跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃綉媚
研究生(外文):Siou-mei Huang
論文名稱:利用分子力學預測活性碳之結構與機械行為
論文名稱(外文):Predictions on Structural and Mechanical Behaviors of Activated Carbon by Molecular Mechanics
指導教授:朱訓鵬
指導教授(外文):Shin-Pon Ju
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:tfMC分子力學活性碳機械性質壓縮測試法拉伸測試法
外文關鍵詞:mechanical propertyactivated carbontfMCcompression simulationensile simulationmolecular mechanics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合time-stamped force-bias Monte Carlo (tfMC)方法與模擬退火過程,預測活性碳材料微觀結構的流程。透過該流程,本研究分別各建立三種密度為0.5、0.7、1.3 g/cm3的活性碳物理模型以及0.7、0.9、1.3 g/cm3的球型活性碳物理模型。其退火速率為每30及6,000個tfMC步階下降5K。並且個別分析其孔隙率、比表面積與孔徑分布。另外,我們對活性碳模型進行模擬拉伸,探討不同密度及不同退火速率活性碳之楊氏模數、極限抗拉強度,並探討其微觀結構破裂情形以及環數變化。對於球型活性碳進行模擬壓縮,探討其結構破壞的過程。其結構研究結果顯示活性碳和球型活性碳之比表面積會與密度成正比。然而孔隙率以及孔徑大小會與密度成反比值。隨著退火速率變慢其比表面積會變大,孔隙率會下降。在活性碳拉伸模擬中,其環數變化會由六碳環轉變成五碳環及四碳環,且由區域應變顯示其破裂地方會集中於碳壁的邊緣,並且會隨應變增加並朝垂直拉伸方向沿伸。在球型活性碳壓縮模擬中,由應力應變圖可發現球型活性碳內部結構,影響其在鬆弛階段的應變區間大小,當密度越小、退火速率越快其內部結構會越鬆散。透過本研究之模擬方法不僅提供了預測活性碳以及球型活性碳結構的方法,同時也探討其內部結構特性與機械性質,其結果對未來開發功能性活性碳提供一些有用的資訊。
Combining the time-stamped force-bias Monte Carlo and simulated-annealing methods, a structural prediction procedure for activated carbon (AC) and bead shape activated carbon (BAC) of different densities and quench rates were constructed. AC models were constructed, corresponding to densities of 0.5, 0.7, and 1.3 g/cm3 and BAC models were constructed, corresponding to densities of 0.7, 0.9, and 1.1 g/cm3. The quench rates were 5 K per 30 tfMC steps and 5 K per 6,000 tfMC steps, respectively. The structural properties of these models were examined, including porosity, specific surface area and pore distribution. In addition, the tensile and compress simulations were systematically applied to those AC and BAC models. In tensile simulation, the Young''s modulus and the fracture of microstructures were also investigated. The specific surface area and Young''s modulus are proportional to the density of AC, but the porosity and the main distribution of pore size are inversely related. The probability distribution of the ring size shows that six-atom rings translate to four- and five- atom ring during tensile simulation. The local shear strain analysis indicates that the fractures appear adjacent to the edge of the carbon wall frame in AC and will expand vertically along the tensile axis. In compress simulation, it found that in the low density and fast quench rate of BAC, there has sufficient space to relax the stress during the the compression and exhibit wide range of strain in relax region. This study not only constructs a structural prediction procedure of AC and BAC but also provides several detailed information of internal structure and mechanical property. The results can provide useful information on the development of functional activated carbon in the future.
目 錄
論文審定書. i
論文公開授權書. ii
致謝.....iii
中文摘要............... iv
Abstract ................. v
目 錄.................... vi
圖目錄........ viii
表目錄..... x
第一章 緒論.......... 1
1.1 研究動機與目的......................................... 1
1.2 活性碳(activated carbon)介紹................. 3
1.2.1 活性碳的結構.................................. 3
1.2.2 活性碳的吸附特性............ 5
1.2.3 活性碳的製備............... 6
1.3 活性碳的相關研究與應用之文獻回顧......... 8
1.4 本文架構....................... 12
第二章 模擬方法與理論介紹................. 13
2.1 分子力學方法 (molecular mechanics) ...... 13
2.1.1 共軛梯度法 (conjugate gradient method ) ...................... 13
2.2 tfMC (time-stamped force-bias Monte Carl) .................................. 15
2.3 勢能函數..................................................... 16
2.3.1 REBO 勢能 ......................................................................................... 16
2.3.2 AIREBO 勢能 ..................................................................................... 17
2.3.3 非鍵結三體勢能(Nonbonding 3-body harmonic potential) ............. 17
2.3.4 虛擬壁面............................................................................................ 18
第三章 數值模擬方法................................................................................................ 20
3.1 週期性邊界................................................................................................... 20
3.2 鄰近原子表列法........................................................................................... 21
3.2.1 截斷半徑法........................................................................................ 21
3.2.2 維理表列法........................................................................................ 22
3.2.3 巢室表列法........................................................................................ 23
3.2.4 維理表列法結合巢室表列法............................................................ 24
3.3 分子力學流程圖........................................................................................... 25
3.4 統計之參數計算........................................................................................... 26
3.4.1 分子表面網格 (Surface mesh)的建構 ............................................. 26
3.4.2 孔徑大小分佈.................................................................................... 27
vii
3.4.3 區域應變(Local shear strain)與von Mises stress 分析 .................... 28
3.4.4 原子級應力計算理論........................................................................ 29
第四章 結果分析與討論............................................................................................ 33
4.1 活性碳之物理模型....................................................................................... 33
4.1.1 活性碳物理模型................................................................................ 33
4.1.2 球型活性碳物理模型........................................................................ 37
4.2 活性碳之結構性質分析............................................................................... 41
4.3 拉伸及壓縮試驗與機械性質探討............................................................... 46
4.3.1 拉伸模型建立.................................................................................... 46
4.3.2 壓縮模型建立.................................................................................... 47
4.3.3 活性碳拉伸應力應變圖.................................................................... 48
4.3.4 球型活性碳壓縮應力應變圖............................................................ 50
4.3.4 活性碳結構於拉伸時的環數變化.................................................... 54
4.3.5 球型活性碳結構於模擬壓縮時的環數變化.................................... 57
4.3.6 活性碳結構於模擬拉伸時的區域應變及von Mises stress 分析 ... 60
第五張 結論與未來展望............................................................................................ 64
5.1 結論............................................................................................................... 64
5.2 未來展望....................................................................................................... 66
參考文獻...................................................................................................................... 6758
[1]S. Zengmin, "Novel Carbon Materials," ed: Beijing: Chemical Industry Press, 2003.
[2]賴耿陽, 碳材料化學與工學: 復漢, 2001.
[3]H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, pp. 162-163, 11/14/print 1985.
[4]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 11/07/print 1991.
[5]S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 06/17/print 1993.
[6]L. Shi, K. Yang, Q. Zhao, H. Wang, and Q. Cui, "Characterization and mechanisms of H2S and SO2 adsorption by activated carbon," Energy & Fuels, vol. 29, pp. 6678-6685, 2015.
[7]M. E. Casco, M. Martínez-Escandell, J. Silvestre-Albero, and F. Rodríguez-Reinoso, "Effect of the porous structure in carbon materials for CO 2 capture at atmospheric and high-pressure," Carbon, vol. 67, pp. 230-235, 2014.
[8]H. Yi, Y. Zuo, H. Liu, X. Tang, S. Zhao, Z. Wang, et al., "Simultaneous removal of SO2, NO, and CO2 on metal-modified coconut shell activated carbon," Water, Air, & Soil Pollution, vol. 225, p. 1965, 2014.
[9]S.-J. Park and S.-Y. Jin, "Effect of ozone treatment on ammonia removal of activated carbons," Journal of colloid and interface science, vol. 286, pp. 417-419, 2005.
[10]S.-H. Hsu, C.-S. Huang, T.-W. Chung, and S. Gao, "Adsorption of chlorinated volatile organic compounds using activated carbon made from Jatropha curcas seeds," Journal of the Taiwan Institute of Chemical Engineers, vol. 45, pp. 2526-2530, 2014.
[11]E. Ayranci and B. Conway, "Adsorption and electrosorption at high-area carbon-felt electrodes for waste-water purification: Systems evaluation with inorganic, S-containing anions," Journal of Applied Electrochemistry, vol. 31, pp. 257-266, 2001.
[12]Y. Izumi and K. Urabe, "Catalysis of heteropoly acids entrapped in activated carbon," Chemistry Letters, vol. 10, pp. 663-666, 1981.
[13]K. Köhler, R. G. Heidenreich, J. G. Krauter, and J. Pietsch, "Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching," Chemistry–A European Journal, vol. 8, pp. 622-631, 2002.
[14]J. Tersoff, "New empirical approach for the structure and energy of covalent systems," Physical Review B, vol. 37, pp. 6991-7000, 04/15/ 1988.
[15]M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, and N. Wu, "Effects of Pore Structure on Performance of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires," ACS Sustainable Chemistry & Engineering, vol. 2, pp. 1592-1598, 2014/07/07 2014.
[16]M. J. Munoz-Guillena, M. J. Illan-Gomez, J. M. Martin-Martinez, A. Linares-Solano, and C. Salinas-Martinez de Lecea, "Activated carbons from Spanish coals. 1. Two-stage carbon dioxide activation," Energy & Fuels, vol. 6, pp. 9-15, 1992/01/01 1992.
[17]A. R. Shawwa, D. W. Smith, and D. C. Sego, "Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke," Water Research, vol. 35, pp. 745-749, 2// 2001.
[18]徐惠美, "活性碳-因環保而需求活絡," ed: 工業技術, 2002.
[19]F. Rodríguez-reinoso, "The role of carbon materials in heterogeneous catalysis," Carbon, vol. 36, pp. 159-175, // 1998.
[20]G. Q. Lu, "Evolution of pore structure of high-ash char during activation," Fuel, vol. 73, pp. 145-147, 1// 1994.
[21]K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, et al., "Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis," Pure and Applied Chemistry, vol. 57, pp. 603-619, 1985.
[22]劉曾旭, "活性碳製造技術及應用," ed: 產業調查與技術, 1998.
[23]謝建徳, "活性碳孔隙結構與製備條件對液相吸附的影響," ed: 中原大學化學工程學系研究所碩士, 1998.
[24]陳弘彬, "孟宗竹炭與活性碳之研製," ed: 國立屏東科技大學碩士論文.
[25]A. Ahmadpour and D. D. Do, "The preparation of active carbons from coal by chemical and physical activation," Carbon, vol. 34, pp. 471-479, // 1996.
[26]F. Caturla, M. Molina-Sabio, and F. Rodríguez-Reinoso, "Preparation of activated carbon by chemical activation with ZnCl2," Carbon, vol. 29, pp. 999-1007, 1991/01/01 1991.
[27]Y. Chen, J. Fitz Gerald, L. T. Chadderton, and L. Chaffron, "Nanoporous carbon produced by ball milling," Applied Physics Letters, vol. 74, pp. 2782-2784, 1999.
[28]P. Pré, G. Huchet, D. Jeulin, J.-N. Rouzaud, M. Sennour, and A. Thorel, "A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images," Carbon, vol. 52, pp. 239-258, 2// 2013.
[29]K. Durkee and J. Eddinger, "Status of EPA regulatory program for medical waste incinerators–results of emission test program," in 1992 Incineration Conference: Thermal Treatment of Radioactive, Hazardous, Chemical, Mixed and Medical Wastes. Albuquerque, New Mexico, 1992, pp. 11-14.
[30]陳政瑋, "餐廚業排氣之濕式洗滌及活性碳吸附除臭研究," 撰者, 2006.
[31]R. Sinha and P. Walker, "Removal of mercury by sulfurized carbons," Carbon, vol. 10, pp. 754-756, 1972.
[32]M. Wiśniewski, S. Furmaniak, A. P. Terzyk, P. A. Gauden, and P. Kowalczyk, "Properties of Phenol Confined in Realistic Carbon Micropore Model: Experiment and Simulation," The Journal of Physical Chemistry C, vol. 119, pp. 19987-19995, 2015.
[33]P. Li, C. Xing, S. Qu, B. Li, and W. Shen, "Carbon dioxide capturing by nitrogen-doping microporous carbon," ACS Sustainable Chemistry & Engineering, vol. 3, pp. 1434-1442, 2015.
[34]B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, and Y. Yang, "Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors," Electrochimica Acta, vol. 52, pp. 4595-4598, 3/20/ 2007.
[35]K.-c. Wu, "Electro-spun PAN-Based Activated Carbon Nanofibers as Electrode Materials for Electric Double Layer Capacitors," 2012.
[36]N. B. Stankova, M. S. Khristova, and D. R. Mehandjiev, "Catalytic Reduction of NO with CO on Active Carbon-Supported Copper, Manganese, and Copper–Manganese Oxides," Journal of Colloid and Interface Science, vol. 241, pp. 439-447, 9/15/ 2001.
[37]I. Spasova, P. Nikolov, and D. Mehandjiev, "Ozone decomposition over alumina-supported copper, manganese and copper-manganese catalysts," Ozone: Science and Engineering, vol. 29, pp. 41-45, 2007.
[38]J. Pikunic, R.-M. Pellenq, K. Thomson, J.-N. Rouzaud, P. Levitz, and K. Gubbins, "Improved molecular models for porous carbons," Studies in surface science and catalysis, vol. 132, pp. 647-652, 2001.
[39]J. C. Palmer and K. E. Gubbins, "Atomistic models for disordered nanoporous carbons using reactive force fields," Microporous and Mesoporous Materials, vol. 154, pp. 24-37, 2012.
[40]Y. Shi, "A mimetic porous carbon model by quench molecular dynamics simulation," The Journal of chemical physics, vol. 128, p. 234707, 2008.
[41]J. Palmer, A. Llobet, S.-H. Yeon, J. Fischer, Y. Shi, Y. Gogotsi, et al., "Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics," Carbon, vol. 48, pp. 1116-1123, 2010.
[42]X. Shao, W. Wang, R. Xue, and Z. Shen, "Adsorption of Methane and Hydrogen on Mesocarbon Microbeads by Experiment and Molecular Simulation," The Journal of Physical Chemistry B, vol. 108, pp. 2970-2978, 2004/03/01 2004.
[43]K. V. Kumar, K. Preuss, L. Lu, Z. X. Guo, and M. M. Titirici, "Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study," The Journal of Physical Chemistry C, vol. 119, pp. 22310-22321, 2015/10/01 2015.
[44]J. Palmer, J. Brennan, M. Hurley, A. Balboa, and K. Gubbins, "Detailed structural models for activated carbons from molecular simulation," Carbon, vol. 47, pp. 2904-2913, 2009.
[45]S. Yang, L. Ouyang, J. M. Phillips, and W. Ching, "Density-functional calculation of methane adsorption on graphite (0001)," Physical Review B, vol. 73, p. 165407, 2006.
[46]T. P. Senftle, R. J. Meyer, M. J. Janik, and A. C. T. van Duin, "Development of a ReaxFF potential for Pd/O and application to palladium oxide formation," The Journal of Chemical Physics, vol. 139, p. 044109, 2013.
[47]程锦荣, 刘遥, 张立波, 丁锐, 丁振峰, 王晓, et al., "化学势对模拟计算单壁碳纳米管储氢的影响," 安徽大学学报: 自然科学版, vol. 31, pp. 57-61, 2007.
[48]J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[49]S. S. a. N. Tripathi, K. S., "Optimization Using Conjugate Gradient Methods,," IEEE Transactions on Automatic Control, vol. AC-15, 1970.
[50]K. M. Bal and E. C. Neyts, "On the time scale associated with Monte Carlo simulations," The Journal of chemical physics, vol. 141, p. 204104, 2014.
[51]M. J. Mees, G. Pourtois, E. C. Neyts, B. J. Thijsse, and A. Stesmans, "Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion," Physical Review B, vol. 85, p. 134301, 2012.
[52]E. C. Neyts and A. Bogaerts, "Combining molecular dynamics with Monte Carlo simulations: implementations and applications," Theoretical Chemistry Accounts, vol. 132, pp. 1-12, 2013.
[53]J. E. Lennard-Jones, "Cohesion," Proceedings of the Physical Society, vol. 43, p. 461, 1931.
[54]L. A. Girifalco and V. G. Weizer, "Application of the Morse potential function to cubic metals," Physical Review, vol. 114, p. 687, 1959.
[55]M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, p. 6443, 1984.
[56]J. Tersoff, "New empirical approach for the structure and energy of covalent systems," Physical Review B, vol. 37, p. 6991, 1988.
[57]W. B. Donald, A. S. Olga, A. H. Judith, J. S. Steven, N. Boris, and B. S. Susan, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons," Journal of Physics: Condensed Matter, vol. 14, p. 783, 2002.
[58]D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, vol. 42, pp. 9458-9471, 11/15/ 1990.
[59]S. J. Stuart, A. B. Tutein, and J. A. Harrison, "A reactive potential for hydrocarbons with intermolecular interactions," The Journal of chemical physics, vol. 112, pp. 6472-6486, 2000.
[60]A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool," Modelling and Simulation in Materials Science and Engineering, vol. 18, p. 015012, 2009.
[61]S. Bhattacharya and K. E. Gubbins, "Fast method for computing pore size distributions of model materials," Langmuir, vol. 22, pp. 7726-7731, 2006.
[62]N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, p. 094101, 2004.
[63]N. Tokita, M. Hirabayashi, C. Azuma, and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," The Journal of chemical physics, vol. 120, pp. 496-505, 2004.
[64]D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural defects in amorphous solids statistical analysis of a computer model," Philosophical Magazine A, vol. 44, pp. 847-866, 1981.
[65]J. Lutsko, "Stress and elastic constants in anisotropic solids: molecular dynamics techniques," Journal of Applied Physics, vol. 64, pp. 1152-1154, 1988.
[66]K. S. Cheung and S. Yip, "Atomic‐level stress in an inhomogeneous system," Journal of Applied Physics, vol. 70, pp. 5688-5690, 1991.
[67]N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method," JSME international journal. Ser. A, Mechanics and material engineering, vol. 39, pp. 606-612, 1996.
[68]H. Rafii-Tabar, "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes," Physics Reports, vol. 390, pp. 235-452, 2004.
[69]H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola, and J. Haak, "Molecular dynamics with coupling to an external bath," The Journal of chemical physics, vol. 81, pp. 3684-3690, 1984.
[70]S. Plimpton, P. Crozier, and A. Thompson, "LAMMPS-large-scale atomic/molecular massively parallel simulator," Sandia National Laboratories, vol. 18, 2007.
[71]A. Baghel, B. Singh, G. Prasad, P. Pandey, and P. Gutch, "Preparation and characterization of active carbon spheres prepared by chemical activation," Carbon, vol. 49, pp. 4739-4744, 2011.
[72]C. Wang, C. Zhang, and S. Chen, "The microscopic deformation mechanism of 3D graphene foam materials under uniaxial compression," Carbon, vol. 109, pp. 666-672, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用分子動力學探討電場極化對聚偏二氟乙烯與奈米碳管複合物之微觀結構與機械性質的影響
2. 以分子動力學模擬研究三維超分子於石墨烯上之結構
3. 以分子動力學預測不同比例高分子微針之聚乙烯醇與聚甲基乙烯基醚-馬來酸酐共聚物複合材料之機械性質
4. 以隨機穿隧法搜尋具最佳序列之單股去氧核醣核酸分子於前列腺癌蛋白之辨識
5. 以密度泛函理論計算與分子動力學預測鎂鋅鈣鍶金屬玻璃之機械與表面腐蝕性質
6. 以分子靜力學模擬預測鎢奈米線之機械性質
7. 以密度泛函理論計算與分子動力學模擬預測鋁鈮鉭鈦鋯鉬高熵合金之結構、機械、熱力學及電子性質
8. 以分子力學觀察S7與T7胜肽在不同鉑金屬表面的特異性
9. 以分子動力學模擬鐵碳鉻鉬塊材金屬玻璃之結構與機械性質
10. 以分子模擬設計具特定癌細胞專一辨識性之核酸適體最佳序列
11. 以分子動力學方法探討有機分子在雙電層電容器中的吸附與擴散行為
12. 利用密度泛函理論與動態蒙地卡羅探討氫氟酸/三氟化硼催化萘聚合之催化機制與反應動力學研究
13. 以分子動力學模擬探討聚甲基丙烯酸甲酯與銀奈米粒子複合物之機械性質
14. 以耗散粒子動力學分析多面體矽氧烷寡聚物與聚甲基丙烯酸甲酯嵌段共聚物其自主裝結構
15. 以分子動力學預測四代聚醯胺-胺樹枝狀高分子封裝金奈米粒子之熱穩定性及於不同pH環境下之結構