跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許心芸
研究生(外文):Hsin-yun Hsu
論文名稱:以二邊逐次修正平行演算法加速物流派車問題最佳解的搜尋
論文名稱(外文):Improving the search of near-optimal solution of vehicle routine problems with parallelable modified algorithms
指導教授:黃杰森
指導教授(外文):Chieh-Sen Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:47
中文關鍵詞:k-mean 分群法二邊逐次修正法Feiring 矩陣逐次修正法MPI平行計算旅行推銷員問題物流派車問題對角線完全算法
外文關鍵詞:Feiring algorithmVehicle routing problem (VRP)MPITravelling salesman problem (TSP)k-mean clustering2-opt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在物流派車問題中,我們對車隊分配與路程規劃做最佳化的求解。
k-mean 分群法為群集式演算法,而在車隊分配問題中,我們希望以每輛車的配送負擔平均為目標求其最佳解,故以此演算法為基礎,在其對點做分配的的步驟中增加了對群體內個數做限制及對資料點的篩選條件。

接著對k群分別求經過群體內的所有點的最短路徑,即旅行推銷員問題(TSP)。此問題為一 NP-Hard 問題,精確解須以分支定界法或窮舉法求得,因此我們先以「對角線完全算法」建構出一條可行的漢彌爾頓路徑,再由二邊逐次修正法及 Feiring 矩陣逐次修正法修正得到近似解。
其中若群體內的點數量為n,則二邊逐次修正法的計算量為O( n^2)且其演算法過程無法平行化,所以我們考慮兩種方法改良了二邊逐次修正法的演算法,使其演算法可利用MPI做平行計算,若使用p個處理器,則計算量可預期減少至O( n^2/p)。
We consider finding the near-optimized solution of logistic''s vehicle routing problem includes grouping of customers and travelling salesman problem.
We try to balance the number of customers for each vehicle. According to k-mean clustering algorithm, we add restrictions of the number of each cluster and conditions of distributing each customer to achieve our target.

After that, we want to find a near-shortest route passing through all the customers for each cluster. This problem is a travelling salesman problem, has been proved to be an NP-hard problem that exact solution should be got by exhaustion method or branch and bound method. Therefore, we use Diagonalize Complete Algorithm to construct a feasible Hamiltonian path, and then using 2-opt and Feiring algorithm to get a shorter path. Among these algorithm, if the number of cluster is n, then the computing of $2$-opt algorithm is O( n^2 ) and can not be parallelable, so we consider two different way to modify the algorithm to do parallel computing with MPI. That is, if we use p processes in MPI, then it can reducing the computing to O( n^2/p ).
論文審定書
序言或誌謝iii
摘要iv
Abstract v
目錄v
1 Introduction 1
2 Problem Statement 2
2.1 Vehicle Routine Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Clustering Algorithm 4
3.1 K-mean Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Modified k-mean Clustering Algorithm . . . . . . . . . . . . . . . . . . 5
4 Travelling Salesmen Problem 8
4.1 Diagonalize Complete Algorithm . . . . . . . . . . . . . . . . . . . . . . 8
4.2 2-Opt Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 2-Opt Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Parallelable 2-Opt Algorithm with Evaluating the Maximum Difference.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 Parallelable 2-Opt Algorithm with Counting the Number of Intersection
Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Feiring Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
vi
5 Numerical Result 23
5.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
[1]Clarke G, Wright J., Scheduling of vehicles from central depot to a number of delivery
points, 1964, 12:568 581.
[2] Dantzig, Geroge Bernard and Ramser, John Hubert., The Truck Dispatching Problem,
Management Science, 1959.
[3] Feiring, An efficient procedure for obtaining feasible solutions to the n-city traveling
salesman problem. Mathematical and Computer Modelling, 1990.
[4] Fisher M L., Handbooks in Operations Research and Management Science, 1995.
[5] Holland J, Adaptation In Natural and Artificial Systems, 1975.
[6] Nicos Christofides, Worst-case analysis of a new heuristic for the travelling salesman
problem, Report 388, Graduate School of Industrial Administration, CMU, 1976.
[7] William J. Cook,William H. Cunningham,William R. Pulleyblank, Alexander Schrijver,
Combinatorial Optimization, John Wiley & Sons.
[8] 龔劬, 圖論與網絡最優化, 重慶大學出版社, 1998.
[9] 江林翰, Accelerating the search of near-optimal solutions of vehicle routine problems
with parallel computation, master thesis, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top