(3.231.29.122) 您好!臺灣時間:2021/02/25 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林承溥
研究生(外文):Cheng-Pu Lin
論文名稱:限制高度之施羅德路徑的漢克爾行列式
論文名稱(外文):Hankel determinant for Schröder path with restricted height
指導教授:王彩蓮
指導教授(外文):Tsai-Lien Wong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:33
中文關鍵詞:格線路徑漢克爾行列式連分數Delannoy 數列限制高度
外文關鍵詞:Lattice pathHankel determinantsContinued fractionDelannoy numberRestricted height
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究了限制高度之施羅德路徑的漢克爾行列式。$s^{(k)}_n$表示限制高度k且長度為n的施羅德路徑數,其中施羅德路徑是一個位於第一象限的格線路徑,以原點(0,0)為起點,終點為(2n,0),可使用的單位步有上升步U=(1,1),下降步D=(1,-1)以及水平步H=(2,0)。限制高度k之施羅德路徑永遠不會超過y=0以下,且不超過y=k以上。給定任意序列$A={a_n}$,$H^{(l)}_n$代表的是n×n的漢克爾矩陣,則$H_n^{(l)}(A) = {({a_{i + j + l}})_{0 le i,j le n - 1}}$。

對於漢克爾行列式已有很多的研究如[5][6][10][11]。在本篇論文中,我們將計算其有限制高度之施羅德路徑的漢克爾行列式。

在第二章中,我們介紹有名的格線路徑如Dyck path,Motzkin path和施羅德路徑的漢克爾行列式。

在第三章中,我們將介紹有限之高度之施羅德路徑的生成函數及與Delannoy numbers 的關係。

在第四章中,我們將給予一個限制高度之施羅德路徑的漢克爾行列式的值。
In this thesis we study the Hankel determinants for Schröder paths with restricted height. Let $s^{(k)}_n$
n denote the number of Schröder paths with restricted height k, which those lattice paths that are in the first quadrant, begin at the (0, 0), end on the (2n, 0), consist of up steps U = (1, 1), down steps D = (1,−1), and level steps H = (2, 0). The Schröder paths with restricted height k which never run below the horizontal path y = 0, and never run over the horizontal path y = k. For a given sequence $A = {a_n}$, let $H^{(l)}_n$ denote the n by n Hankel matrix, defined that $H_n^{(l)}(A) = {({a_{i + j + l}})_{0 le i,j le n - 1}}$.

The Hankel determinants has received a lot of attention [5][6][10][11]. In this thesis, we evaluate Hankel determinants for Schröder path with restricted height.

In chapter 2, we will introduce the known results of the Hankel determinants for Dyck path, Motzkin path and Schröder path.

In chapter 3, we will show the generating function of the Schröder paths with restricted height, and the relation between Delannoy numbers and Schröder numbers.

In chapter 4, we will show the determinants values for Hankel matrix of the Schröder path with restricted height.
[論文審定書+i]
[Chinese Abstract+iii]
[Abstract+iv]
[Contents+v]
[List of Figures+vii]
[1 Introduction+1]
[1.1 The basic notations+1]
[1.2 Themain result of the thesis+3]
[2 The Known Results+5]
[2.1 Dyck path+5]
[2.2 Motzkin path+7]
[2.3 Schr¨oder path+8]
[2.4 The key lemma+10]
[2.4.1 Hankel determinants for Dyck path+10]
[2.4.2 Hankel determinants for Motzkin path+12]
[2.4.3 Hankel determinants for Schröder path+12]
[3 The generating function of Schröder path with restricted
height+14]
[3.1 Schröder path with restricted height+14]
[3.2 Proof of the theorem1.1+15]
[3.3 Delannoy triangle+16]
[4 Hankel determinants for Schröder path with restricted
height+18]
[4.1 The proof of theorem1.2+18]
[Reference+24]
Aigner, M. (2007). A course in enumeration (Vol. 238). Springer Science & Business Media.
Aigner, M. (1999). Catalan-like numbers and determinants. Journal of Combinatorial Theory, Series A, 87(1), 33-51.
Bressoud, D. M. (1999). Proofs and Con firmations: The Story of the Alternating-Sign Matrix Conjecture. Cambridge University Press.
Brualdi, R. A., Kirkland, S. (2005). Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers. Journal of Combinatorial Theory, Series B, 94(2), 334-351.
Cameron, N. T., Yip, A. C. (2011). Hankel determinants of sums of consecutive Motzkin numbers. Linear algebra and its applications, 434(3), 712-722.
Eu, S. P., Wong, T. L., Yen, P. L. (2012). Hankel determinants of sums of consecutive weighted Schröder numbers. Linear Algebra and its Applications, 437(9), 2285-2299.
Gessel, I., Viennot, G. (1985). Binomial determinants, paths, and hook length formulae. Advances in mathematics, 58(3), 300-321.
Gessel, I. M., Viennot, X. (1989). Determinants, paths, and plane partitions. preprint, 132(197.15).
Gessel, I., Xin, G. (2006). The generating function of ternary trees and continued fractions. Electron. J. Combin, 13(1), R53.
Sulanke, R. A., Xin, G. (2008). Hankel determinants for some common lattice paths. Advances in Applied Mathematics, 40(2), 149-167.
Woan, W. J. (2001). Hankel matrices and lattice paths. J. Integer Seq, 4, Article 01.1.2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔