跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/14 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫韶甫
研究生(外文):Shao-fu Sun
論文名稱:以呼拉圈運動耦合增能設計多軸浮標獵能器
論文名稱(外文):Design of a Multi-axis Buoy Energy Harvester Based on Hula-hoop Motion to Enlarge Harvesting Energy
指導教授:王郁仁
指導教授(外文):Yu-Jen Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:海爾貝克陣列浮標呼拉圈運動電磁感應獵能器
外文關鍵詞:halbach arraybuoyelectromagnetic inductionhula-hoop motionenergy harvester
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計一個具有雙旋轉自由度,能獵取浮標橫搖、俯仰、起浮運動動能之獵能器,並透過呼拉圈運動增加獵能器與波浪運動運動耦合,達到更佳的獵能效率,發電方式使用電磁感應發電,在磁路方面使用能增強線圈側磁力之海爾貝克陣列(Halbach array)磁鐵排列方式,和增加獵能器表面磁通量密度分布使用二維海爾貝克陣列磁鐵排列方式,目標解決長期放置海上觀測浮標之電池壽命問題,延長觀測浮標之使用壽命。
本研究從使用無線慣性感測元件量測投入高雄西子灣浮標之橫搖、俯仰角度和起伏高度、波浪頻率,代入透過拉格朗日方程式(Lagrange equation)推導出獵能器動態方程式,並根據運動方程式模擬結果,調整獵能器適當之配重使獵能器產生呼拉圈運動,提高發電量。透過模擬獵能器之表面磁通量密度,計算線圈之感應電動勢,再求得電磁阻尼,帶入動態方程式中,使動態方程式更趨於完備。
從模擬結果中顯示調整配重塊位置能使浮標與獵能器有更佳的動態耦合,產生雙軸呼拉圈運動,並提升獵能器轉動之平均角速度,從結果中顯示雙軸呼拉圈運動相對震盪運動能大幅提升33倍的輸出能量,使本文所設計之獵能器重量約4Kg,達到輸出18.39 W之功率。
This study developed a 2-DOF energy harvester that composes of an eccentric sphere and a novel circular Halbach-array magnetic sphere to harvest wave energy from the motion of a floating buoy in three directions, i.e. rolling, pitching and heaving motion. The eccentric sphere with adequate parameters revolving in hula-hoop motion enhances the power generation because its angular velocity is higher than revolving in small-amplitude oscillation. Faraday’s law of induction is adopted to transform the kinetic energy to electrical one. The two-dimensional Halbach array arrangement augments the gradient of the magnetic flux density of the side on which the coils were located. The goal of this study to achieve self-power buoy to avoid battery changed.
A wireless inertial measurement unit was used to measure the kinematic behavior of the buoy placed in Sizih Bay, Kaohsiung. The dynamic equations of the eccentric sphere mounted on the buoy were derived using Lagrange method.. The magnetic flux density and electromagnetic damping of the Halbach-array magnetic sphere were evaluated using magnetic field strength simulation and Faraday''s law of induction. The eccentric sphere with adequate weighting conditions possesses well dynamic coupling ability to provide the hula-hoop motion. According to the simulation results, the power of the adequate weighting eccentric sphere in hula-hoop motion is approximately 18.39W that was 33 times higher than revolving in small-amplitude oscillation.
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
ABSTRACT v
目錄 vii
圖次 x
表次 xiv
符號說明 xv
第一章 緒論 19
1.1 前言 19
1.2 文獻回顧 19
1.2.1 海上發電方式介紹 20
1.2.2 海上獵能系統 21
1.3 研究動機 26
1.4 本文架構 26
第二章 獵能器數學模型建立及推導 27
2.1 浮標運動行為及量測 27
2.1.1 浮標六個自由度運動 27
2.1.2 浮標運動行為量測 28
2.1.3 浮標穩定度計算 34
2.2 獵能器動態模型建立 37
2.3 獵能器動態行為模擬 46
第三章 磁路設計及結構應力分析 61
3.1 獵能器磁路分析 61
3.1.1 多極化陣列磁鐵排列與海爾貝克陣列磁鐵排列磁力比較 61
3.1.2 一維與二維海爾貝克陣列磁鐵排列磁力比較 63
3.1.3 導磁底板對磁力之影響 66
3.2 發電原理 68
3.2.1 表面磁通量密度公式推導 68
3.2.2 電磁感應式獵能器發電原理 71
3.3 獵能器機構設計及應力分析 74
3.3.1 獵能器機構設計 74
3.3.2 應力分析 75
第四章 獵能器模擬結果 77
4.1 獵能器模型製作 77
4.1.1 磁鐵製作 78
4.1.2 極化磁鐵球球殼 79
4.1.3 極化磁鐵球上、下蓋 79
4.1.4 極化磁鐵球旋轉支撐環 80
4.1.5 配重塊結構、配重塊 80
4.1.6 軸承 81
4.1.7 線圈支撐架 81
4.1.8 線圈 81
4.2 獵能器模擬動能 82
第五章 獵能器製作與實驗結果 88
5.1 獵能器製作 88
5.2 獵能器發電量量測與功率 89
第六章 結論與未來展望 92
6.1 結論 92
6.2 未來展望 93
參考文獻 94
[1] 林子晴,尚待探索的永續流動能源—海洋發電,能源報導,2015 年12 月
[2] 華健,吳怡萱,再生能源概論,台灣五南圖書出版股份有限公司,2013年
[3]M. Z. Jacobson et al., "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States," (in English), Energy & Environmental Science, Article vol. 8, no. 7, pp. 2093-2117, 2015.
[4]Y.-J. Wang and J.-H. Yu, "Enhancement of rolling energy conversion of a boat using an eccentric rotor revolving in a hula-hoop motion," Ocean Engineering, vol. 116, pp. 21-31, 2016.
[5]J. C. C. Henriques, R. P. F. Gomes, L. M. C. Gato, A. F. O. Falcão, E. Robles, and S. Ceballos, "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, vol. 85, pp. 714-724, 2016.
[6]I. A. Ivanova, O. Agren, H. Bernhoff, and M. Leijon, "Simulation of wave-energy converter with octagonal linear generator," IEEE Journal of Oceanic Engineering, vol. 30, no. 3, pp. 619-629, 2005.
[7]W. Li, K. T. Chau, and J. Z. Jiang, "Application of Linear Magnetic Gears for Pseudo-Direct-Drive Oceanic Wave Energy Harvesting," IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2624-2627, 2011.
[8]N. V. Viet, X. D. Xie, K. M. Liew, N. Banthia, and Q. Wang, "Energy harvesting from ocean waves by a floating energy harvester," Energy, vol. 112, pp. 1219-1226, 2016.
[9]G. Bracco, E. Giorcelli, and G. Mattiazzo, "ISWEC: A gyroscopic mechanism for wave power exploitation," Mechanism and Machine Theory, vol. 46, no. 10, pp. 1411-1424, 2011.
[10]A. Battezzato, G. Bracco, E. Giorcelli, and G. Mattiazzo, "Performance assessment of a 2 DOF gyroscopic wave energy converter," Journal of Theoretical and Applied Mechanics, p. 195, 2015.
[11]G. Bracco, E. Giorcelli, G. Mattiazzo, and M. Pastorelli, "Design of a gyroscopic wave energy system," in IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, pp. 3134-3139.
[12]N. C. Townsend and R. A. Shenoi, "Modelling and analysis of a single gimbal gyroscopic energy harvester," Nonlinear Dynamics, vol. 72, no. 1-2, pp. 285-300, 2013.
[13]D. Zhang, A. George, Y. Wang, X. Gu, W. Li, and Y. Chen, "Wave tank experiments on the power capture of a multi-axis wave energy converter," Journal of Marine Science and Technology, vol. 20, no. 3, pp. 520-529, 2015.
[14]I. A. Antoniadis, V. Georgoutsos, and A. Paradeisiotis, "Fully enclosed multi-axis inertial reaction mechanisms for wave energy conversion," Journal of Ocean Engineering and Science, vol. 2, no. 1, pp. 5-17, 2017.
[15]D. Symonds, E. Davis, and R. C. Ertekin, "Low-power autonomous wave energy capture device for remote sensing and communications applications," in 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 2392-2396.
[16]L. Wang et al., "Energy saving of a prototype fishing boat using a small wind turbine generator: Practical installation and measured results," in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-6.
[17]X. D. Xie, Q. Wang, and N. Wu, "Energy harvesting from transverse ocean waves by a piezoelectric plate," International Journal of Engineering Science, vol. 81, pp. 41-48, 2014.
[18]C. B. Barrass and C. D. R. Derrett, "Chapter 12 - Calculating KB, BM and metacentric diagrams," in Ship Stability for Masters and Mates (Sixth Edition)Oxford: Butterworth-Heinemann, 2006, pp. 103-117.
[19]K. Halbach, "Application of permanent magnets in accelerators and electron storage rings (invited)," Journal of Applied Physics, vol. 57, no. 8, pp. 3605-3608, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top