參考文獻
Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Klumpp, D. W., “Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine,” Coastal and Shelf Science, 63(4), 605-618, 2005.
Anderson, C. J., & Mitsch, W. J., “Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes,” Wetlands, 26(3), 779-792, 2006.
Bartlett, K. B., & Harriss, R. C. “Review and assessment of methane emissions from wetlands,” Chemosphere, 26(1-4), 261-320, 1993.
Bouillon, S., Raman, A. V., Dauby, P., & Dehairs, F. “Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an Estuarine Mangrove Ecosystem (Andhra Pradesh, India), ” Estuarine, Coastal and Shelf Science, 54(5), 901–13, 2001.
Brix, H., Sorrell, B. K., & Lorenzen, B. “Are phragmites-dominated wetlands a net source or net sink of greenhouse gases ?” Aquatic Botany, 69(2-4), 313–324, 2001.
Burden, A., Garbutt, R. A., Evans, C. D., Jones, D. L., & Cooper, D. M., “Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuarine,” Coastal and Shelf Science, 120, 12-20, 2013.
Chen, G. C., Tam, N. F., & Ye, Y., “Spatial and seasonal variations of atmospheric N2 O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics,” Soil Biology and Biochemistry, 48, 175-181, 2012.
Chen, Y., Chen, G., & Ye, Y., “Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation,” Science of the Total Environment, 526, 19-28, 2015.
Cheng, X. L., Luo, Y. Q., Chen, J. Q., Lin, J. H., Chen, J. K., Li, B., ” Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island,” Soil Biology & Biochemistry 38, 3380–3386, 2006.
Chmura, G.L., “Tidal Salt Marshes. In: Laffoley, D.d’ A. and Grimsditch, G. (eds),”
The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. 53
pp, 2009.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. “Global carbon sequestration in tidal, saline wetland soils,” Global Biogeochemical Cycles, 17(4), 12, 2003.
Cicerone, R. J., & Oremland, R, S., “Biogeochemical aspects of atmospheric methane,” Global Biogeochemical Cycles, 299–327, 1988.
Daelman, M. R., van Voorthuizen, E. M., van Dongen, U. G., Volcke, E. I., & van Loosdrecht, M. C., “Methane emission during municipal wastewater treatment,” Water Research, 46(11), 3657-3670, 2012.
Delaune, R., Smith, C., Patrick, JR. W.H., “Methane release from Gulf Coast wetlands,” Tellus 35B, 8-15, 1983.
Ding, W., Cai, Z., Tsuruta, H., & Li, X., “Key factors affecting spatial variation of methane emissions from freshwater marshes,” Chemosphere, 51(3), 167-173, 2003.
El-Fadel, M. & Massoud, M. “Methane emissions from wastewater management,” Environmental Pollution, 114(2), 177–185, 2001.
Emery, H. E., & Fulweiler, R. W., “Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh,” Aquatic Botany, 116, 83-92, 2014.
Fennessy, S., & Nahlik, A., “Carbon storage in US wetlands,” Nature Communications, 7, 2016.
Franzen, L. G., “Can Earth afford to lose the wetlands in the battle against the increasing greenhouse effect,” In International Peat Society Proceedings of International Peat Congress (pp. 1-18), Uppsala, 1992.
Gorham, E., “Northern peatlands: role in the carbon cycle and probable responses to climatic warming,” Ecological applications, 1(2), 182-195, 1991.
Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., & Tsuruta, H., “Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia,” Nutrient Cycling in Agroecosystems, 71(1), 73-80, 2005.
Hirota, M., Senga, Y., Seike, Y., Nohara, S., & Kunii, H. “Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan,” Chemosphere, 68(3), 597–603, 2007.
Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., & Mariko, S. “Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland,” Soil Biology and Biochemistry, 36(5), 737–748, 2004.
Inamori, R., Gui, P., Dass, P., Matsumura, M., Xu, K. Q., Kondo, T., ... & Inamori, Y., “Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms,” Process Biochemistry, 42(3), 363-373, 2007.
Johansson, A. E., Gustavsson, A. M., Öquist, M. G., & Svensson, B. H., “Methane emissions from a constructed wetland treating wastewater—seasonal and spatial distribution and dependence on edaphic factors,” Water research, 38(18), 3960-3970, 2004.
Jones, W. M., Fraser, L. H., & Curtis, P. J., “Plant community functional shifts in response to livestock grazing in intermountain depressional wetlands in British Columbia, Canada,” Biological Conservation, 144(1), 511-517, 2011.
JØrgensen, C.J., Struwe†, S., & Elberling, B., “Temporal trends in N2O flux dynamics in a Danishwetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral- N availability,” Global Change Biology, 18, 210–222, 2012.
Katy, H. Katy-Cypress. “Wetland Mitigation Bank,” 1999.
Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å., “Carbon storage and fluxes within freshwater wetlands: A critical review,” Wetlands, 30(1), 111-124, 2010.
Khalia, M. A. K., Shearer, M. J., & Rasmussen, R. A., CH4 sink and distribution in atmospheric CH4: sources, sink, and role in global change. NATO ASI Series, 168-179, 1993.
Kirwan, M. L., Langley, J. A., Guntenspergen, G. R., & Megonigal, J. P., “The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes,” Biogeosciences, 10(3), 1869-1876, 2013.
Kirwan, M. L., & Megonigal, J. P., “Tidal wetland stability in the face of human impacts and sea-level rise,” Nature, 504(7478), 53-60, 2013.
Koelbener, A., Ström, L., Edwards, P. J., & Venterink, H. O., “Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil,” Plant and Soil, 326(1-2), 147-158, 2010.
Krithika, K., Purvaja, R., & Ramesh, R., “Fluxes of methane and nitrous oxide from an Indian mangrove,” Current Science, 94(2), 218-224, 2008.
Liikanen, A., Huttunen, J. T., Karjalainen, S. M., Heikkinen, K., Väisänenb, T. S., Nykänena, H., Martikainena, P. J., “Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters,” Ecological Engineering, 26, 241-251, 2006.
Liu, X., Li, L., Qi, Z., Han, J., & Zhu, Y., “Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China,” Science of The Total Environment, 586, 1038-1045, 2017.
Lunstrum, A., & Chen, L., “Soil carbon stocks and accumulation in young mangrove forests,” Soil Biology and Biochemistry, 75, 223-232, 2014.
Magenheimer, J.E., Moore, T.R., Chmura, G.L., Daoust, R.J., “Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy,” New Brunswick.
Estuaries 19, 139-145,1996.
Malmer, N., 3.1. Development of Bog Mires. Coupling of Land and Water Systems, 10, 83-103, 1975.
Marín-Muñiz, J. L., Hernández, M. E., & Moreno-Casasola, P., “Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: Effect of plant community and seasonal dynamics,” Atmospheric Environment, 107, 107-117, 2015.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., & Silliman, B. R., “A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2,”Frontiers in Ecology and the Environment, 9(10), 552-560, 2011.
Mitsch, W. “Ecological engineering a cooperative role with the planetary life-support system,” Environmental Science & Technology, 27(3), 438-445, 1993.
Mitsch, W. J. & Gosselink, J. G. “Wetlands.” John Wiley & Sons, Inc 177-18, 2007
Mitsch, W. J., & Wu, X., “Wetlands and global change,” pp, 205-230, Boca Raton, CRC Lewis Publishers, 1995.
Moore, P. D. & Bellamy, D. J., “Peatlands (p. 221). London: Elek science, 1974.
Nichols, D.S., “Capacity of natural wetlands to remove nutrients from wastewater,” Water Environment Federation, 55(5), 495-505, 1983
Nordhaus, I., Salewski, T., & Jennerjahn, T. C., “Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia,” Journal of Sea Research, 65(4), 414-426, 2011.
Petersen, N. R. & Jensen, K., “Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L,” Limnology and Oceanography, 42(3), 529-537, 1997.
Roulet, N. T., “Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada,” Wetlands, 20(4), 605-615, 2000.
Sánchez-Andrés, R., Sánchez-Carrillo, S., Alatorre, L. C., Cirujano, S., & Álvarez-Cobelas, M., “Litterfall dynamics and nutrient decomposition of arid mangroves in the Gulf of California: Their role sustaining ecosystem heterotrophy,” Estuarine, Coastal and Shelf Science, 89(3), 191-199, 2010.
Schubauer, J. P. & Hopkinson, C. S., “Above‐and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia,” Limnology and Oceanography, 29(5), 1052-1065, 1984.
Segers, R., “Methane production and methane consumption: a review of processes underlying wetland methane fluxes,” Biogeochemistry, 41(1), 23-51, 1998.
Smith, C.J., Delaune, R.D., Patrick, JR. W.H., “Carbon dioxide emission and carbon accumulation in coastal wetlands,” Estuarine Coastal and Shelf Science,17:21-29, 1983.
Tanner, C.C., “Plants as ecosystem engineers in subsurface-flow treatment wetlands,” Water Science Et Technology, 44(11-12), 9-17, 2001.
Tong, C., Wang, W. Q., Huang, J. F., Gauci, V., Zhang, L. H., & Zeng, C. S., “Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland,” Biogeochemistry, 111(1-3), 677-693, 2012.
Trumbore, S.E., Bubier, J.L., Hander, J.W., & Grill, P.M., “Carbon cycling in boreal wetlands: A comparison of three approaches,” Journal of Geophysical Research, 104(22), 27,673-27, 682, 1999.
Wang, Y., Inamori, R., Kong, H., Xu, K., Inamori, Y., Kondo, T., & Zhang, J., “Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations,” ecological engineering, 32(1), 22-29, 2008.
Xi, X., Wang, L., Tang, Y., Fu, X., & Le, Y., “Response of soil microbial respiration of tidal wetlands in the Yangtze River Estuary to increasing temperature and sea level: A simulative study,” Ecological Engineering, 49, 104-111, 2012.
Xu, X., Zou, X., Cao, L., Zhamangulova, N., Zhao, Y., Tang, D., & Liu, D., “Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China,” Ecological Engineering, 73, 469-477, 2014.
Yang, W. B., Yuan, C. S., Tong, C., Yang, P., Yang, L., & Huang, B. Q., “Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland,” Marine Pollution Bulletin, 2017.
Yang, W., Li, N., Leng, X., Qiao, Y., Cheng, X., & An, S., “The impact of sea embankment reclamation on soil organic carbon and nitrogen pools in invasive Spartina alterniflora and native Suaeda salsa salt marshes in eastern China,” Ecological Engineering, 97, 582-592, 2016.
Yin, S., An, S., Deng, Q., Zhang, J., Ji, H., & Cheng, X., “Spartina alterniflora invasions impact CH 4 and N 2 O fluxes from a salt marsh in eastern China,” Ecological Engineering, 81, 192-199, 2015.
Zhang, G., Zhang, J., Xu, J., & Zhang, F., “Distributions, sources and atmospheric fluxes of nitrous oxide in Jiaozhou Bay,” Estuarine, Coastal and Shelf Science, 68(3), 557-566, 2006.
Zhu, T. & Sikora, F.J. “Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands,” Water Science and Technology, 32(3), 219-228, 1995.
行政院農委會,“自然保育通訊,第十三期”,1987。
內政部營建署城鄉發展分屬,“100年國家重要濕地碳匯功能調臺標準作業程序”,2011。
行政院環境保護署,”中華民國國家溫室氣體清冊報告”,2015。
許晃雄,“淺談氣候變遷的科學”,科學發展月刊,第29卷,第12期,867-887,2001。李海濤、王紹強,“全球變化與陸地生態統碳循環和碳蓄積”,氣象出版社,2003。
楊盛行、劉清標、陳顗竹、張讚昌、魏嘉碧、賴朝明、王銀波、趙震慶、張哲明、王樹倫、陳鎮東,“台灣河川湖泊濕地甲烷及氧化亞氮排放量測”,全球變遷通訊雜誌 40: 5940: 5940: 5940: 59 40: 59-71,2003 。卓盟翔,“影響雲林莞草發芽與生長之環境因子探討”,國立中興大學生命科學系碩士論文,2007。賴建志,“人工濕地之甲烷及氧化亞氮釋放研究”,嘉南藥理科技大學環境與工程與科學系碩士論文,2008。李勇、劉敏、陸敏、侯立軍、林嘯,“崇明東灘蘆葦濕地氧化亞氮排放”,環境科學學報,2010。
莊建和,“人工濕濕地碳收支平衡及碳匯能力之研究”,,嘉南藥理科技大學環境與工程與科學系碩士論文,2010。方培安,“使用不同介質的表面下流動式人工濕地去除金屬加工業廢水有機物和營養鹽之研究”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。廖璟郡,“新竹香山濕地植物之碳吸存量”, 國立中興大學生命科學系碩士論文,2012。何佳穎,“南台灣紅樹林濕地碳吸存能力之調查及估算”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。陳家璽,“南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。林瑩峰、陳國超,“濕地與全球暖化”,台灣濕地保護聯盟,2012。
童莉婷,“高美濕地土壤碳存量之時空變化”,國立中興大學生命科學系碩士論文,2013。劉文治,“大氣中揮發性有機物與溫室氣體監測模式估算”,國立中央大學化學學系博士論文,2013。袁俊吉、項劍、劉德燕、林永新、丁維新,“互花米草入侵鹽沼濕地CH4和N2O排放日變化特徵研究”,生態環境學報,23(8),1251-1257,2014。
李世博,“台南七股紅樹林碳收支模式”,國立中興大學生命科學系碩士論文,2015。