|
[1]Cary, Howard B; Scott C. Helzer, Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education, 2005. pp.5-6 [2]Y. M. Lin and F. G. Shi, Minimization of Welding-induced Alignment Distortion in Butterfly Laser Module Packages: A Study of Laser Pulse Shape, Optical Engineering, 2007. Vol. 46 [3]C. R. Heiple and J. R. Roper, Mechanism for Minor Element Effect on GTA Fusion Zone Geometry, J. Welding, Vol.61, 1982. pp.97-s-102-s [4]S. Kuo and Y.H. Wang, Weld Pool Convection and Its Effect, J. Welding, Vol. 65, 1986. pp-63-s-70-s [5]A. Paul and T. Debroy, Free Surface Flow and Heat Transfer in Conduction Mode Laser Welding, Meral. Trans. Vol.19B, 1988. pp.851-858 [6]F. Kong, H. Zhang and G. Wang, Numerical Simulation of Transient Multiphase Field during Hybrid Plasma Laser deposition Manufacturing, J. Heat Transfer, Vol.130, 2008. NO.112101, pp.1-7 [7]Conny Lampa, John Powell and Alexander F H Kaplan, An analytical thermodynamic model of laser welding, J.O. Physics D: Applied Physics, 1997. pp.1293-1299 [8]R.W. Wood, 1902, Philos. Mag. 4396 [9]Eli Jerby, Incremental metal-powder solidification by localized microwave-heating and its potential for additive manufacturing, Additive Manufacturing, 2015. pp.53-66 [10] Nathan Ida. ,1999, Engineering Electromagnetics, Springer, pp.759-760 [11] R. W. Wood, Philos. Mag. 4,396 (1902) [12] U. Fano, 1941, J. Opt. Soc. Am. 31,213 [13] 邱國斌、蔡定平 (2006),物理雙月刊28卷第2期,pp.472-485 [14] H. Raether, Surface Plasmons (Springer, New York, 1998) [15] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, 2005, Phys. Reports 408, 131 [16] Li Gi-Rong, “The effect of surface plasmon irradiated by electromagnetic field on transport processes near a surface’’, Department of Mechanical and Electro-Mechanical Engineering (National Sun Yet-sen University, 2015), pp. 8 – pp.15. [17] S. Osher and N. Paragios, 2003, “Geometric level set methods in imaging, vision, and graphics.” Springer- Verlag. New York. [18] H. Emmerich, 2003, “The diffuse interface approach in materials science”, Springer-Verlag. New York. [19] J. S. Rowlinson, 1979, Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, Vol.20, No.2 [20] P. Yue and J. J. Feng, 2004, “A diffuse-interface method for simulating two-phase flows of complex fluids”, J. Fluid Mech, Vol. 515, pp.293-317. [21] P. C. Hohenberg and B. I. Halperin, 1977, “Theory of dynamic critical phenomena”, Rev. Mod. Phy. Vol. 49, pp.435-479. [22] D. Jacqmin, 1999, “Calculation of two-phase Navier–Stokes flows using Phase-Field modeling”, Journal of Computational Physics, 155, pp.96-127 [23] M. Verschueren, F. N. Van De Vosse and H. E. H. Meijer, 2001: “Diffuse-interface modolling of thermocapillary flow instabilities in a Hele-Shaw cell”, J. Fluid Mech., Vol. 434, pp.153-166. [24] Kaplan, A., 1994. “A model of deep penetration laser welding based on calculation of the keyhole profile.” Journal of Physics D: Applied Physics, 27(9), 1805-1814. [25] Xu et al., 2011. Adaptive volumetric heat source models for laser beam and laser + pulsed GMAW hybrid welding processes. Int. Journal of Advanced Manufacturing Technology 57, 245-255.
[26] Chen, X., Wang, H.X., 2003. Prediction of the laser-induced plasma characteristics in laser welding: a new modelling approach including a simplified keyhole model. Journal of Physics D: Applied Physics 36(13), 1634-1643. [27] Cho, J.H., Na, S.J., 2009. Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding Journal 88, 35s-43s. [28] Dasgupta, A.K., Mazumder, J., Li, P., 2007. Physics of zinc vaporization and plasma absorption during CO2 laser welding. Journal of Applied Physics 102, 053108. [29] Pang, S., Chen, L., Zhou, J., Yin, Y., Chen, T., 2011. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. Journal of Physics D: Applied Physics 44, 025301. [30] Comsol: CFD Module Users Guide, (2014).
|