跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/10 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳振榕
研究生(外文):Cheng-Jung Chen
論文名稱:金屬內熱流受電磁波激發之表面電漿之影響分析
論文名稱(外文):Heat transfer affected by surface plasmon in metal subject to electromagnetic wave
指導教授:魏蓬生
指導教授(外文):Peng-Sheng Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:電磁波磁損失電阻損失介電損失熱毛細力表面張力表面電漿
外文關鍵詞:thermocapillarydielectric loseSurface Plasmonelectromagnetic wavesresistance losemagnetic lose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討金屬表面受入射電磁波所產生之表面電漿之熱流效應。鎔區受熱毛細力與表面張力所驅動之效應。表面電漿是金屬內部之自由電子受到外加電磁場作用所產生集體震盪之行為。電磁波因屏蔽效應無法穿透金屬,因此被侷限在金屬表面。此電磁波所產生之介電、磁及電阻損失加熱金屬表面,以進一步探討熱毛細力與表面張力對金屬鎔區內之效應。本研究使用COMSOL 軟體以頻域有限差分法( finite difference frequency domain method)求解馬克斯威爾方程式、質量守恆、動量以及能量方程式,以探討電磁波對材料表面加熱時之效應。
This study investigates the effect of thermocapillary and surface tension forces on thermal phenomena in metal, heated by surface plasmon induced by incident electromagnetic wave. Surface plasmon wave is a consequence of the collective oscillation behavior of free electrons within the metal excited by external electromagnetic field. In view of the shielding effect of high electron density in metal, the electron waves cannot penetrate the metals, but generate a confined longitudinal wave on the surface.
Electromagnetic wave generate dielectric、magnetic and resistance lose to heat the surface. We study further the effect of thermocapillary and surface tension on the flow in molten field. In this study, Maxwell''s equations、momentum equation、energy equation are solved from COMSOL software.
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
符號說明 v
圖次 viii
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 2
1.3研究方法 3
第二章 理論分析 5
2.1二相流、相位場法模擬方法簡介 5
2.2 相位場法方程式 7
2.3質量守恆方程式 9
2.4動量方程式 9
2.5能量方程式 14
2.6 馬克斯威爾方程式 15


第三章 電磁波簡介 17
3.1 電磁波的分類 17
3.2表面電漿模式 18
3.3金屬之介電常數 21
第四章 模擬及研究結果與討論 22
4.1模型區域設定 22
4.2 模型網格配置 23
4.3 模擬條件 24
4.3.1電磁波之模擬條件 24
4.3.1熱傳之模擬條件 25
4.4結果及探論 26
第五章 結論與未來展望 42
5.1結論 42
5.2 未來研究發展 42
參考文獻 43
[1]R. W. Wood, Philos. Mag. 4,396 (1902)
[2]L. C. Wrobel and M. H. Aliabadi, 2003, The boundary element methods.Wiley, UK.
[3]Cristini, J. Bławzdziewicz, and M. Loewenberg, 1998, “Drop breakup in three-dimensional viscous flows”, Phsics fluids, Vol. 10, pp.1781-1783
[4]H. H. Hu, N. A. Patankar and M. Y. Zhu, 2000, “Direct numerical simulations of fluid–solid systems using the arbitrary lagrangian–eulerian technique”, Journal of Computational Physics 169, pp.427-462
[5]S. Ramaswamy and L.G. Leal, 1998, “ The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid”, J. Non-Newtonian fluid mech., 85, pp.127-163
[6]S. Osher and N. Paragios, 2003, Geometric level set methods in imaging, vision, and graphics. Springer- Verlag. New York.
[7]H. Emmerich,2003, The diffuse interface approach in materials science, Springer-Verlag. New York
[8]J. S. Rowlinson,1979, Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, Vol.20,No.2
[9]O. Penrose and P. C. Fife, 1990, “Thermodynamically consistent models of phase-field type for the kinetic of phase transitions”, Physica D, North-Holland.
[10]P. Yue and J. J. Feng, 2004, “A diffuse-interface method for simulating two-phase flows of complex fluids”, J. Fluid Mech, Vol. 515, pp.293-317.
[11]P. C. Hohenberg and B. I. Halperin, 1977: “Theory of dynamic critical phenomena”, Rev. Mod. Phy., Vol. 49, pp.435-479.
[12]D. Jacqmin, 1999: “Calculation of two-phase Navier–Stokes flows using Phase-Field modeling”, Journal of Computational Physics, 155, pp.96-127
[13]M. Verschueren, F. N. Van De Vosse and H. E. H. Meijer, 2001: “Diffuse-interface modolling of thermocapillary flow instabilities in a Hele-Shaw cell”, J. Fluid Mech., Vol434, pp.153-166.
[14]Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, pp.258-267.
[15] F. Kong, H. Zhang and G.Wang,2008“Numerical Simulation of Transient Multiphase Field during Hybird Plasma-Laser Deposition Manufacturing”,J.Heat Transfer,Vol.130,NO.112101,pp.1-7.
[16]Y. Sun and C. Beckermann, 2007, “Sharp interface tracking using the phase-field equation”, Journal of Computational Physics 220, pp.626-653.
[17]Eli Jerby, 2015, Incremental metal-powder solidification by localized microwave-heating andits potential for additive manufacturing
[18]M. H. NAYfeh and M.K.Brissel,Electricity and magnetism:Wiley,1985.
[19]邱國斌、蔡定平,物理雙月刊24期第4卷,p.373 (2003)
[20]N. W. Ashcroft, and N. D. Mermin, Solid State Physics(Harcount).
[21]H. Raether, Surface Plasmons (Springer , New York, 1988).
[22]A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports 408, 131(2005)
[23]U. Fano, J. Opt. Soc. Am. 31, 213 (1941)
[24]邱國斌、蔡定平,物理雙月刊28卷第2期,pp. 472-485 (2006)
[25]吳民耀、劉威志,物理雙月刊28卷第2期,pp. 486-487 (2006)
[26] C. C. Han, "Study of Optically Tunable Surface Plasmon Resonance Based on Dye-Doped Liquid Crystal Cladded Kretschmann Structure and Its Applications," in Department of Photonics(National Sun Yet-sen University, 2013), pp. 18-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top