第二章 文獻回顧與相關理論 5
2.1 封裝技術發展 5
2.1.1 DIP封裝 6
2.1.2 BGA封裝 7
2.2 金屬與金屬氧化物於封裝產業 9
2.2.1 氧化銅與脫層之關係 9
2.2.2 金屬銅之親疏水性 9
2.2.3 氧化銅之親疏水性 10
2.3 電漿之文獻回顧 11
2.3.1 電漿基本簡介 11
2.3.2 電漿技術與應用 12
2.4 X射線光電子能譜儀 16
2.4.1 XPS原理 16
2.4.2 XPS分峰 17
第三章 研究方法 19
3.1 實驗架構與流程 19
3.2 實驗試片 21
3.3 量測分析儀器 23
3.3.1 掃描式電子顯微鏡 23
3.3.2 表面粗糙度量測儀 24
3.3.3 電漿儀器 25
3.3.4 接觸角儀器 26
3.3.5 能量色散X射線光譜儀 28
3.3.6 X射線光電子能譜儀 29
3.4 酸洗實驗規劃 30
3.5 純金屬接合實驗規劃 30
3.6 PBGA有限元素分析 30
3.6.1 有限元素模型 31
3.6.2 材料參數與邊界條件 33
3.6.3 環境設定 34
3.7 影響因子與全因子實驗 36
第四章 結果與討論 39
4.1 LFBGA表面形貌結果 39
4.2 LFBGA粗糙度結果 41
4.3 LFBGA接觸角結果 42
4.3.1 電漿後接觸角量測 42
4.3.2 酸洗後接觸角量測 45
4.4 LFBGA EDS分析結果 48
4.5 XPS分析結果 50
4.5.1 LFBGA不同金屬於電漿前後之XPS結果 50
4.5.2 不同電漿於銅試片之XPS結果 56
4.6 LFBGA純金屬與粗糙度接合實驗結果 57
4.7 PBGA模擬之收斂性分析 59
4.8 PBGA模擬結果 60
第五章 結論 64
5.1 總結 64
5.2 未來展望 65
參考文獻 66
[1]馬維揚, “半導體產業對台灣經濟的重要性分析,” Industrial Economics Analysis產經分析, 2014.
[2]李淑蓮, “大陸IC市場規模已逾萬億人民幣投資彼岸已成「必要之惡」?” 北美智權報 (NAIP Newsletter), 2015.
[3]李淑蓮, “2016半導體市場觀察,” 北美智權報 (NAIP Newsletter), 2016.
[4]王紹宇, “晶圓級晶片尺寸封裝之介電層互連可靠度強化,” 碩士論文, 機械與機電工程研究所, 國立中山大學, 2015.
[5]W. T. Chen and C. W. Nelson, “Thermal Stress in Bonded Joints,” IBM Journal of Research and Development, Vol. 23, Issue 2, pp.179-188, 1979.
[6]邱振質, “雷射切割技術應用於QFN封裝之最佳化參數研究,” 碩士論文, 機械與機電工程研究所, 國立中山大學, 2015.
[7]中信建設證券-http://www.cnyes.com/report/rsh_article.aspx?id=208427.
[8]呂宗興, “從IC封裝的角度看系統產品組裝製程及使用期間所產生之IC元件失效問題 (Examination on the Board-assembly-induced Failure of IC Components from IC Packaging Point of View),” SMT Solution, 台灣印刷電路板協會 TPCA, 2010.
[9]A. Mangroli and K. Vasoya, “Optimizing Thermal and Mechanical Performance in PCBs,” Global SMT & Packaging, 2007.
[10]M. L. Minges, “Electronic Materials Handbook:Packaging,” CRC Press, Volume I, pp. 616, 1989.
[11]T. Burnette, Z. Johnson, T. Koschmieder and W. Oyler, “Underfilled BGAs for Ceramic BGA Packages and Board-Level Reliability,” IEEE 50th Electronic Components and Technology Conference, pp.1221-1226, 2000.
[12]F. E. Andros and R. B. Hammer, “TBGA Package Technology,” IEEE Transactions on Components, Packaging, and Manufacturing Technology:Part B, Vol. 17, Issue 4, pp. 564-568, 1994.
[13]田民波, 林金堵, 祝大同 “高密度封裝基板 (Substrates for High Density Package),” 清華大學出版社, pp. 102-104, 2003.
[14]E. Takano, T. Mino, K. Takahashi, K. Sawada, S. Shimizu and H.Y. Yoo, “The Oxidation Control of Copper Leadframe Package for Prevention of Popcorn Cracking,” IEEE 47th Electronic Components and Technology Conference, 1997.
[15]B. H. Moon, H. Y. Yoo and K. Sawada, “Optimal Oxidation Control for Enhancement of Copper Lead frame-EMC Adhesion in Packaging Process,” IEEE 48th Electronic Components and Technology Conference, 1998.
[16]T. G. Kang, I. S. Park, J. H. Kim and K. S. Choi, “Characterization of Oxidized Copper Leadframes and Copper/Epoxy Molding Compound Interface Adhesion in Plastic Package,” IEEE 3rd International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, 1998.
[17]S. K. Lahiri, N. K. Waalib Singh, K. W. Heng, L. Ang and L. C. Goh, “Kinetics of Oxidation of Copper Alloy Leadframes,” Microelectronics Journal, Vol. 29, Issue 6, pp. 335-341, 1998.
[18]H. Shen, M. Li and D. Mao, “Oxidation Failure Mechanism of Copper Alloy Lead Frame for IC Package,” IEEE 6th International Conference on Electronic Packaging Technology, 2005.
[19]W. Xi, Z. Qiao, C. Zhu, A. Jia and M. Li, “The Preparation of Lotus-like Super-hydrophobic Copper Surfaces by Electroplating,” Applied Surface Science, Vol. 255, Issue 9, pp. 4836-4839, 2009.
[20]J. Drelich, E. Chibowski, D. D. Meng and K. Terpilowski, “Hydrophilic and Superhydrophilic Surfaces and Materials,” Soft Matter, Issue 21, pp. 9804-9828, 2011.
[21]Y. Akaltun, M. Aslan, T. Yetim, T. Cayir and A. Celik, “The Effect of Wettability on Corrosion Resistance of Oxide Films Produced by SILAR Method on Magnesium, Aluminum and Copper Substrates,” Surface and Coatings Technology, Vol. 292, pp. 121-131, 2016.
[22]D. J. Huang and T. S. Leu, “Fabrication of High Wettability Gradient on Copper Substrate,” Applied Surface Science, Vol. 280, pp. 22-32, 2013.
[23]S. H. Tu, H. C. Wu, C. J. Wu, S. L. Cheng, Y. J. Sheng and H. K. Tsao, “Growing Hydrophobicity on a Smooth Copper Oxide Thin Film at Room Temperature and Reversible Wettability Transition,” Applied Surface Science, Vol. 316, pp. 88-92, 2014.
[24]涂勝宏, “清洗液處理後之銅晶圓表面之濕潤行為,” 博士論文, 化學工程與材料工程研究所, 國立中央大學, 2014.
[25]P. K. Korzhavyi and B. Johansson, “Literature Review on the Properties of Cuprous Oxide Cu2O and the Process of Copper Oxidation,”
[26]I. Langmuir, “Oscillations in Ionized Gases,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 14, Issue 8, pp. 627-637, 1928.
[27]楊超棨, “介電質常壓電漿產生器之開發及其於質譜分析之應用,” 碩士論文, 機械與機電工程研究所, 國立中山大學, 2010.
[28]楊博智, “金凸塊與銅電極接合界面之電漿活化對覆晶接合強度之影響,” 碩士論文, 機械工程研究所, 國立中正大學, 2012.
[29]M. M. R. Howlader, T. Suga, A. Takahashi, K. Saijo, S. Ozawa and K. Nanbu, “Surface Activated Bonding of LCP/Cu for Electronic Packaging,” Journal of Materials Science, Vol. 40, Issue 12, pp. 3177-3184, 2005.
[30]Y. Takata, S. Hidaka, A. Yamashita and H. Yamamoto, “Evaporation of Water Drop on a Plasma-irradiated Hydrophilic Surface,” International Journal of Heat and Fluid Flow, Vol. 25, Issue 2, pp. 320-328, 2004.
[31]W. Li, “A Study of Plasma-Cleaned Ag-Plated Cu Leadframe Surfaces,” Journal of Electronic Materials, Vol. 39, Issue 3, pp. 295-302, 2010.
[32]G. Dunn, “Plasma Cleaning and Surface Modification for Microelectronics,” Solid State Technology, 2009.
[33]H. Tsai, E. Hu, K. Perng, M. Chen, J. C. Wu, Y. S. Chang, “Instability of gold oxide Au2O3,” Surface Science Letters, Vol. 537, Issue 1-3, pp. L447-L450, 2003.
[34]J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, S. B. Jung, “Atmospheric Pressure Plasma Cleaning of Gold Flip Chip Bump for Ultrasonic Flip Chip Bonding,” Journal of Physics:Conference Series, Vol. 100, 2008.
[35]J. M. Walls, “Methods of Surface Analysis:Techniques and Applications,” Cambridge University Press, pp. 127-168, 1989.
[36]陳俊龍, “AES/ESCA表面分析技術於工業材料上的應用,” 工業材料, 106期, pp. 69-77, 1995.
[37]林政緯, “氮氧化鈦薄膜XPS表面分析,” 碩士論文, 材料工程研究所, 大同大學, 2011.
[38]梁弘逸, “熱浸鍍鋅鋼材鐵鋁阻障層形成機構研究,” 碩士論文, 材料與光電科學研究所, 國立中山大學, 2010.
[39]張立信, “表面化學分析技術 (Surface Chemical Analysis Techniques),” 奈米通訊 (Nano Communication), 19卷No.4, pp. 17-23, 2012.
[40]J. F. Watts and J. Wolstenholme, “An Introduction to Surface Analysis by XPS and AES,” Wiley, 2003.
[41]C. D. Wagner, W. M. Riggs, L. E. Davis, F. Moulder and G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn, 1979.
[42]F. M. Capece, V. Dicastro, C. Furlani, G. Mattogno, C. Fragale, M. Gargano and M. Rossi, “Copper Chromite Catalysts:XPS Structure Elucidation and Correlation with Catalytic Activity,” Journal of Electron Spectroscopy and Related Phenomena, Vol. 27, Issue 2, pp.119-128, 1982.
[43]B. Wichterlova, L. Krajcikova, Z. Tvaruskova and S. Beran, “Chromium Ions in Zeolites. Part 4.—X-ray Photoelectron Spectroscopic Study of Chromium Valence States in the Surface Layers of CrY Zeolites,” Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, Issue 10, pp. 2639-2645, 1984.
[44]Y. Wang, Y. Liang, J. He, W. X. Zhang, J. W. Luo, J. Q. Lu and M. F. Luo, “Catalytic Behaviors of Cr2O3 and CrO3/Cr2O3 Catalysts for Gas Phase Fluorination of 2-Chloro-1, 1, 1-Trifluoroethane:Active Species and Catalyst Deactivation,” Chinese Journal of Inorganic Chemistry, Vol. 33, pp. 123-133, 2016.
[45]C. J. Powell, N. E. Erickson and T. Jach, “Summary Abstract:Accurate Determination of the Energies of Auger Electrons and Photoelectrons from Nickel, Copper, and Gold,” Journal of Vacuum Science and Technology, Vol. 20, Issue 3, pp. 625, 1982.
[46]C. P. Li, A. Proctor and D. M. Hercules, “Curve Fitting Analysis of ESCA Ni 2p Spectra of Nickel-Oxygen Compounds and Ni/Al2O3 Catalysts,” Applied Spectroscopy, Vol. 38, Issue 6, pp. 880-886, 1984.
[47]K. S. Kim and N. Winograd, “X-ray Photoelectron Spectroscopic Studies of Nickel-Oxygen Surfaces Using Oxygen and Argon Ion-bombardment,” Surface Science, Vol. 43, Issue 2, pp. 625-643, 1974.
[48]N. S. McIntyre, S. Sunder, D. W. Shoesmith and F. W. Stanchell, “Chemical Information from XPS—Applications to the Analysis of Electrode Surfaces,” Journal of Vacuum Science and Technology, Vol. 18, Issue 3, pp. 714, 1981.
[49]羅聖全, “科學基礎研究之重要利器─掃描式電子顯微鏡(SEM),” 科學研習, 52卷第5期, 2013.
[50]國立中山大學-科技部高屏地區奈米核心設施共同實驗室-感應耦合式電漿蝕刻系統-http://140.117.32.239/ncfweb/facilities/94_icp_n.htm.
[51]T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of the Royal Society, Vol. 95, pp. 65-87, 1805.
[52]國立中山大學-奈米科技研發中心-場發射型掃描式電子顯微鏡-http://www.nano.nsysu.edu.tw/khvic/JL/JSM-6700F.htm.
[53]歐浚現, “探討PBGA封裝製程之有限元素分析及雷射用於QFN結構切割優化,” 碩士論文, 機械與機電工程研究所, 國立中山大學, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔