( 您好!臺灣時間:2021/03/07 23:54
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Zih-Jie Gao
論文名稱(外文):Fixed Height Circular Motion Analysis for a Quadcopter Aircraft
指導教授(外文):Chi-Cheng Cheng
外文關鍵詞:Aerodynamic dragTrajectory controlCircular motionQuadcopter aircraft
  • 被引用被引用:1
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
由於四旋翼機在控制軌跡與飛行動作方面,多是採用複雜的控制理論,並且設計的控制器只適用特定的軌跡或是動作上,使得控制器的設計過程變得煩瑣。 所以本文採用數學分析的方法,透過建立四旋翼機的動態數學模型,了解四旋翼機的飛行行為。並選擇高空探勘任務時常用的圓周軌跡做為研究對象。利用圓周運動重複的特性與力學分析,找出四旋翼機完成圓周軌跡的推力規畫。數學模型分成理想無空氣阻力以及實際有空氣阻力兩種狀況。在理想無空氣阻力之假設下,四旋翼機可以透過推力規畫完成指定的圓周運動。然而由於空氣阻力的數學模型分析不易,因此本論文提出一簡化之空氣阻力模型。電腦模擬顯示簡化的阻力模型與完整阻力模型有10%的誤差。在可接受此誤差的情況下,所提出模型將有助於四旋翼機圓周軌跡控制器的設計。
With highly development of the quadcopter, many practical applications become even more important. The quadcopter owns advantages of high flexibility and small volume. When it is required to conduct a dangerous task or explore a region where is not accessible by humans, for the purpose of security considerations, the quadcopter is a suitable choice.
In order to achieve trajectory control and flight operations, complex control theories are usually applied. Besides, the designed controller is only applicable to a specific trajectory or operation so the process of controller design becomes cumbersome. Therefore, this thesis employs the approach of mathematical analysis to understand the quadcopter’s flight behavior by establishing its dynamic mathematical model. The circular trajectory commonly used in exploration and investigation missions is chosen for this study. Based on repetitive characteristics and mechanics analysis of a circular motion, find the thrust planning for the quadcopter to complete the circular trajectory. Two mathematical models, without and with the aerodynamic drag are considered. For the case with the aerodynamic drag, the quadcopter is able to accomplish the designated circular task with thrust planning. Nevertheless, the quadcopter with aerodynamic drag is not easy to analyze, a simplified aerodynamic drag model is therefore proposed. Computer simulations show 10% error compared with the complete aerodynamic drag form. If this error is acceptable, the presented aerodynamic drag model can assist controller design for the quadcopter to perform the circular trajectory tasks.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
圖次 vii
表次 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 1
1.3論文架構 5
第二章 四旋翼機的動態模型 6
2.1四旋翼機的飛行原理 7
2.2四旋翼機的動力模型[5][7] 13
第三章 圓周軌跡之動態模型 19
3.1定高圓周運動參數 19
3.2無空氣阻力影響時的定高圓周運動的圓周參數 21
3.3有空氣阻力影響時的定高圓周運動的圓周參數 23
3.3.1修正空氣阻力係數 24
3.3.2假設阻力模型與實際阻力模型的差異 25
第四章 模擬結果與分析 29
4.1四種基本飛行運動 29
4.2無空氣阻力影響時的圓周運動模擬 37
4.3有空氣阻力影響時的圓周軌跡模擬 43
第五章 結論與未來展望 54
5.1結論 54
5.2未來展望 54
參考文獻 56
[1] J.H. Gillula, H. Huang, M.P. Vitua, and C.J. Tomlin. “Dsign of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice,” In Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1649-1654, Anchorage, AK, May 2010.
[2] H. J. Kim, D. H. Shim , and S. Sastry. “Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles,” vol 5, pp. 3576-3581, 2002.
[3] J. Yu, A. Jadbabaie, J. Primbs, and Y. Huang. “Comparison of nonlinear control design techniques on a model of the caltech ducted fan,” In IFAC World Congress, IFAC-2c-112, pp. 53-58, 1999.
[4] D. Mellinger “Trajectory generation and control for quadrotors,” Ph. D. Dissertation, Department of Mechanical Engineering and Applied Mechainces, Unniversity of Pennsylvania, 2012.
[5] T. Bresciani “Modelling, identification and control of a quadrotor helicopter,” Master''s thesis, Department of Automatic Control, Lund University, October 2008
[6] A. Rodić, and G. Mester. “The Modeling and Simulation of an Autonomous Quad-Rotor Microcopter in a Virtual Outdoor Scenario,” Acta Polytechnica Hungarica, vol. 8, no. 4, pp. 107–122, 2011.
[7] 楊榮峯,四旋翼機之姿態控制,國立成功大學航太工程學系碩士論文,中華民國99年6月。
[8] Z. Zuo.“Trajectory tracking control design with command-filtered compensation for a quadrotor,” IET Control Theory Appl, vol. 4, no. 11, pp. 2343–2355, 2010.
[9] S. Bouabdallah, A. Noth, and R. Siegwart. “PID vs LQ control techniques applied to an indoor micro quadrotor,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2451–2456, 2004.
[10] K. M. Zemalache, L. Beji, and H. Marref. “Control of an under-actuated system:application to a four rotors rotorcraft,” IEEE International Conference on Robotic and Biomimetics, pp. 404–409, 2005.
[11] G. V. Raffo, M. G. Ortega, and F. R. Rubio. “An integral predictive/nonlinear H1 control structure for a quadrotor helicopter,” Automatica, vol. 46, no. 1, pp. 29–39, 2010.
[12] M. Likhachev, G. Gordon, and S. Thrun. “ARA : Anytime ARA with provable
Bounds on sub-optimality,” Advance in Neural Information Processing System,
16, 2003.
[13] 旋轉斜板結構,http://www.afwing.com/intro/birdy/3.htm.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔