跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡培裕
研究生(外文):Pei-yu Tsai
論文名稱:異丁醇混合痲瘋樹生質柴油之乳化油對引擎醛酮類化合物排放特性之研究
論文名稱(外文):Effect of isobutanol-jatropha biodiesel blend of emulsion on carbony compounds characteristics in a heavy-duty diesel engine
指導教授:陳康興陳康興引用關係
指導教授(外文):Kang-Shin Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:醛酮類化合物柴油引擎異丁醇乳化油臭氧生成潛勢
外文關鍵詞:diesel engineisobutanolemulsified oilozone formation potentialaldehydes and ketones
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用奈米乳化油透過添加異丁醇(0–10%)與少量生質柴油混合作為燃料,對於乳化油黏度與粒徑分布進行分析,並於柴油引擎內觀察傳統污染物、粒狀污染物等變化趨勢,也針對引擎所排放之18種醛酮類化合物進行採樣與探討,了解乳化油對於引擎效能及臭氧生成潛勢之影響。
乳化燃料性質上,使用相轉換法製備奈米級乳化油,乳化粒徑可達0.88–41.95nm間,黏度則為4.94–5.81cst,隨著乳化油中添加生質柴油及界面活性劑的比例上升,黏度也會提高。
傳統污染物排放結果,CO受到十六烷值較低與乳化油中的含水量影響呈現上升的趨勢,NO¬X則由於含水量造成的溫度降低而呈現下降的趨勢,而PM2.5將受到微爆現象的影響,造成排放量下降。在引擎性能方面添加不同異丁醇的混合燃料,制動單位燃料消耗率為耗油,對於制動熱效率則成下降的趨勢。
醛酮污染物排放方面,使用柴油為燃料時,總醛酮類化合物排放濃度為7169μg/m3、排放係數為26.73 mg/kW-hr,隨著異丁醇添加比例(0–10%)增加,含水率為10%之乳化油排放濃度為3075增加至5014μg/m3,排放係數為11.47增加至18.70 mg/kW-hr;含水率為20%之乳化油,排放濃度為4361增加至5549μg/m3,排放係數為16.26增加至20.69 mg/kW-hr。顯示異丁醇與含水量的增加會造成醛酮污染物的排放量上升,組成百分比以甲醛、乙醛、丙醛、丙烯醛為主要物種。
臭氧生成潛勢評估上,燃料為柴油時總OFP值為56018.42μg-O3¬/ m3,含水率為10%之乳化油不同異丁醇比例(0%–10%),總OFP值為24273.68–38529.27μg-O3-/ m3;含水率為20%時,總OFP依序為33346.00–42637.12μg-O3¬/ m3。表明乳化油對於臭氧生成潛勢上有顯著的幫助。
In this study the nano-emulsified oil with the addition of isobutanol (0–10%) is mixed with a small amount of biomass diesel to serve as the fuel, while the viscosity and particle size distribution of emulsified oil are analyzed. The variation trends of conventional pollutant and granular pollutant are observed inside a diesel engine. The 18 kinds of aldehyde and ketone compounds emitted by the engine are sampled and investigated to understand the impacts of emulsified oil on engine performance and the ozone formation potential.
In terms of the properties of emulsified fuel, the nano-grade emulsified oil prepared by phase inversion method has particle size of 0.88–41.95nm, and viscosity of 4.94–5.81cst. The viscosity increases with the increasing ratio of biomass diesel and surfactant added in the emulsified oil.
As for the result of emission of conventional pollutants, a rising trend of CO is observed due to the impacts of lower cetane number and water content in the emulsified oil, while there is a declining trend of NO¬X due to the temperature decrease caused by water content. The emission of PM2.5 is reduced due to impact of microburst phenomenon. As for the engine performance corresponding to the mixed fuel with the addition of different isobutanol, the actuation unit consumes a rather significant amount of oil, and there is a declining trend of actuation thermal efficiency.
As for the emission of aldehyde and ketone pollutants, when diesel is used as the fuel, the total aldehyde and ketone emission concentration is 7169μg/m3 with emission factor of 26.73mg/kW-hr. Along with the increasing ratio of isobutanol additive (0–10%), the emission concentration of emulsified oil with water content of 10% is increased from 3075 to 5014μg/m3, and the emission factor is increased from 11.47 to 18.70mg/kW-hr. For the emulsified oil with water content of 20%, the emission concentration is increased from 4361 to 5549μg/m3, with the emission factor increased from 16.26 to 20.69mg/kW-hr. These results indicate that the increase of isobutanol and water content result in increased emission of aldehyde and ketone pollutants, which are mainly formaldehyde, acetaldehyde, propionaldehyde, and acrolein.
As for the assessment of ozone formation potential (OFP), the total OFP value with diesel fuel is 56018.42μg-O3¬/ m3. For the emulsified oil with water content of 10% and with different isobutanol ratios (0%–10%), the total OFP values are in the range of 24273.68–38529.27μg-O3¬/ m3; when the water content is 20%, the total OFP values are in the range of 33346.00–42637.12μg-O3¬/ m3. These imply that emulsified oil can significantly contribute to the ozone formation potential.
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 前言 1
1.1研究緣起 1
1.2研究目標 4
第二章 文獻回顧 5
2.1 能源概論 5
2.1.1現今能源概況 5
2.1.2生質柴油概述 7
2.1.3痲瘋樹油 10
2.2乳化技術 12
2.2.1乳化生質柴油特性 12
2.2.2奈米乳化油 13
2.2.3乳化不穩定現象 14
2.2.4界面活性劑介紹 15
2.2.5乳化液製備方式 17
2.2.6異丁醇特性 19
2.3柴油引擎及污染物特性 21
2.3.1柴油引擎介紹 21
2.3.2柴油引擎作用原理 22
2.3.3影響引擎之排放因素 24
2.3.4傳統污染物排放特徵及危害 28
2.4醛酮化合物 30
2.4.1醛酮化合物特性 30
2.4.2醛酮化合物之來源 33
2.4.3醛酮化合物前驅物質之臭氧生成潛勢 33
2.4.4醛酮化合物分布與毒性特徵 34
第三章 研究方法與步驟 38
3.1研究架構與流程 38
3.2實驗規劃 39
3.2.1奈米乳化製備方法 39
3.2.2添加之異丁醇之比例 39
3.2.3柴油引擎採樣規劃 39
3.3油品燃料與分析 40
3.3.1痲瘋樹油生質柴油 40
3.3.2超級柴油 40
3.3.3介面活性劑 41
3.3.4電磁攪拌機: 42
3.3.5黏度計: 43
3.3.6動態光散射粒徑分析儀及界面電位分析儀(Particle Size and Zeta Potential Analyzer) 43
3.4採樣與分析方法 45
3.4.1柴油引擎發電機 45
3.4.2傳統污染物採樣方法 46
3.4.3懸浮微粒採樣與分析: 47
3.4.4醛酮類化合物採樣方法與設備 48
3.4.5Carbonyls採樣 51
3.5樣品分析 51
3.6分析設備及程序 52
第四章 結果與討論 53
4.1乳化油特性分析 53
4.1.1乳化油的黏度 53
4.1.2乳化油的粒徑 54
4.2乳化油對於引擎性能之探討 57
4.2.1制動單位燃料消耗 57
4.2.2制動熱效率: 59
4.3乳化油與異丁醇之混合物對柴油引擎污染排放之特徵 61
4.3.1乳化油與異丁醇之混合物對於一氧化碳(CO)排放之影響 61
4.3.2乳化油與異丁醇之混合物對於氮氧化物(NOX)排放之影響 64
4.3.3乳化油與異丁醇之混合物對於細懸浮微粒(PM2.5)排放之影響 67
4.4乳化油與異丁醇之混合物對於醛酮化合物之影響 70
4.4.1醛酮類化合物之排放濃度與排放因子 70
4.4.2醛酮類化合物組成比例分析 75
4.4.3乳化油對醛酮類化合物各物種之影響 78
4.4.4乳化油混合異丁醇對醛酮化合物臭氧生成潛勢之影響 102
第五章 結論與建議 104
5.1結論 104
5.2建議 106
參考文獻 107
Ahmad, A. L., Yasin, N. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: a review. Renewable and Sustainable Energy Reviews, 15(1), 584-593.
Al‐Hasan, M. I., & Al‐Momany, M. (2008). The effect of iso‐butanol‐diesel blends on engine performance. Transport, 23(4), 306-310.
Alleman, T. L., McCormick, R. L., Christensen, E. D., Fioroni, G., & Yanowitz, J. (2016). Biodiesel Handling and Use Guide (No. DOE/GO-102016-4875). National Renewable Energy Laboratory, Golden, Colorado; Eco Engineering, Cincinnati, Ohio.
Basha, J. S., & Anand, R. B. (2011). An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel. International journal of green energy, 8(3), 332-348.
Brassat, A., Thewes, M., Müther, M., & Pischinger, S. (2011). Tailor-made fuels from biomass for gasoline combustion systems. MTZ worldwide eMagazine, 72(12), 56-63.
Brown, M. D., Byyny, R., Diercks, D. B., Gemme, S. R., Gerardo, C. J., Godwin, S. A., ... & Kaji, A. (2017). Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with acute carbon monoxide poisoning. Annals of emergency medicine, 1(69), 98-107.
Brown, W.H., (1997). Introduction to Organic Chemistry. Saunders College Publishing, Harcourt Brace & Company, FL, USA.
Bünger, J., Müller, M. M., Krahl, J., Baum, K., Weigel, A., Hallier, E., & Schulz, T. G. (2000). Mutagenicity of diesel exhaust particles from two fossil and two plant oil fuels. Mutagenesis, 15(5), 391-397.
C. Solans, J. Esquena, A. Forgiarini, N. Uson, D. Morales, P. Izquierdo, N.Azemar, M.J. Garcia, in: K.L. Mittal, D.O. Shah (Eds.), (2002).Adsorption andAggregation of Surfactants in Solution, Dekker, New York, pp. 525-554.
Carlier, P., Hannachi, H., & Mouvier, G. (1986). The chemistry of carbonyl compounds in the atmosphere—a review. Atmospheric Environment (1967), 20(11), 2079-2099.
Chen, C. C., Nien, C. K., Tsai, C. Y., & Her, G. R. (1995). Comparison of tail-pipe emission from motorcycle and passenger cars. Journal of Air and Waste Management Association, 45, 116-124.
Chiang, T. A., Wu, P. F., Wang, L. F., Lee, H., Lee, C. H., & Ko, Y. C. (1997). Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 381(2), 157-161.
Correa, S. M., & Arbilla, G. (2008). Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric environment, 42(4), 769-775.
Corrêa, S. M., Arbilla, G., Martins, E. M., Quitério, S. L., de Souza Guimarães, C., & Gatti, L. V. (2010). Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area–Brazil. Atmospheric Environment, 44(19), 2302-2308.
Crookes, R. J., Kiannejad, F., & Nazha, M. A. (1997). Systematic assessment of combustion characteristics of biofuels and emulsions with water for use as diesel engine fuels. Energy Conversion and Management, 38(15), 1785-1795.
Daly, D. T., & Langer, D. A. (2000). Future fuels and fuel additives for vehicle emissions control. In 219th American Chemical Society National Meeting.
Doan, O. (2011). The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel, 90(7), 2467-2472.
Elfasakhany, A. (2016). Experimental study of dual n-butanol and iso-butanol additives on spark-ignition engine performance and emissions. Fuel, 163, 166-174.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., ... & Zimmerman, P. (1992). Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles, 6(4), 389-430.
Griffin, W. C. (1946). Classification of surface-active agents by" HLB". J Soc Cosmetic Chemists, 1, 311-326.
Guarieiro, L. L. N., de Souza, A. F., Torres, E. A., & de Andrade, J. B. (2009). Emission profile of 18 carbonyl compounds, CO, CO 2, and NO x emitted by a diesel engine fuelled with diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable oils. Atmospheric Environment, 43(17), 2754-2761.
Guo X,RongZ,YingX.(2006).Calculation of hydrophile–lipophile balance for polyethoxy lated surfactants by group contribution method. J Colloid Interface Sci;298(1):441–50.
Gwendoline, L., Laura, W., Michael, G., Magnuz, E., Camilla, A., Matthias, B., … Robert, V. (2017). Particulate matter air pollution in Europe in a +2 °C warming world. Atmospheric Environment, 154.
Hasannuddin, A. K., Wira, J. Y., Sarah, S., Ahmad, M. I., Aizam, S. A., Aiman, M. A. B., ... & Azrin, M. A. (2016). Durability studies of single cylinder diesel engine running on emulsion fuel. Energy, 94, 557-568.
Hewitt, C.N., Kok, G.L., (1991). Journal of Atmospheric Chemistry 12, 181.
Ho, K. F., Lee, S. C., & Chiu, G. M. (2002). Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment, 36(1), 57-65.
Jacques, M. T. (1977). Transient heating of an emulsified water-in-oil droplet. Combustion and Flame, 29, 77-85.
Jiao, J., & Burgess, D. J. (2003). Ostwald ripening of water-in-hydrocarbon emulsions. Journal of colloid and interface science, 264(2), 509-516.
Jin, C., Yao, M., Liu, H., Chia-fon, F. L., & Ji, J. (2011). Progress in the production and application of n-butanol as a biofuel. Renewable and Sustainable Energy Reviews, 15(8), 4080-4106.
Karabektas, M., & Hosoz, M. (2009). Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renewable Energy, 34(6), 1554-1559.
Kasting, J. F., & Singh, H. B. (1986). Nonmethane hydrocarbons in the troposphere: Impact on the odd hydrogen and odd nitrogen chemistry. Journal of Geophysical Research: Atmospheres, 91(D12), 13239-13256.
Koltsakis, G. C., & Stamatelos, A. M. (1997). Catalytic automotive exhaust aftertreatment. Progress in Energy and Combustion Science, 23(1), 1-39.
Kumar, B. R., & Saravanan, S. (2016). Effects of iso-butanol/diesel and n-pentanol/diesel blends on performance and emissions of a DI diesel engine under premixed LTC (low temperature combustion) mode. Fuel, 170, 49-59.
Leikauf, G. D. (2002). Hazardous air pollutants and asthma. Environmental Health Perspectives, 110(Suppl 4), 505.
Levy, H., (1971). Normal Atmosphere: Large Radical and Formaldehyde Concentration Predicted. Science 173, 141 - 143.
Lin, C. Y., & Lin, S. A. (2007). Effects of emulsification variables on fuel properties of two-and three-phase biodiesel emulsions. Fuel, 86(1), 210-217.
Lin, C. Y., & Wang, K. H. (2003). The fuel properties of three-phase emulsions as an alternative fuel for diesel engines☆. Fuel, 82(11), 1367-1375.
Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource technology, 70(1), 1-15.
Maga, M., Janik, M. K., Wachsmann, A., Chrzstek-Janik, O., Koziej, M., Bajkowski, M., ... & Niankowski, R. (2017). Influence of air pollution on exhaled carbon monoxide levels in smokers and non-smokers. A prospective cross-sectional study. Environmental Research, 152, 496-502
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.
Morales, D., Gutiérrez, J. M., Garcia-Celma, M. J., & Solans, Y. C. (2003). A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir, 19(18), 7196-7200.
Müller, K. (1997). Determination of aldehydes and ketones in the atmosphere—a comparative long time study at an urban and a rural site in Eastern Germany. Chemosphere, 35(9), 2093-2106.
Nadeem, M., Rangkuti, C., Anuar, K., Haq, M. R. U., Tan, I. B., & Shah, S. S. (2006). Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants. Fuel, 85(14), 2111-2119.
Oberdorfer, P. E. (1967). The determination of aldehydes in automobile exhaust gas (No. 670123). SAE Technical Paper.
Ooi, S. K., & Biggs, S. (2000). Ultrasonic initiation of polystyrene latex synthesis. Ultrasonics Sonochemistry, 7(3), 125-133.
Osman, M. M., Matar, M. S., & Koreish, S. (1993). Effect of methyl tertiary butyl ether (MTBE) as a gasoline additive on engine performance and exhaust emissions. Fuel science & technology international, 11(10), 1331-1343.
Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen, H., & Li, R. (2006). Characteristics of carbonyl compounds emission from a diesel-engine using biodiesel–ethanol–diesel as fuel. Atmospheric environment, 40(36), 7057-7065.
Peng, C. Y., Yang, H. H., Lan, C. H., & Chien, S. M. (2008). Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmospheric Environment, 42(5), 906-915.
Peterson, C., Reece, D., Thompson, J., Zhang, X., Hammond, B. L., & Beck, S. (1996). Development of rapeseed biodiesel for use in high-speed diesel engines. Report to USDOE University of Idaho.
Possanzini, M., Dipalo, V.,(1995). Determination of Olefinic Aldehydes Other Volatile VOCs in Air Samples by DNPH-Coated Cartridges and HPLC. Chromatographia 40, 134 – 138.
Rosen MJ.(2004). Surfactants and interfacial phenomena. Hoboken, New Jersey:Willey – Interscience Publication,JohnWiley&Sons,Inc.
Sarathy, S. M., Oßwald, P., Hansen, N., & Kohse-Höinghaus, K. (2014). Alcohol combustion chemistry. Progress in energy and Combustion Science, 44, 40-102.
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (2001). Measurement of emissions from air pollution sources. 3. C1− C29 organic compounds from fireplace combustion of wood. Environmental Science & Technology, 35(9), 1716-1728.
Schifter, I., Daz, L., Vera, M., Guzmán, E., & López-Salinas, E. (2004). Fuel formulation and vehicle exhaust emissions in Mexico. Fuel, 83(14), 2065-2074.
Seaman, V. Y., Bennett, D. H., & Cahill, T. M. (2009). Indoor acrolein emission and decay rates resulting from domestic cooking events. Atmospheric Environment, 43(39), 6199-6204.
Sharudin, H., Abdullah, N. R., Najafi, G., Mamat, R., & Masjuki, H. H. (2017). Investigation of the effects of iso-butanol additives on spark ignition engine fuelled with methanol-gasoline blends. Applied Thermal Engineering, 114, 593-600.
Shepson, P. B., Hastie, D. R., Schiff, H. I., Polizzi, M., Bottenheim, J. W., Anlauf, K., ... & Karecki, D. R. (1991). Atmospheric concentrations and temporal variations of C1–C3 carbonyl compounds at two rural sites in central Ontario. Atmospheric Environment. Part A. General Topics, 25(9), 2001-2015.
Shinoda, K., & Saito, H. (1969). The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. Journal of Colloid and Interface Science, 30(2), 258-263.
Silva Trindade, W. R., & dos Santos, R. G. (2017). Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renewable and Sustainable Energy Reviews, 69, 642-651.
Singh, A. K., Fernando, S. D., & Hernandez, R. (2007). Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy & Fuels, 21(2), 1161-1164.
Song, C., Zhao, Z., Lv, G., Song, J., Liu, L., & Zhao, R. (2010). Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol–diesel blend. Chemosphere, 79(11), 1033-1039.
Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in colloid and interface science, 108, 303-318.
Taylor, P. (1998). Ostwald ripening in emulsions. Advances in colloid and interface science, 75(2), 107-163.
Tomin, J., Kent, J.,(1982). Proceedings of Fifth International Alcohol. Fuel Technology Sympium 3, 207 - 214.
Uson, N., Garcia, M. J., & Solans, C. (2004). Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250(1), 415-421.
Vairavamurthy, A., Roberts, J. M., & Newman, L. (1992). Methods for determination of low molecular weight carbonyl compounds in the atmosphere: a review. Atmospheric Environment. Part A. General Topics, 26(11), 1965-1993.
Van Gerpen, J. (2005). Biodiesel processing and production. Fuel processing technology, 86(10), 1097-1107.
Viskari, E. L., Vartiainen, M., & Pasanen, P. (2000). Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland. Atmospheric Environment, 34(6), 917-923.
Williams, I. D., Revitt, D. M., & Hamilton, R. S. (1996). A comparison of carbonyl compound concentrations at urban roadside and indoor sites. Science of the total environment, 189, 475-483.
Wood, R. W., & Loomis, A. L. (1927). XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 4(22), 417-436.
Yang, P. M., Lin, Y. C., Lin, K. C., Jhang, S. R., Chen, S. C., Wang, C. C., & Lin, Y. C. (2015). Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel. Energy, 90, 266-273.
李智傑,(2008),「酸性觸媒在生質柴油製程之研究」,碩士論文,國立成功大學化學工程學系。
林達昌,(1998),「含甲醇替代燃料對柴油引擎排放空氣污染物之影響」,國科會環保署,NSC 87-EPA-P-006-016。
林淵淙,(2006),「生質柴油及乳化柴油對引擎排放廢氣污染減量及提昇能源效率之研究」,博士論文,國立成功大學環境工程學系。
光井武夫,陳韋達譯,(1996),新化妝品學,合記圖書,p190。
何文淵,(1999),「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,國立
許滄粟,(2007),三相乳化油的製備與物理性質研究,浙江大學動力機械及車輛工程研究所。
經濟部能源局,(2014),「能源產業技術白皮書」。
蕭德瑛,(2006),柴油引擎與汽油引擎的差異,國立清華大學動力機械工程學系
趙承琛,(1999),界面科學基礎,復文書局,p103。
周欣慧,(2008),「酒精汽油對不同里程車輛引擎排放氣態污染物影響研究」,碩士論文,國立成功大學環境工程學系。
詹長權,(1995),「建立石油類燃料排放揮發性物質(VOCs)資料庫及危害風險管理規劃-以管制油品來降低大氣中毒性污染物濃度:醛類」,行政院環保署計劃EPA-84-F102-09-01。
陳志恩,(2013),「利用廢棄物質為催化劑製作生質柴油之研究」,碩士論文,國立中山大學環境工程研究所。
陳子秦,(2007),汽油車氣態污染物之排放劣化與行駛里程相關性研究,碩士論文,國立成功大學環境工程學系
張安伶,(2006),「油品成分對機車引擎排放氣態污染物影響研究」,碩士論文,國立成功大學環境工程學系。
張有義,(1998),郭蘭生編譯,膠體與界面科學入門,高立書局,p95。
張永利,(2008),痲瘋樹豐產栽培實用技術,第一版,北京:中國林業出版社
成功大學環境工程研究所,碩士論文。
施佳育,(2013),「運用生質柴油及固定氫氧混合氣對於柴油引擎醛酮化合物排放特徵之研究」,碩士論文,國立中山大學環境工程研究所。
曾淑惠,(2006),「界面活性劑對以溫度轉相法進行奈米乳化之影響」,碩士論文,嘉南藥理科技大學化粧品科技研究所。
歐靜枝,(1997),乳化溶化技術實務,復漢出版社印行,pp.1-109。
王鳳英,(1996),界面活性劑的原理與應用,高立圖書有限公司,第3-125 56頁。
王國華,(2001),「多重相乳化油性質及其引擎特性研究」,碩士論文,國立臺灣海洋大學航運技術研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊