Armstrong R. D., Todd M., Atkinson J. W., Scott K. Electroseparation of cobalt and nickel from a simulated wastewater. J. Appl. Electrochem 1997; 27, 965–969.
Badawy S. M., Nayl A. A., El Khashab R. A., El-Khateeb M. A. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. J. Mater Cycles Waste Manage 2014; 16, 739–746.
Castillo S., Ansart F., Laberty-Robert C., Portal J. Advances in the recovering of spent lithium battery compounds. J. Power Sources 2002; 112, 247–254.
Chagnes A., Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol. 2013; 88, 1191–1199.
Chien S. K., Developing the novel microwave technology for extracting rare metal indium in waste liquid crystal displays. Institute of Environmental Engineering National Sun Yat-sen University Master Thesis 2015.
Chen X., Chen Y., Zhou T., Liu D., Hu H., Fan S. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manage 2015; 38, 349–356.
Chen X., Xu B., Zhou T., Liu D., Hu H., Fan S. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep. Purif. Technol. 2015; 114, 197–205.
Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 2011; 108, 80–86.
Contestabile M., Panero S., Scrosati B. A laboratory-scale lithium-ion battery recycling process. J. Power Sources 2001; 92, 65–69.
Dorella G., Mansur M. B. A study of the separation of cobalt from spent Li-ion battery residues. J. Power Sources 2007; 170, 210–215.
Eskin G. I. Cavitation mechanism of ultrasonic melt degassing. Ultrason. Sonochem. 1995, S137-S141.
Freitas M. B. J. G., Celante V. G., Pietre M. K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J. Power Sources 2010; 195, 3309–3315.
Freitas M. B. J. G., Garcia E. M. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J. Power Sources 2007; 171, 953–959.
Grimes S. M., Donaldson J. D., Chaudhary A. J., Hassan M. U. Simultaneous recovery of metals and destruction of organic species: cobalt and phthalic acid. Environ. Sci. Technol 2000; 34, 4128–4132.
Huang, K., Li, J., Xu, Z.M. A novel process for recovering valuable metals from waste nickel-cadmium batteries. Environ. Sci. Technol 2009; 43, 8974-8980.
Jha M. K., Kumari A., Jha A. K., Kumar V., Hait J., Pandey B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag 2013;33, 1890-1897.
Kang J., Senanayake G., Sohn J., Shin S. M. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 2010; 100, 168–171.
Leadbeater N. E. and Marco M. Ligand-free palladium catalysis of the suzuki reaction in water using microwave heating. Org. Lett. 2002; 4, No. 17, 2973–2976.
Lee C. K., Rhee K. I. Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 2003; 68, 5-10.
Li J., Shi P., Wang Z., Chen Y., Chang C. C. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 2009; 77, 1132–1136.
Li L., Ge J., Chen R., Wu F., Chen S., Zhang X. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 2010; 30, 2615-2621.
Li L., Ge J., Wu F., Chen R. J., Chen S., Wu B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J. Hazard. Mater. 2010; 176, 288–293.
Li L., Lu J., Ren Y., Zhang X. X., Chen R. J., Wu F., Amine K. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J. Power Sources 2012; 218, 21–27.
Li L., Qu W., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 2015; 282, 544-551.
Li L., Zhai L., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J. Power Sources 2014; 262, 380–385.
Li Y., Guoxi X., Xi Y. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceram. Int. 2015; 41, 11498–11503.
Lisbona D., Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ 2011; 89, 434–442.
Yano Research Institute. Lithium-ion Battery Market: Cell & Components, 2011.
Lupi C., Pasquali M., Era A. Nickel and cobalt recycling from lithium-ion batteries by electrochemical process. Waste Manage 2005; 25, 215–220.
Lupi C., Pasquali M. Electrolytic nickel recovery from lithium batteries. Miner. Eng. 2003; 16, 537–542.
Mishra D., Kim D. J., Ralph D. E., Ahn J. G., Rhee Y. H. Bioleaching of metals from spent lithium-ion batteries using acidithiobacillus ferrooxidans. Waste Manage 2008; 28, 333–338.
Manis K. J., Kumari A., Jha A. K., Kumari V., Hait J., Pandey B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manage 2013; 33, 1890-1897.
Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., Tripathi V. S. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 2015; 151, 73–77.
Pranolo Y., Zhang W., Cheng C. Y. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system. Hydrometallurgy 2010; 102, 37–42.
Provazi K., Campos B. A., Espinosa D. C. R., Tenorio J. A. S. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manage 2011; 31, 59–64.
Ritcey G. M., Ashbrook A. W., Solvent Extraction: Principles and Applications to Process Metallurgy. Elsevier Science Publishing Company, Inc., 1984.
Roussy G., Pearce J. A. Foundations and Industrial Applications of Microwave and Radiofrequency Fields. Phys. Chem. Pro. 1995; 10, 11–12.
Schwartzberg H. G. Leaching organic materials. Sep. Sci. Technol. 1987; 25, 540–577.
Shen Y., Xue W., Niu W., Recovery of Co(II) and Ni(II) from hydrochloric acid solution of alloy scrap. Trans. Nonferrous Met. Soc. China 2008; 18, 1262–1268.
Shin S. M., Kim N. H., Sohn J. S., Yang D. H., Kim Y. H. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 2005; 79, 172-181.
Sun L., Qiu K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 2012; 32, 1575-1582.
Swain B. J., Jeong J., Lee G., Lee J., Sohn J., Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. Power Sources 2007; 167, 536-544.
Tang W. J., Chen X. P., Zhou T., Duan H., Chen Y. B., Wang J. Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process. Hydrometallurgy 2014; 147, 210–216.
Thostenson E. T., Chou T. W. Microwave processing: fundamentals and applications. Composites Part A 1999; 30, 1055 – 1071.
Wang R. C., Lin Y. C., Wu S. H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 2009; 99, 194-201.
Xu J., Thomas H. R., Francis R. W., Lum K. R., Wang J. B., Liang J. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Power Sources 2008; 177, 512–527.
Xu J. T., Dou S. X., Liu H. K., Dai L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013; 2, 439–442.
Zhao J. M., Shen X. Y., Deng F. L., Wang F. C., Wu Y., Liu H. Z. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep. Purif. Technol 2011; 78, 345–351.
王志芳,磷酸鋰鐵電池之產業概況,台灣工業銀行內部報告,2008。
行政院環境保護署環境檢驗所,「土壤中重金屬檢測方法-王水消化法」,
NIEA S321.63B。
行政院環境保護署環境檢驗所,「事業廢棄物萃出液中重金屬檢測方法-酸消化法」,NIEA R306.13C 。
行政院環境保護署環境檢驗所,「感應耦合電漿質譜儀法」,NIEA M105.01B
余炳盛,臺灣稀有資源資源化技術現況,能資源整合技術圓桌論壇暨永續環境研討會,2013。
吳信達,王世忠,廢電池及廢料中資源再生提煉鈷配置鋰二次電池材料,資源與環境學術研討會,2003。
宏賴科技,網址:http://www.hstech.com.tw/products-d.html
李洪枚,姜亢,廢舊鋰離子電池對環境污染的分析與對策,上海環境科23卷第 5期,2004。
林偉凱,認識新一代電池材料:鋰金屬,金屬中心 MII產業分析師,2012。
林偉凱、蔡潔娃,「金屬資源再生產業技術發展概況分析」,經濟部技術處產業技術知識服務(ITIS)計畫,2009。
林福文,「微波機械系統設備與製程發展近況」,食品工業專題報導第40卷7期,2008。柯賢文,《科學發展》482期,50 ~ 59頁,2013年2月。
許家興,電動車電池類型與電池基礎介紹,車輛沿測資訊(13-18),2009。
郭迺鋒、楊浩彥、林政勳、方文秀,鋰電池產業對台灣經濟發展影響的研究-投入產出方法的分析,2011。
陳志成、李清華、游智翔、鄭玠弦,廢鋰電池回收處理技術研究,行政院環境保護署應回收廢棄物回收處理創新研發成果發表會,2014。
陳金銘,穿戴式電子夯-高能量鋰電池材料技術居要角,工業材料雜誌338期,2015。
陳嘉隆,王佳琪,台灣鋰電池產業經營績效分析研究以資料包絡分析應用,2015。
游勝傑,盧美姿,綠色資源之循環再利用趨勢,永續產業發展季刊綠色能資源,2013。黃可龍,王兆翔,劉素琴等,鋰電池結構鋰離子與電池原理,2010。
黃俊誠和陳藹然,電鍍(Electroplating),科技部科學ONLINE,2009。
黃俊誠和陳藹然,鋰電池(Lithium Battery),科技部科學ONLINE,2009。
黃樑傑,台灣動力鋰電池能量發展現況與挑戰,車輛中心,國合部,產業發展課,ARTC,2011。
楊奉儒、楊叢印、莊鉦賢、張良榕、王明祥,廢二次鋰電池資源再利用處理技術,環保科技園區第三屆研發計畫成果發表會,120-121,2010。
蔡明瞭、林民禾、杜景順、劉文龍,以電沉積法由廢鋰離子電池中回收有價金屬,綠色科技工程與應用研討會(GTEA),2013。
鋰電池反應示意圖,(Google圖片)