|
[1] Li, Y., & Ma, J. (1997). “Study on overlapping in the laser cladding process.” Surface and Coatings Technology, 90(1-2), 1-5. [2] Sun, S., Durandet, Y., & Brandt, M. (2005). “Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel.” Surface and Coatings Technology, 194(2), 225-231. [3] Ocelík, V., De Oliveira, U., De Boer, M., & De Hosson, J. T. M. (2007). “Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties.” Surface and Coatings Technology, 201(12), 5875-5883. [4] Lee, H. K. (2008). “Effects of the cladding parameters on the deposition efficiency in pulsed Nd: YAG laser cladding.” Journal of materials processing technology, 202(1), 321-327. [5] Zhou, S., Zeng, X., Hu, Q., & Huang, Y. (2008).” Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization.” Applied Surface Science, 255(5), 1646-1653. [6] Dinda, G. P., Dasgupta, A. K., & Mazumder, J. (2009). “Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability.” Materials Science and Engineering: A, 509(1), 98-104. [7] Tabernero, I., Lamikiz, A., Martínez, S., Ukar, E., & Figueras, J. (2011). “Evaluation of the mechanical properties of Inconel 718 components built by laser cladding.” International Journal of Machine Tools and Manufacture, 51(6), 465-470. [8] Cárcel, B., Serrano, A., Zambrano, J., Amigó, V., & Cárcel, A. C. (2014). “Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties.” Physics Procedia, 56, 284-293. [9] Lin, J. (2000). “Laser attenuation of the focused powder streams in coaxial laser cladding.” Journal of laser applications, 12(1), 28-33. [10] Liu, C. Y., & Lin, J. (2003). “Thermal processes of a powder particle in coaxial laser cladding.” Optics & Laser Technology, 35(2), 81-86. [11] Kovalev, O. B., Zaitsev, A. V., Novichenko, D., & Smurov, I. (2011). “Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process.” Journal of thermal spray technology, 20(3), 465-478. [12] Hao, M., & Sun, Y. (2013). “A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach.” International Journal of Heat and Mass Transfer, 64, 352-360. [13] Pinkerton, A. J. (2015).” Advances in the modeling of laser direct metal deposition.” Journal of laser applications, 27(S1), S15001. [14] Devesse, W., De Baere, D., & Guillaume, P. (2015). “Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing.” Journal of Laser Applications, 27(S2), S29208. [15] Liu, S., Zhang, Y., & Kovacevic, R. (2015). “Numerical simulation and experimental study of powder flow distribution in high power direct diode laser cladding process.” Lasers in Manufacturing and Materials Processing, 2(4), 199-218. [16] ASTM Committee F42 on Additive Manufacturing Technologies, & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. (2012). Standard Terminology for Additive Manufacturing Technologies. ASTM International. [17] Bachmann, Friedrich, Peter Loosen, and Reinhart Poprawe, eds. (2007). High power diode lasers: technology and applications. Vol. 128. Springer. [18] Stanislav Němeček. (2013). Laserové technologie. [19] Ya, Wei. (2015). “Laser materials interactions during cladding: analyses on clad formation, thermal cycles, residual stress and defects.” Universiteit Twente. [20]楊國輝、黃宏彥,2001,雷射原理與量測概論。 [21]楊隆昌,2014,雷射發展的趨勢與應用,中工高雄會刊第22卷第1期。 [22]李輝煌,2010,田口方法品質設計的原理與實務。 [23]雷射源模組. (2016, Jun 20). Retrieved from Laserline GmbH: https://www.laserline.de/fileadmin/Dokumente/Broschueren_DE/Laserline_LDM_Die_Kompaktklasse_fuer_Diodenlaser.pdf [24]供粉機. (2017, Jun 14). Retrieved from GTV Verschleiss-Schutz: http://www.gtv-mbh.com/cms/upload/downloads/powder-feeder_en.pdf [25] Cary, Howard B., Helzer, Scott C. (2005). Modern Welding Technology (6th ed.)
|