1.Dutoit, N.E., B.L. Wardle, and S.-G. Kim, Design Considerations for MEMS-scale Piezoelectric Mechanical Vibration Energy Harvesters. Integrated Ferroelectrics, 2005. 71(1): p. 121-160.
2.Ballato, A. Piezoelectricity: history and new thrusts. in 1996 IEEE Ultrasonics Symposium. Proceedings. 1996.
3.https://en.wikipedia.org/wiki/Amino_acid.
4.王自豪, 林誠謙, 李弘謙, 談蛋白質折疊與氨基酸序列. 物理雙月刊, 2002. 24(2): p. 320-327。5.Garrett, R.H. and C.M. Grisham, Biochemistry. Biochemistry and Molecular Biology Education, 1995. 23(2): p. 108.
6.Pauling, L. and R.B. Corey, Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds: Two New Pleated Sheets. Proceedings of the National Academy of Sciences of the United States of America, 1951. 37(11): p. 729-740.
7.Kim, J., et al., Surface-Grafting of Polyglutamate on Si Wafer Using Micro Contact Printing. Molecular Crystals and Liquid Crystals, 2007. 464(1): p. 211/[793]-216/[798].
8.陳啟仁,利用不同極性衍生物調控聚胜肽之二級結構,國立中山大學材料與光電科學系碩士論文,2011。9.http://www.genome.gov/Pages/Hyperion//DIR/VIP/Glossary/Illustration/amino_acid.shtml
10.Lecommandoux, S., Bulk Self-Assembly of Linear Hybrid Polypeptide-Based Diblock and Triblock Copolymers, in Complex Macromolecular Architectures. 2011, John Wiley & Sons (Asia) Pte Ltd. p. 623-645.
11.Schlaad, H., Solution Properties of Polypeptide-based Copolymers, in Peptide Hybrid Polymers, H.-A. Klok and H. Schlaad, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 53-73.
12.Winkler, S. and D.L. Kaplan, Molecular biology of spider silk. Reviews in Molecular Biotechnology, 2000. 74(2): p. 85-93.
13.Vollrath, F., Strength and structure of spiders’ silks. Reviews in Molecular Biotechnology, 2000. 74(2): p. 67-83.
14.Lucas, F., J.T.B. Shaw, and S.G. Smith, Comparative studies of fibroins. Journal of Molecular Biology, 1960. 2(6): p. 339-349.
15.Gerritsen, V.B., The tiptoe of an airbus. Protein Spotlight, 2000. 24: p. 1-2.
16.Kaplan, D., et al., Silk polymers: material science and biotechnology. Vol. 544. 1993.
17.Fraser, R., Conformation in Fibrous Proteins and Related Synthetic Polypeptides. 1973.
18.Cunniff, P.M., et al., Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymers for Advanced Technologies, 1994. 5(8): p. 401-410.
19.Cunniff, P. M., Fossey, S. A., Auerbach, M. A., Song, J. W., In: Kaplan, D. L., Adams, W. W., Farmer, B., Viney, C. (Eds), Silk Polymer: Materials Science and Biotechnology, American Chemical Society Symposium Series, Vol. 554, 1994b, pp. 234-251.
20.Zhang, Y. Q., Acta. Biochem. Biochem. Biophys. Sin. Vol. 31(2), 1998, pp. 119-123.
21.Agnarsson, I., M. Kuntner, and T.A. Blackledge, Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider. PLoS ONE, 2010. 5(9): p. e11234.
22.Zschokke, S., The influence of the auxiliary spiral on the capture spiral in Araneus diadematus Clerck (Araneidae). Bulletin of the British Arachnological Society, 1993. 9: p. 169-173.
23.Gosline, J.M., M.W. Denny, and M.E. DeMont, Spider silk as rubber. Nature, 1984. 309(5968): p. 551-552.
24.Hu, X.Y., et al., Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry, 2007. 46(11): p. 3294-3303.
25.Hinman, M.B., J.A. Jones, and R.V. Lewis, Synthetic spider silk: a modular fiber. Trends in Biotechnology, 2000. 18(9): p. 374-379.
26.Spek, E.J., H.C. Wu, and N.R. Kallenbach, Journal of the America Chemical Society, 1997. 119: p. 5053-5054.
27.Kplan, D.L., Novel Materials from Biological Sourcers. New York: ACS press, 1991. 53: p. 1-53.
28.Xu, M. and R.V. Lewis, Structure of a protein superfiber: spider dragline silk. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(18): p. 7120-7124.
29.Huang, J., et al., Cloning, expression, and assembly of sericin-like protein. The Journal of Biological Chemistry, 2003. 278: p. 46117-46123.
30.Lewis, R.V., Spider Silk: Ancient Ideas for New Biomaterials. Chemical Reviews, 2006. 106(9): p. 3762-3774.
31.Vollrath, F. and D. Porter, Spider silk as archetypal protein elastomer. Soft Matter, 2006. 2(5): p. 377-385.
32.Knight, D. and F. Vollrath, Hexagonal columnar liquid crystal in the cells secreting spider silk. Tissue and Cell, 1999. 31(6): p. 617-620.
33.Riekel, C., et al., Aspects of X-ray diffraction on single spider fibers. International Journal of Biological Macromolecules, 1999. 24(2): p. 179-186.
34.Vollrath, F. and D.P. Knight, Liquid crystalline spinning of spider silk. Nature, 2001. 410(6828): p. 541-548.
35.Scheibel, T., Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microbial Cell Factories, 2004. 3(1): p. 14.
36.Schacht, K. and T. Scheibel, Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Current Opinion in Biotechnology, 2014. 29: p. 62-69.
37.Domachuk, P., et al., Bio-microfluidics: Biomaterials and Biomimetic Designs. Advanced Materials, 2010. 22(2): p. 249-260.
38.Kim, D.-H., et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010. 9(6): p. 511-517.
39.MacLeod, J. and F. Rosei, Photonic crystals: Sustainable sensors from silk. Nat Mater, 2013. 12(2): p. 98-100.
40.Zhou, L., et al., Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Applied Catalysis B: Environmental, 2016. 188: p. 31-38.
41.Agnarsson, I., C. Boutry, and T.A. Blackledge, Spider silk aging: initial improvement in a high performance material followed by slow degradation. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2008. 309A(8): p. 494-504.
42.Swanson, B.O., et al., Spider Dragline Silk: Correlated and Mosaic Evolution in High-Performance Biological Materials. Evolution, 2006. 60(12): p. 2539-2551.
43.Asrar, J. and J.C. Hill, Biosynthetic processes for linear polymers. Journal of Applied Polymer Science, 2002. 83(3): p. 457-483.
44.吳蕙均,近場電紡聚谷氨酸甲酯/聚偏氟乙烯複合壓電纖維特性分析,國立中山大學機械與機電工程學系碩士論文,2014。45.Chen, X., et al., Conformation Transition in Silk Protein Films Monitored by Time-Resolved Fourier Transform Infrared Spectroscopy: Effect of Potassium Ions on Nephila Spidroin Films. Biochemistry, 2002. 41(50): p. 14944-14950.
46.Jackson, M. and H.H. Mantsch, The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Critical Reviews in Biochemistry and Molecular Biology, 1995. 30(2): p. 95-120.