(3.235.108.188) 您好!臺灣時間:2021/03/07 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許弘明
研究生(外文):Hong-Ming Hsu
論文名稱:鋁合金與氧化鋁板之摩擦攪拌點接合特性研究
論文名稱(外文):Studies on the Joint Characteristics of Aluminum Alloy and Alumina Plates Using Friction Stir Spot Welding
指導教授:邱源成李榮宗李榮宗引用關係
指導教授(外文):Yuang Cheng ChiouRong Tsong Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:下壓負荷預熱溫度鋁合金氧化鋁陶瓷搭接摩擦攪拌點接
外文關鍵詞:downward forcealumina ceramicaluminum alloypreheating temperaturelap jointfriction stir spot welding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究係使用定深度摩擦攪拌銲接機與直徑12 mm之高速鋼銲接工具,對厚度3 mm之6061鋁合金及厚度5 mm之氧化鋁陶瓷進行點銲搭接之實驗。為了避免氧化鋁陶瓷在銲接過程中因熱衝擊而破裂,本實驗使用了加熱塊預先對試片進行預熱。本研究探討銲接工具轉速(400、600、800 rpm)、預熱界面溫度(180、260、340、420 °C)及下壓深度(0.4 ~ 1.6 mm)等銲接參數條件下,對下壓負荷、溫升變化與銲接品質之影響。
在預熱溫度固定,下壓深度1.8 mm的條件下,當銲接工具轉速提升時,達到最大下壓負荷時的初始飽和溫度的時間會減少,即溫升速率隨著銲接工具轉速上升而增加。不同預熱介面溫度達到的最大飽和溫度差距不大
在固定銲接工具轉速及預熱溫度條件下,當下壓深度大於0.4 mm,不同的下壓深度(0.4 ~ 1.8 mm)對銲接過程中的下壓負荷無顯著之影響,不同下壓深度的下壓負荷無明顯差異。
下壓深度0.6 mm條件下,當銲接工具轉速固定時,下壓負荷隨著預熱溫度增加而減少;當預熱溫度固定時,下壓負荷同樣隨著銲接工具轉速增加而減少。下壓負荷最大可達6.5 kN,最小約2.3 kN。
由實驗結果可得知,預熱介面溫度必須在340 °C以上才能有效避免氧化鋁陶瓷在銲接過程中因熱衝擊而破裂。同時因塑性流動層範圍的影響,銲接工具轉速400 rpm時的下壓深度必須至0.8 mm以上時才能順利接合;工具轉速600 rpm及800 rpm需0.6 mm以上下壓深度。
經拉剪測試結果可得知,銲接工具轉速400 rpm時的接合強度比工具轉速600 rpm及800 rpm佳,最大破壞負荷可達到3.78 kN。當轉速提高時,劇烈的溫升變化使銲點下陶瓷產生缺陷,導致破壞負荷大幅下降至約0.5 kN。
In this study, friction stir spot welding (FSSW) of 3 mm thickness aluminum alloy sheet and 5 mm thickness alumina plates are conducted at constant welding depth and using a 12 mm diameter pin-less tool made from high speed steel (HSS). Preheating the specimens with heating block for preventing thermal shock in alumina in welding. The welding characteristics and welding mechanism of aluminum and alumina are investigated under different operation conditions, such as the rotation speed of welding tool (400、600、800 rpm), the preheating temperature of interface (180、260、340、420 °C), and the welding depth (0.4 ~ 1.6 mm).
On constant preheating temperature and welding depth 1.8 mm conditions, when the rotation speed of welding tool is increased, the time to reach the initial saturation temperature at the maximum downward force is reduced. The temperature rise rate increases as the rotation speed of welding tool increases. The maximum saturation temperature difference between different preheating interface temperatures is not significant
On constant rotation speed of welding tool and preheating temperature conditions, when the welding depth is greater than 0.4 mm, the different welding depth (0.4 ~ 1.8 mm) has no significant effect on the downward force during the welding process.
On welding depth 0.6 mm condition, when the rotation speed of welding tool is constant, the downward force decreases as the preheating temperature increases. When the preheating temperature is constant, the downward force also decreases as the rotation speed of welding tool increases. The maximum downward force up to 6.5 kN, the minimum of about 2.3 kN.
Based on the result of experimental, preheating temperature of interface must be above 340°C in order to effectively avoid the alumina ceramic crack in the welding process due to thermal shock. Due to the scope of the plastic flow layer, the welding depth must be more than 0.8 mm at rotation speed 400 rpm to joint aluminum and alumina. The welding depth must be more than 0.6 mm at rotation speed 600 rpm and 800 rpm.
Based on the result of tensile test, the bonding strength at rotation speed 400 rpm is stronger than it at the rotation speed 600 rpm and 800 rpm. The maximum failure force up to 3.78 kN. When the rotation speed increases, the dramatic temperature rise of the joints defects in the interface of ceramic side, resulting the failure load fell to about 0.5 kN.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 viii
表次 xii
第一章 總論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1鋁合金簡介 3
1-2-2 鋁合金析出硬化性質 7
1-2-3 氧化鋁陶瓷熱衝擊性質 8
1-2-4金屬與陶瓷接合法 11
1-3 研究動機 16
第二章 實驗設備與實驗方法 17
2.1 實驗設備 17
2.1.1 實驗機台 17
2.1.1.1 主軸模組 18
2.1.1.2 夾持模組 18
2.1.1.3 負荷量測模組 18
2.1.2 試片夾持治具設計 19
2.1.3 溫度加熱裝置的設計與控制 20
2.1.3 摩擦攪拌點接之實驗試片與銲接工具 21
2.1.3.1 實驗試片之材料特性與幾何外觀 21
2.1.3.2 銲接工具之材料特性與幾何外觀 23
2.2 實驗方法 24
2.2.1 實驗參數規劃 24
2.2.2 銲接位置 24
2.2.3 實驗程序 25
2.3 拉剪強度試驗 26
2.4 試片預熱之界面溫度校正 27
2.5 銲接過程之界面溫度量測 29
2.6 實驗流程 30
第三章 實驗結果與討論 31
3.1 銲接過程之界面溫度、下壓深度及工具轉速對下壓負荷之影響 31
3.1.1 不同銲接參數對下壓負荷與界面溫度之影響 31
3.1.2 下壓深度對下壓負荷之影響 36
3.1.3 預熱界面溫度對下壓負荷之影響 42
3.1.4 銲接工具轉速對下壓負荷之影響 46
3.2 不同銲接參數之銲接結果 52
3.3 不同下壓深度對銲點強度之影響 55
3.4 銲接結果之SEM觀察 61
3.4.1 銲接界面之SEM觀察 61
3.4.2 微裂痕之SEM觀察 65
第四章 結論與未來展望 66
4.1 結論 66
4.2 未來展望 68
參考文獻 69
[1]I. N. Fridlyander, V. G. Sister, O. E. Grushko, V. V. Berstenev, L. M. Sheveleva and L. A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Metal Science and Heat Treatment, Vol. 44, No. 9 (2002) 365-370
[2]J. Hirsch, Recent development in aluminium for automotive applications, Transactions of Nonferrous Metals Society of China, Vol. 24, No. 7 (2014) 1995-2002
[3]J. A. Kingsly Gladston, I. Dinaharan, N. Mohamed Sheriff and J. David Raja Selvam, Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting, Journal of Asian Ceramic Societies, Vol. 5, No. 2 (2017) 127-135.
[4]A. Radha and K.R. Vijayakumar, An investigation of mechanical and wear properties of AA6061 reinforced with silicon carbide and graphene nano particles-Particulate composites, Materials Today: Proceedings, Vol. 3, No. 6 (2016) 2247-2253.
[5]C.M. Abreu, M.J. Cristóbal, R. Figueroa and G. Pena, Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation, Applied Surface Science, Vol. 327 (2015) 51-61.
[6]G.A. Zhang, L.Y. Xu and Y.F. Cheng, Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glyco-water solution by impingement jet system, Corrosion Science, Vol. 51, No. 2 (2009) 283-290.
[7]S. Karabay, M. Yilmaz and M. Zeren, Investigation of extrusion ratio effect on mechanical behaviour of extruded alloy AA-6101 from the billets homogenised-rapid quenched and as-cast conditions, Journal of Materials Processing Technology, Vol. 160, No. 2 (2005) 138-147.


[8]R.P. Garrett, J. Lin and Y.A. Dean, An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling, International Journal of Plasticity, Vol. 21, No. 8 (2005) 1640-1657.
[9]J. C. Williams and R. A. Starke Jr., Progress in structural materials for aerospace systems, Acta Materialia, Vol. 51, No. 19 (2003) 5775-5799.
[10]A Heinz, A Haszler, C Keidel, S Moldenhauer, R Benedictus and W.S Miller, Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering: A, Vol. 280, No. 1 (2000) 102-107.
[11]J.T. Staley and D.J. Lege, Advances in aluminium alloy products for structural applications in transportation, J. Phys. IV France, Vol. 03, No. C7 (1993) 179-190.
[12]A. Ambroziak and M. Korzeniowski, Using Resistance Spot Welding for Joining
Aluminium Elements in Automotive Industry, Archives of Civil and Mechanical Engineering, Vol. 10, No. 1 (2010) 5-13.
[13]G.S. Cole and A.M. Sherman, Light weight materials for automotive applications, Materials Characterization, Vol. 35, No. 1 (1995) 3-9.
[14]E.A. Starke Jr. and J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in Aerospace Sciences, Vol. 32, No. 2-3 (1996) 131-172.
[15]W.S Miller, L Zhuang, J Bottema, A.J Wittebrood, P De Smet, A Haszler and A Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, Vol. 280, No. 1 (2000) 37-49.
[16]D. Bardel, M. Perez, D. Nelias, S. Dancette, P. Chaudet and V. Massardier, Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and elastoplastic modelling, Acta Materialia, Vol. 83, (2015) 256-268..
[17]R. Hashemi and G. Hussain, Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: A comparison of tool geometries and number of passes, Wear, Vol. 324-325 (2015) 45-54.
[18]M. Walczak, D. Pieniak and M. Zwierzchowski, The tribological characteristics of SiC particle reinforced aluminium composites, Archives of Civil and Mechanical Engineering, Vol. 15, No. 1 (2015) 116-123.
[19]F.Y. Cheng, 17 - Erosion-accelerated corrosion in flow systems: the behavior of aluminum alloys in automotive cooling systems, Tribocorrosion of Passive Metals and Coatings, Woodhead Publishing, (2011) 475-497.
[20]X. Chen, W. Tian, S. Li, Yu Mei and Liu Jianhua, Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution, Chinese Journal of Aeronautics, Vol. 29, No. 4 (2016) 1142-1150.
[21]孫偉勝, 添加合金元素對6061鑄造鋁合金為結構及機械性質影響, 國立虎尾科技大學材料科學與綠色能源工程研究, 雲林, (2012) 21
[22]J. Hirsch, B. Skrotzki and G. Gottstein, Aluminium Alloys: Their Physical and Mechanical Properties, John Wiley & Sons, Vol. 1 (2008) 583
[23]鄭慶民, 熱處理型鋁合金銲接特性之研究, 國立交通大學機械工程研究所, 台南, (2005) 5.
[24]K.V. Jata, S. Panchanadeeswaran, and A.K. Vasudevan, Evolution of texture, micro structure and mechanical property anisotropy in an Al-Li-Cu alloy, Materials Science and Engineering: A, Vol. 257, No. 1 (1998) 37-46.
[25]K.V. Jata and S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Materialia, Vol. 43, No. 8 (2000) 743-749.

[26]C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling and C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Materialia, Vol. 36, No. 1 (1997) 69-75.
[27]M. I. Nieto, R. Martı́nez, L. Mazerolles and C. Baudı́n, Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles, Journal of the European Ceramic Society, Vol. 24, No. 8 (2004) 2293-2301.
[28]X.Q. You, T.Z. Si, N. Liu, P.P. Ren, Y.D. Xu and J.P. Feng, Effect of grain size on thermal shock resistance of Al2O3-TiC ceramics, Ceramics International, Vol. 31, No. 1 (2005) 33-38..
[29]T. Ogasawara and M. Ando, Research and Development Activities of Ceramics/Metal Joining, Journal of the Japan welding Society, Vol. 60, No. 1 (1991) 36-42.
[30]M. Nakahashi, Joining of Ceramics to Metals [1] - Interfacial reactions between ceramics and metals, Journal of the Japan welding Society, Vol. 65, No. 3 (1996) 6-11.
[31]T. Sakthivel and J. Mukhopadhyay, Microstructure and mechanical properties of friction stir welded copper, Journal of Materials Science, Vol. 42, No. 19 (2007) 8126-8129.
[32]A.A. Essa and A.S. Bahrani, The friction joining of ceramics to metals, Journal of Materials Processing Technology, Vol. 26, No. 2 (1991) 133-140.
[33]M. Zaky Noh, L. B. Hussain and Z. A. Ahmad, Alumina-mild steel friction welded at lower rotational speed, Journal of Materials Processing Technology, Vol. 204, No. 1-3 (2008) 279-283.
[34]M.N. Ahmad Fauzi, M.B. Uday, H. Zuhaialawati and A.B. Ismail, Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding, Materials & Design, Vol. 31, No. 2 (2010) 670-676.
[35]M.N. Uday, M.N. Ahmad Fauzi, H. Zuhailawati and A.B. Ismail, Effect of welding speed on mechanical strength of friction welded joint of YSZ-alumina composite and 6061 aluminum alloy, Materials Science and Engineering: A, Vol. 528, No. 13-14 (2011) 4753-4760.
[36]游宛儒, 鐵芯銲接方法之研究, 國立中山大學機械與機電工程研究所, 高雄, (2014) 48-51
[37]M. Safarzdeh, A. F. M. Noor and U. M. Basheer, Effect of friction speed on the properties of friction welded Alumina-Mullite Composite to 6061 Aluminum alloy, Journal of the Australian Ceramic Society Vol. 52, No 2 (2016) 134-142.
電子全文 電子全文(網際網路公開日期:20220831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔