跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜彧波
研究生(外文):Yu-Bo Jiang
論文名稱:巴士海峽、台灣海峽及南海交界區域PM2.5晝夜濃度變化及化學成份特徵分析
論文名稱(外文):Diurnal Variation and Chemical Characterization of PM2.5 in the Intersection of Bashi Channel, Taiwan Strait, and South China Sea
指導教授:袁中新袁中新引用關係
指導教授(外文):Chung-Shin Yuan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:206
中文關鍵詞:化學指紋特徵生質燃燒境外傳輸細懸浮微粒日夜及季節變化
外文關鍵詞:PM2.5long-range transportdiurnal variationbiomass burningchemical characteristics
相關次數:
  • 被引用被引用:10
  • 點閱點閱:527
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
近年來東亞地區經濟及工業快速成長,化石燃料消耗量及人為污染物排放量均大幅增加,導致能源的大量消耗及空氣污染物的大量排放,再加上中南半島區域性生質燃燒所排放的空氣污染物,伴隨著東北季風的影響下,也會將中國大陸華北地區發生的灰霾(以PM2.5為主)吹送至中國大陸華南、琉球、台灣、菲律賓,導致下風處國家或地區的空氣品質不良,再加上跨境長程傳輸(long-range transport)而造成空氣品質劣化,對巴士海峽、台灣海峽及南海交界區域產生一定程度的影響。本研究旨在針對該區域之細懸浮微粒污染來源及交互影響加以探討。
本研究於2016年7月至2017年3月期間,分別於台灣南部(屏東車城)、菲律賓北部(佬沃)、東沙群島(東沙島)等三處設置PM2.5採樣點,同步進行細懸浮微粒(PM2.5)採樣,再進行PM2.5的化學成份分析(包括水溶性離子成份、金屬元素成份、碳成份、脫水醣成份、有機酸成份),藉以瞭解此區域PM2.5的化學特徵。此外,為釐清該區域之污染源種類及貢獻率,本研究亦利用主成份分析法、化學質量平衡受體模式、逆軌跡模擬等方法,進行該區域PM2.5污染源種類及貢獻率之解析。
由PM2.5質量濃度季節變化得知,高濃度PM2.5好發於冬、春季,主要受到源自中國大陸華北、華東地區及中南半島的人為污染物隨污染氣團向下風處傳輸,導致PM2.5濃度明顯上升。夏、秋及春季期間,日間PM2.5濃度高於夜間濃度之情形較為普遍,而冬季較則常發生夜間濃度高於日間情形。
另由化學成份分析結果顯示,各季節水溶性離子成份均以二次無機性氣膠(SO42-、NO3-、NH4+)為主,約佔水溶性離子成份的50.7~71.5%。PM2.5的金屬元素成份以K、Ca、Mg、Fe、Al為主,而人為微量金屬元素(如:Cd、As、Ni及Cr)濃度在風向轉為東北季風時呈現明顯上升趨勢。富集因子分析結果顯示,秋、冬季採樣期間Ti、Cr、Mn、Ni、Cu、Zn等的富集因子(EF)大於10,三處採樣點除受地表逸散揚塵之影響外,亦受到跨境傳輸的人為污染源之影響,且隨PM2.5濃度逐漸升高,金屬元素種類逐漸趨於多元。不同季節PM2.5的碳成份中有機碳(OC)濃度均高於元素碳(EC),且秋季起二次有機碳(SOC)濃度有明顯升高的趨勢。三處採樣點的甘露糖及半乳糖皆未檢出,左旋葡萄糖濃度趨勢呈現冬、春季大於夏、秋季的現象。透過逆軌跡圖和衛星火點圖發現,冬、春季期間污染氣團主要來自北方及中南半島,受到生質燃燒的影響較為嚴重。車城、佬沃、東沙三處採樣點PM2.5中有機酸濃度季節變化趨勢與PM2.5濃度相似,草酸、 丙二酸及琥珀酸濃度皆於冬、春季期間明顯升高,且在本研究採樣期間三處採樣點的丙二酸/琥珀酸比值(M/S)均大於1,顯示本研究採樣期間有較多的二次有機性氣膠(SOA)的產生。
就污染源種類及貢獻率而言,燃油鍋爐、逸散揚塵、衍生性硫酸鹽、交通運輸、海鹽飛沫為主要的穩定污染源,秋季過後生質燃燒貢獻率呈上升趨勢。屏東車城的境外傳輸比例介於41~80%之間,菲律賓佬沃的境外傳輸比例介於26~75%之間,而東沙群島的境外傳輸比例介於25%~83%之間,自秋季起跨境傳輸之貢獻率呈明顯上升趨勢,顯示受到境外長程傳輸污染物移入之影響甚鉅,此計算所得之境外傳輸貢獻率與本研究團隊在台灣海峽西岸、東岸、及海島地區之境外傳輸貢獻率爲44.9%、57.3%、39.8%相似(Li et al., 2016)。在污染源種類及其貢獻率日夜差異方面,交通運輸、生質燃燒等日間活動污染源及焚化燃燒、燃油鍋爐、鋼鐵廠等工業性污染源的貢獻率大致呈現日間高於夜間之趨勢。
In recent years, the rapid economic and industrial development of East Asia has significantly increased the consumption of fossil fuel and the emissions of anthropogenic sources causing severe environmental problems. Furthermore, biomass burning often occurs in southeastern Asia and southwestern China in spring. The ambient air quality becomes worse possibly due to long-range transport from Chinese haze during the northeastern monsoon periods. The objectives of this study was to collect PM2.5 at intersection of Bashi Channel, Taiwan Strait, and South China Sea, characterize their chemical fingerprint, and identify their potential sources and contributions.
This study collected PM2.5 in four seasons from July 2016 to March 2017 at Che-cheng (Taiwan), Laoag (Philippines), and Dongsha Islands (South China Sea) simultaneously. After sampling, Conditioning, and Weighing, water-soluble ionic species, metallic elements, carbonaceous contents, anhydrosugars, and organic acids of PM2.5 were then analyzed to figure out the chemical fingerprint of PM2.5 sampled at Che-cheng, Laoag, and Dongsha Islands. Furthermore, chemical mass balance (CMB) receptor modelling and backward trajectory simulation were further used to identify the potential sources of PM2.5 and their contributions in different seasons.
Field measurement results showed that high PM2.5 concentrations were observed in winter and spring. During the northeastern monsoons periods, the impacts of Asian dusts, biomass burning, and Northeast Monsoons on ambient air quality commonly occurred, which lead high PM2.5 contributions from long-range transport toward the target area. From the perspective of diurnal variation, we found that showed that PM2.5 concentration in the daytime was generally higher than those at nighttime except in winter at all sites.
Chemical analysis showed that the most abundant water-soluble ionic species of PM2.5 were secondary inorganic aerosols (SO42-, NO3-, and NH4+) which accounted for 50.7~71.5% of total ions. The metallic elements K, Ca, Mg, Fe, and Al dominated the chemical species of PM2.5, while the concentrations of other trace metals (eg: Cd, A, Ni, and Cr) increased during the northeastern monsoon periods. Organic carbon (OC) was the main carbonaceous species in all seasons, and OC/EC ratios and secondary organic carbon (SOC) increased during the northeastern monsoon periods. The levoglucosan concentrations in summer and fall were commonly lower than those in winter and spring, showing that PM2.5 concentrations were highly influenced by biomass burning in winter and spring. In spring, three sampling sites were influenced by long-range transport and biomass burning since the concentrations of levoglucosan in spring were higher than other seasons. Oxalic acid was the most abundant organic acid, and followed by succinic acid and malonic acid. Organic acids of PM2.5 at Laoag were commonly higher than those at Che-cheng and Dongsha Islands. The mass ratio of malonic and succinic acids (M/S ratio) in PM2.5 showed that PM2.5 were mainly attributed by secondary organic aerosols. High M/S ratios in this study showed that PM2.5 was mainly contributed from secondary organic aerosols. Daytime organic acid concentrations were always higher than nighttime organic acid concentration except in winter.
Results obtained from CMB receptor modeling showed that major sources of PM2.5 at three sites were sea salts, fugitive dusts, mobile sources, secondary sulfate, biomass burning, secondary nitrate. The concentration trend of biomass burning increased since fall. Overall, long-range transport accounted for 41~80%, 26~75%, and 25%~83% in Checheng, Laoag, and Dongsha Islands, showing that the three sampling sites was significantly influenced by the long-range transport. It was similar to our past researches that the average long-range transport distributions accounted for 44.9%, 57.3%, and 39.8% at the west-side sites, east-side sites, and offshore site of the Taiwan Strait, respectively (Li et al., 2016).
The trend of mobile sources, biomass burning, industrial process, boilers, incinerator, and steel plants was generally higher in the daytime than those of nighttime. Biomass burning in winter and spring contributed were than in other seasons.
學位論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
英文摘要 vi
目錄 ix
圖目錄 xii
表目錄 xvi
第一章 前言 1
1-1研究緣起 1
1-2研究目的 1
1-3研究範圍與架構 2
第二章 文獻回顧 4
2-1 巴士海峽、台灣海峽及南海交界區域環境概況 4
2-1-1 屏東地區 4
2-1-2 菲律賓佬沃 7
2-1-3 東沙群島 9
2-2 懸浮微粒之物化特性 11
2-2-1 懸浮微粒之分類 12
2-2-2 懸浮微粒之粒徑分佈 14
2-3 懸浮微粒之化學組成 15
2-3-1 懸浮微粒之水溶性離子成份 15
2-3-2 懸浮微粒之金屬元素成份 22
2-3-3 懸浮微粒之碳成份 27
2-3-4 懸浮微粒之脫水醣成份 31
2-3-5 懸浮微粒之有機酸成份 33
2-4 懸浮微粒濃度之日夜變化 35
2-5 污染源解析模式 38
2-5-1逆軌跡模式 38
2-5-2富集因子分析法 39
2-5-3主成份分析法 41
2-5-4化學質量平衡受體模式 43
第三章 研究方法 45
3-1 細懸浮微粒之採樣規劃 45
3-1-1 採樣地點規劃 45
3-1-2 採樣時間規劃 45
3-2細懸浮微粒之採樣方法及濃度量測 48
3-2-1 PQ-200型PM2.5採樣器 48
3-2-2 質量濃度量測方法 49
3-3細懸浮微粒之化學成份分析方法 50
3-3-1 水溶性離子成份分析方法 50
3-3-2 金屬元素成份分析方法 52
3-3-3 碳成份分析方法 53
3-3-4 脫水醣、有機酸成份分析方法 54
3-4 品保與品管 56
3-4-1 採樣方法之品保與品管 56
3-4-2 分析方法之品保與品管 57
3-5 細懸浮微粒之污染源解析方法 59
3-5-1 逆軌跡模式模擬 59
3-5-2 富集因子分析法 59
3-5-3 化學質量平衡受體模式 60
第四章 結果與討論 62
4-1 採樣期間氣象條件分析 62
4-1-1 相對濕度 62
4-1-2 氣溫 63
4-1-3 雨量 63
4-2 細懸浮微粒濃度之變化趨勢分析 64
4-2-1 細懸浮微粒濃度季節變化趨勢 65
4-2-2 細懸浮微粒濃度日夜變化趨勢 66
4-2-3 不同傳輸路徑細懸浮微粒濃度之差異分析 68
4-3 細懸浮微粒化學成份分析 72
4-3-1 水溶性離子成份季節及日夜變化趨勢 72
4-3-2 金屬元素成份季節變及日夜變化趨勢 83
4-3-3 碳成份季節及日夜變化趨勢 92
4-3-4 脫水醣濃度之季節及日夜變化趨勢 96
4-3-5 有機酸濃度之季節及日夜變化趨勢 98
4-3-6 不同傳輸路徑PM2.5化學成份之差異分析 104
4-4細懸浮微粒之污染源解析結果 106
4-4-1 富集因子分析結果 106
4-4-2 主成分分析結果 107
4-4-3 化學質量平衡受體模式解析結果 119
第五章 結論與建議 138
5-1 結論 138
5-2 建議 141
參考文獻 142
附錄A 分析儀器之檢量線 155
附錄B 分析儀器之品保品管 166
附錄C PM2.5分析數據 173
Bartaria, D., Chandra, P., and Krishna, V., “A study on speciation and coordination tendency of glutamic acid and uracil for ternary complexation towards some toxic metal ions,” Chemical Science Review and Letters, 1(4), 201-208, 2013.
Brady, J. P., Ayoko, G. A., Martens, W. N., and Goonetilleke. A., “Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia,” Marine Pollution Bulletin, 81(1), 248-255, 2014.
Cao, G.L., Zhang, X.Y., Gong, S.L., and Zheng, F.C., “Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning,” Journal of Environmental Sciences, 20(1), 50-55, 2008.
Cao, J.J, Shen, Z., Chow, J C., Qi, G., and Watson, J G., “Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China,” Particuology, 7(3), 161-68, 2009.
Cheng, Y. H. and Tsai, C. J., “Evaporation loss of ammonium nitrate particles during filter sampling,” Journal of Aerosol Science, 28(8), 1553-1567, 1997.
Cheng, Z.L., Lam, K.S., Chan, L.Y., Wang, T., and Cheng, K.K., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996,” Atmospheric Environment, 34, 2771-2783, 2000.
Chester, M.V., and Horvath, A., “Environmental assessment of passenger transportation should include infrastructure and supply chains,” Environmental Research Letters, 4(2), 024008, 2009.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., and Lawson, D.R., “Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California Air Quality Study,” Atmospheric Environment, 28, 2061-2080, 1994.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., and Green, M.C., “Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational Study,” Chemosphere, 54, 185-208, 2004.
Colbeck, I. and Harrison, R.M., “Ozone-secondary aerosol-visibility relationships in North-West England,” Science of the Total Environment, 34, 87-100, 1984.
Dai, W., Gao, J., Cao, G., and Ouyang, F., “Chemical composition and source identification of PM2.5 in the suburb of Shenzhen, China,” Atmospheric Research, 122, 391-400, 2013.
Diana, G.T., Arantza, E.F., Pablo, C.F., Marisela, M.F., Armando R.H., Rafael R.V., and Antonio, H.M., “Effects of meteorology on diurnal and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic carbon in PM10 at a source and a receptor area in Mexico City,” Atmospheric Environment, 43, 2693-2699, 2009.
Engling, G., He, J., Betha, R. and Balasubramanian, R., “Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling,” Atmospheric Chemistry and Physics, 14(15), 8043-54, 2014.
Esposito, K., Chiodini, P., Capuano, A., Bellastella, G., Maiorino, M.I., and Giugliano, D., “Metabolic Syndrome And Endometrial Cancer: A Meta-Analysis In Book Metabolic Syndrome And Endometrial Cancer: A Meta-Analysis,” Springer, 2014.
Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.C., Yang, I.L., and Chen, M.H., “Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taichung, Taiwan,” Science of the Total Environment, 308, 157-166, 2003.
Favez, O., Cachier, H., Sciare, J., Alfaro S.C., El-Araby, T.M., Harhash, M.A., and Abdelwahab, M.M., “Seasonality of major aerosol species and their transformations in Cairo megacity,” Atmospheric Environment,42, 1503-1516, 2008.
Fraser, M.P. and Lakshmanan, K., “Using levoglucosan as a molecular marker for the long-range transport of biomass combustion,” Master Thesis, Department of Environmental Science and Engineering, Rice University, MS 317, 2000.
Ghio, A.J., Carraway, M.S., and Madden, M.C., “Composition of air pollution particles and oxidative stress in cells, tissues, and living systems,” Journal of Toxicology and Environmental Health, 15, 1-21, 2012.
Han, Y.J., Kim, H.W., Cho, S.H., Kim, P.R., and Kim, W.J., “Metallic elements in PM2.5 in different functional areas of Korea: Concentration and source identification,” Atmospheric Environment, 153, 416-428, 2015.
Hinds, W.C., “Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles,” John Willey and Sons, New York, 1999.
Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., and Wu, J, “Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China,” Atmospheric Environment, 57, 146-152, 2012.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel M., Monn,C., and Vonmont, H. “Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland,” Atmospheric Environment, 39, 637-651, 2005.
Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R.V., Ervens, B., Nenes, A., and Nielsen, C., “Organic aerosol and global climate modelling: A review,” Atmospheric Chemistry and Physics, (4), 1053-1123, 2005.
Kawamura, K., and Ikushima, K., “Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere,” Environmental Science and Technology, 27, 2227-2235,1993.
Kerminen, V.M., Teinilä, K., Hillamo, R., and Pakkanen, T., “Substitution of chloride in sea-salt particles by inorganic and organic anions,” Journal of Aerosol Science, 29, 929-942, 1998.
Khan, M.F., Shirasuna, Y., Hirano, K., and Masunaga, S., “Characterization of PM2.5, PM2.5-10 and PM>10 in ambient air, Yokohama, Japan,” Atmospheric Environment, 96, 159-172, 2010.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., “Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China,” Science of the Total Environment, 408, 4681-4694, 2010.
Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., and Zhong, L, “Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China,” Atmospheric Research, 167, 208-215. 2015.
Li, T. C., Yuan, C. S., Huang, H. C., Lee, C. L., Wu, S. P., and Tong, C, “Inter-comparison of seasonal variation, chemical characteristics, and source identification of atmospheric fine particles on both sides of the Taiwan Strait,” Scientific Reports, 6, 22956, 2016.
Lee, C.G., Yuan, C.S., Chang, J.C., and Yuan, C., “Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan,” Journal of the Air and Waste Management Association, 55, 1031-1041, 2005.
Liang, L., Engling, G., Du, Z., Cheng, Y., Duan, F., Liu, X., and He, K., “Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China,” Chemosphere, 150, 365-377, 2016.
Lim, J.M., Lee, J,H., Moon, J.H., Chung, Y.S., and Kim, K.H., “Airborne PM10 and metals from multifarious sources in an industrial complex area,” Atmospheric Research, 96, 53-64, 2010.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Manahan, S.E., “Fundamentals of Environmental Chemistry,” CRC Press, 2011.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of Air and Waste Management Association, 47, 167-175,1997.
Marcazzan, G. M., Vaccaro, S., Valli, G., and Vecchi, R., “Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy),” Atmospheric Environment, 35(27), 4639-4650, 2001.
Masiol, M., Benetello, F., Harrison, R. M., Formenton, G., De Gaspari, F., and Pavoni, B., “Spatial seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy),” Atmospheric Environment, 117, 19-31, 2015.
Meng, C. C., Wang, L. T., Zhang, F. F., Wei, Z., Ma, S. M., Ma, X., and Yang, J., “Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei Province, China,” Atmospheric Research, 171, 133-146, 2015.
Mochida, M., Kawamura, K., Fu, P., and Takemura, T., “Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer,” Atmospheric Environment, 44, 3511-3518, 2010.
Na, K., Sawant, A.A., Song, C., and Cocker, III, D.R.,“Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38(9), 1345-1355, 2004.
Nakata, H., Uehara, K., Goto, Y., Fukumura, M., Shimasaki, H., Takikawa, K., and Miyawaki, T., “Polycyclic aromatic hydrocarbons in oysters and sediments from the Yatsushiro Sea, Japan: Comparison of potential risks among PAHs, dioxins and dioxin-like compounds in benthic organisms,” Ecotoxicology and Environmental Safety, 99, 61-68, 2013.
Oliveira, C., Pio, C., Caseiro, A., Santos, P., Nunes, T., Mao, H., and Sokhi, R., “Road traffic impact on urban atmospheric aerosol loading at Oporto, Portugal,” Atmospheric Environment, 44(26), 3147-3158, 2010.
Ragosta, M., Caggiano, R., Macchiato, M., Sabia, S., and Trippetta, S., “Trace elements in daily collected aerosol: Level characterization and source identification in afour-year study,” Atmospheric Research, 89(1-2), 206-217, 2008.
Pakkanen, T. A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30(14), 2475-2482, 2014.
Pant, P., Shukla, A., Kohl, S.D., Chow, J.C., Watson, J.G., and Harrison, R.M., “Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources,” Atmospheric Environment, 109, 178-189, 2015.
Park, S.-S., Cho, S.-Y., Jung, C.-H., and Lee, K.-H., “Characteristics of water-solubleinorganic species in PM10 and PM2.5 at NEo coastal sites during spring in Korea,” Atmospheric Pollution Research, 7(2), 370-383, 2016.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., and Simoneit, B.R.T., “Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation,” Atmospheric Environment, 27A, 1309-1330, 1993.
Saarnio, K., Aurela, M., Timonen, H., Saarikoski, S., Teinilä, K., Mäkelä, T., Sofiev, M., Koskinen, J., Aalto, P.P., and Kulmala, M., “Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe,” Science of the Total Environment, 408, (12), 2527-2542, 2010.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,” Wiley-Interscience, New York, 2006.
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Ramirez-Santa Cruz, C., Bauer, H., and Puxbaum, H., “Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan,” Atmospheric Environment, 128, 114-123, 2016.
Shen, Z., Cao, J., Tong, Z., and Liu, S., “Chemical characteristics of submicron particles in winter in Xi’an,” Aerosol and Air Quality Research, 9(1), 80-93, 2009.
Simoneit, B.R., “Biomass burning-A review of organic tracers for smoke from incomplete combustion,” Applied Geochemistry, 17, 129-162, 2002.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., and Ngan, F., “NOAA’s HYSPLIT atmospheric transport and dispersion modeling system,” Bulletin of the American Meteorological Society, 96, 2059-2077, 2015.
Streets, D., Yarber, K., Woo, J.H., and Carmichael, G., “Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions,” Global Biogeochemical Cycles, 17(4), 1099, 2003.
Tolis, E.I., Saraga, D.E., Lytra, M.K., Papathanasiou, A.C., Bougaidis, P.N., Partroakis, O.E., Ioannodis, I.I., and Bartzis, J.G., “Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area,” Atmospheric Environment, 113, 197-207, 2015.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los-Angeles summer midday particulate carbon - primary and secondary aerosol,” Environmental Science and Technology, 25, 1788-1793, 1991.
Turpin, B.J. and Huntzicker, J.J., “Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS,” Atmospheric Environment, 29, 3527-3544, 1995.
Wedepohl, K.H., “The composition of the continental-crust,” Geochimica et Cosmochimica Acta, 59, 1217-1232, 1995.
Whitby, K.H. and Sverdrup, G.M., “California aerosols: Their physical and chemical characteristics,” Environmental Science and Technology, 9, 477-517, 1980.
Wu, L., Feng, Y., Wu, J., Zhu, T., Bi, X., Han, B., Yang, W., and Yang, Z., “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China,” Journal of Environmental Sciences, 21, 1353-1362, 2009.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B., “The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China,” Atmospheric Environment, 36(26), 4223-4234, 2002.
Yao, X., Fang, M., Chan, C.K., Ho, K., and Lee, S., “Characterization of dicarboxylic acids in PM2.5 in Hong Kong,” Atmospheric Environment, 38(7), 963-970, 2004.
Yuan, C.S., Hai, C.X., and Zhao, M., “Source profiles and fingerprints of fine and coarse sands resuspended from soils sampled in Central Inner Mongolia,” Particuology, 4(6), 304-311, 2006.
Zhang, X.Q. and McMurry, P.H., “Theoretical analysis of evaporative losses from impactor and filter deposits,” Atmospheric Environment, 21(8), 1779-1789, 1987.
Zhung H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of nitrate and non-sea-salt sulfate on coarse particles,” Atmospheric Environment, 33, 4223-4233, 1999.
行政院環保署,http://www.epa.gov.NE/mp.asp?mp=epa
黃宗正、李正綱、曾錦富,“台中發電廠南方空氣中懸浮微粒特性研究”,第九屆空氣污染控制技術研討會論文集,1992。
鄭淳志,“北桃地區懸浮微粒特性分析”,國立台灣大學環境工程研究所碩士論文,1992。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作研究計畫期末報告,1999。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2000。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
林逸塵,“類神經網路應用於空氣品質預測之研究”, 國立中山大學大學碩士學位論文,2002。
葉士鳴,“大氣中懸浮微粒含碳成份之分佈與來源”,國立成功大學環境工程研究所碩士論文,2002。
袁中新、海春興、趙明、劉乙琦、林志逢,“長距離傳送過程中沙塵指紋特徵辨識探討”,第二十二空氣污染控制技術研討會論文集,2002。
鄒世春、賴森潮、肖健,“碳氣溶膠的釋放,轉移和轉化研究進展”,環境與技術研究”, 201-203,2002。
蔡瀛逸,“懸浮微粒之成份來源解析及管制策略探討”,高雄縣環境保護局研究計畫,2003。
邵承宗,“ 大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究” 國立中山大學環境工程研究所碩士論文,2003。
于建華、虞統、楊曉光、時建綱、王欣,“北京冬季 PM2. 5中元素碳,有機碳的污染特徵”,環境科學研究,17,(1),48-50,2004。
朱宏勳、李崇德,“長程傳輸對北台灣大氣氣膠特性的影響”,國立中央大學環境工程研究所碩士論文,2004。
段鳳魁,“北京市含碳氣溶膠污染特徵及來源研究”, 北京大學博士學位論文,2005。
邱嘉斌,“台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究”,國立中興大學環境工程學系碩士論文,2005。
黃元勳,“屏東郊區大氣微粒化學組成特性探討”,國立屏東科技大學環境工程與科學研究所碩士論文,2006。
袁中新、蔡協宏、林勳佑、黃明合、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,行政院國家科學委員會研究計劃報告,2006。
鄒長偉、黃虹、曹軍驥,“大氣氣溶膠含碳物質基本特徵綜述”,環境污染與防治, 28,(4),270-274,2006。
蔡怡君,“不同地區懸浮微粒成份特徵之觀測與模擬分析研究”,國立雲林科技大學環境與安全衛生工程研究所碩士論文,2008。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
段鳳魁、賀克斌、劉鹹德,“北京 PM2. 5中有機酸的污染特徵及來源”,環境科學學報,29,1139-1145,2009。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,“海島地區懸浮微粒物化特性分析-以琉球嶼為例”,第六屆海峽兩岸氣膠技術研討會論文,2009。
吳琳、馮銀廠、戴莉、韓素琴、朱坦,“天津市大氣中 PM10,PM2.5及其碳組分污染特徵分析”,中國環境科學,29,(11),1134-1139,2009。
蕭雅文,“台中地區大氣懸浮微粒的金屬元素特性及其可能來源分析”,國立中興大學環境工程研究所碩士論文,2010。
林聖達,“台西地區大氣懸浮微粒化學組成份析及特性之研究”,環球科技大學環境資源管理研究所碩士論文,2011。
蘇國鑫,“化學品質平衡受體模型在大氣細顆粒物 PM 2.5 源解析中的應用”,環境,96-97,2011。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”,國立中山大學環境工程研究所碩士論文,2011。
高曉梅,“我國典型地區大氣PM 2.5水溶性離子的理化特徵及來源解析”,山東大學博士學位論文,2012。
古金霞、吳麗萍、霍光耀、白志鵬、杜世勇、劉愛霞、解以揚,“天津市 PM2. 5中水溶性無機離子污染特徵及來源分析”,中國環境監測,29,30-34, 2013。
廖建欽,“閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量解析探討”國立中山大學環境工程研究所碩士論文,2013。
謝政廷,“雲林地區河川揚塵及沙塵暴事件懸浮微粒之化學組成特性”,環球科技大學環境資源管理研究所碩士論文,2013。
東靜姍,“2006-2012南台灣大氣細懸浮微粒濃度特性探討-以原高雄市為例”, 屏東科技大學環境工程與科學系所學位論文,2013。
黃翠,“重慶市典型點位 PM2.5中水溶性離子來源與特徵解析”, 重慶工商大學碩士學位論文,2014。
黃翠、翟崇治、李禮、余家燕,“重慶主城區PM2.5中金屬元素組分特徵分析”,重慶工商大學學報自然科學版,31,(11),93-97,2014。
馬豔華,“昆明市主城區 PM2.5金屬元素特徵研究”,昆明理工大學碩士學位論文,2014。
張燦、周志恩、翟崇治、白志鵬、陳剛才、姬亞芹、任麗紅、方維凱,“基於重慶本地碳成份譜的 PM2.5 碳組分來源分析”,環境科學,35,(3),810-819, 2014。
趙倩彪、胡鳴、張懿華,“利用後向軌跡模式研究上海市 PM2.5 來源分佈及傳輸特徵”,環境監測管理與技術,26,(4),22-26,2014。
杜豔,“上海PM 2.5中低分子二元羧酸的污染特徵及其來源解析”,上海大學碩士學位論文,2015。
賈琳琳、陳彥希、崔晨、王琨,“東北某市嚴重霧霾期 PM 2.5,PM10中元素特徵和富集因數分析”,環境保護科學,(1),60-64 ,2015。
牛武江、蔣德海、王丹璐、張有賢,“蘭州市冬季和春季 PM2. 5金屬元素濃度水平與分佈”,中國環境監測,67-72,2015。
蘇彥綸,“馬祖地區細懸浮微粒濃度晝夜差異解析及污染源指紋特徵之探討”,國立中山大學環境工程研究所碩士論文,2015。
王帆、韓婧、張俊、韓繼超、辛玉姣,“西安城區大氣PM2. 5中有機碳與元素碳的污染特徵”,環境保護科學,(2),80-85,2015。
楊懂豔、劉保獻、張大偉、陳圓圓、周健楠、梁雲平,“2012~ 2013年間北京市PM2. 5中水溶性離子時空分佈規律及相關性分析”,環境科學,(3),768-773,2015。
袁中新、李宗璋、莊學龍、陳明宏、黃康明、宋克義,“東沙島細懸浮微粒(PM2.5)濃度時空分佈及化學成份解析”,第十二屆全國氣溶膠會議暨第十三屆海峽兩岸氣溶膠技術研討會, 2015。
竇筱豔、 徐珣、劉宇、王靜、韓斌、趙旭東,“西寧市城區冬季 PM2. 5 和 PM10中有機碳,元素碳污染特徵”,中國環境監測,(2),007 ,2016。
黃毅、劉春瓊、謝志輝、吳生虎、史凱,“基於後向軌跡模型的成都市典型灰霾期間PM 2.5演化的自組織分析”,安全與環境學報,16,(1),313-319,2016。
林曉輝、趙陽、樊孝俊、胡恭任、於瑞蓮,“南昌市秋季大氣 PM2.5中金屬元素富集特徵及來源分析”,環境科學, (1),35-40,2016。
劉景雲、 劉子銳、 溫天雪、虢俊龍、 黃小娟、 喬寶文、 王莉莉、 楊洋、 徐仲均、王躍思,“石家莊秋季一次典型霾污染過程水溶性離子粒徑分佈特徵”,環境科學,(9),3258-3267,2016。
唐毅、 陳治翰、羅治華、張帆,“後向軌跡模式在攀枝花市PM2. 5來源分析研究中的應用”,四川環境,35,(4),83-89,2016。
曾佑綸,“台灣南部及菲律賓北部大氣細懸浮微粒之化學成份特徵分析及交互影響探討”,國立中山大學環境工程研究所碩士論文,2016。
張弼、王珍、郭軍,“富集因數法分析貴陽市 PM2. 5主要排放源污染元素”,環境科學導刊,172-175,2016。
趙岩、馮利紅、劉洪亮、商博東、王玉雯,“天津市冬季大氣 PM2. 5中金屬元素污染特徵及健康風險評價”,中華疾病控制雜誌,20,(3),294-298,2016。
莊學龍,“台灣海峽及南海交界區域長程傳輸之細懸浮微粒時空分佈、指紋特徵及污染源解析”,國立中山大學環境工程研究所碩士論文,2016。
喬寶文、劉子銳、胡波、劉景雲、逄妮妮、吳方堃、徐仲均、王躍思,“北京冬季PM2. 5中金屬元素濃度特徵和來源分析”,環境科學,38-3,2017。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊