|
1.Ahmed J. Awad,Terry C. Burns,Ying Zhang et al. Targeting MET for glioma therapy. Neurosurgical Focus 37, E10, doi:10.3171/2014.9.focus14520 (2014). 2.國家衛生研究院 癌症研究組 T. 腦癌之診斷與治療共識. (中華民國國家衛生研究院, 2004). 3.Wei K-C,Chu P-C,Wang H-Y J et al. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study. PloS one 8, e58995, doi:10.1371/journal.pone.0058995 (2013). 4.Lalatsa A, Schatzlein A G & Uchegbu I F. Strategies to deliver peptide drugs to the brain. Mol Pharm 11, 1081-1093, doi:10.1021/mp400680d (2014). 5.Li M Y,Yang P,Liu Y W et al. Low c-Met expression levels are prognostic for and predict the benefits of temozolomide chemotherapy in malignant gliomas. Sci Rep 6, 21141, doi:10.1038/srep21141 (2016). 6.Huang M G,Liu T R,Ma P H et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest 126, 1801-1814, doi:10.1172/Jci84876 (2016). 7.Huang M,Liu T,Ma P et al. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. The Journal of Clinical Investigation 126, 1801-1814, doi:10.1172/JCI84876 (2016). 8.Organ S L & Tsao M-S. An overview of the c-MET signaling pathway. Therapeutic Advances in Medical Oncology 3, S7-S19, doi:10.1177/1758834011422556 (2011). 9.Rai R,Banerjee M,Wong D H et al. Temozolomide analogs with improved brain/plasma ratios – Exploring the possibility of enhancing the therapeutic index of temozolomide. Bioorganic & Medicinal Chemistry Letters 26, 5103-5109, doi:https://doi.org/10.1016/j.bmcl.2016.08.064 (2016). 10.Donson A M,Addo-Yobo S O,Handler M H et al. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatric Blood & Cancer 48, 403-407, doi:10.1002/pbc.20803 (2007). 11.Hegi M E,Diserens A-C,Gorlia T et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine 352, 997-1003, doi:doi:10.1056/NEJMoa043331 (2005). 12.Riganti C,Salaroglio I C,Pinzon-Daza M L et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cellular and molecular life sciences : CMLS 71, 499-516, doi:10.1007/s00018-013-1397-y (2014). 13.Ramirez Y P,Weatherbee J L,Wheelhouse R T et al. Glioblastoma Multiforme Therapy and Mechanisms of Resistance. Pharmaceuticals 6, 1475-1506, doi:10.3390/ph6121475 (2013). 14.Zhang J, Stevens M F & Bradshaw T D. Temozolomide: mechanisms of action, repair and resistance. Current molecular pharmacology 5, 102-114 (2012). 15.Bolós V,Gasent J M,López-Tarruella S et al. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. OncoTargets and therapy 3, 83-97 (2010). 16.Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett 11, 1615-1620, doi:10.3892/ol.2016.4113 (2016). 17.Koochekpour S,Jeffers M,Rulong S et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer research 57, 5391-5398 (1997). 18.Joo K M,Jin J,Kim E et al. MET signaling regulates glioblastoma stem cells. Cancer research 72, 3828-3838, doi:10.1158/0008-5472.can-11-3760 (2012). 19.Li Y,Li A,Glas M et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proceedings of the National Academy of Sciences of the United States of America 108, 9951-9956, doi:10.1073/pnas.1016912108 (2011). 20.Kohsaka S,Wang L,Yachi K et al. STAT3 Inhibition Overcomes Temozolomide Resistance in Glioblastoma by Downregulating MGMT Expression. Molecular Cancer Therapeutics 11, 1289-1299, doi:10.1158/1535-7163.mct-11-0801 (2012). 21.Lee E-S,Ko K-K,Joe Y A et al. Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. Oncol Lett 2, 115-121, doi:10.3892/ol.2010.210 (2011). 22.Zhang X,Liang H,Tan Y A N et al. A U87-EGFRvIII cell-specific aptamer mediates small interfering RNA delivery. Biomedical reports 2, 495-499, doi:10.3892/br.2014.276 (2014). 23.Chu S-H,Zhang H,Ma Y-B et al. c-Met Antisense Oligodeoxynucleotides as a Novel Therapeutic Agent for Glioma: In Vitro and In Vivo Studies of Uptake, Effects, and Toxicity. Journal of Surgical Research 141, 284-288, doi:http://dx.doi.org/10.1016/j.jss.2006.11.011 (2007). 24.Castanotto D & Rossi J J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426-433, doi:10.1038/nature07758 (2009). 25.Fire A,Xu S Q,Montgomery M K et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811, doi:10.1038/35888 (1998). 26.Hasuwa H,Kaseda K,Einarsdottir T et al. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 532, 227-230 (2002). 27.Novobrantseva T I,Borodovsky A,Wong J et al. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Mol Ther Nucleic Acids 1, e4, doi:10.1038/mtna.2011.3 (2012). 28.Davis M E,Zuckerman J E,Choi C H J et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-U1140, doi:10.1038/nature08956 (2010). 29.Hannon G J & Rossi J J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371-378 (2004). 30.Heidel J D,Liu J Y C,Yen Y et al. Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clinical Cancer Research 13, 2207-2215, doi:10.1158/1078-0432.ccr-06-2218 (2007). 31.Burnett J C & Rossi J J. RNA-Based Therapeutics: Current Progress and Future Prospects. Chemistry & Biology 19, 60-71, doi:10.1016/j.chembiol.2011.12.008 (2012). 32.Bartel D P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 136, 215-233, doi:http://dx.doi.org/10.1016/j.cell.2009.01.002 (2009). 33.Ambros V. microRNAs: Tiny Regulators with Great Potential. Cell 107, 823-826, doi:http://dx.doi.org/10.1016/S0092-8674(01)00616-X (2001). 34.Moss E G & Poethig R S. MicroRNAs: Something New Under the Sun. Current Biology 12, R688-R690, doi:http://dx.doi.org/10.1016/S0960-9822(02)01206-X (2002). 35.McNamara J O,Andrechek E R,Wang Y et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotech 24, 1005-1015, doi:http://www.nature.com/nbt/journal/v24/n8/suppinfo/nbt1223_S1.html (2006). 36.Pan D W & Davis M E. Cationic Mucic Acid Polymer-Based siRNA Delivery Systems. Bioconjugate Chemistry 26, 1791-1803, doi:10.1021/acs.bioconjchem.5b00324 (2015). 37.Kim W J,Chang C-W,Lee M et al. Efficient siRNA delivery using water soluble lipopolymer for anti-angiogenic gene therapy. Journal of Controlled Release 118, 357-363, doi:http://dx.doi.org/10.1016/j.jconrel.2006.12.026 (2007). 38.Song W J,Du J Z,Sun T M et al. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6, 239-246, doi:10.1002/smll.200901513 (2010). 39.Han J F,Cai J,Borjihan W et al. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydrate Polymers 117, 324-330, doi:10.1016/j.carbpol.2014.09.069 (2015). 40.Destito G, Schneemann A & Manchester M. Biomedical nanotechnology using virus-based nanoparticles. Curr Top Microbiol Immunol 327, 95-122 (2009). 41.Galaway F A & Stockley P G. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10, 59-68, doi:10.1021/mp3003368 (2013). 42.Fang P-Y,Gómez Ramos Lizzette M,Holguin Stefany Y et al. Functional RNAs: combined assembly and packaging in VLPs. Nucleic Acids Research, doi:10.1093/nar/gkw1154 (2016). 43.Kaczmarczyk S J,Sitaraman K,Young H A et al. Protein delivery using engineered virus-like particles. Proceedings of the National Academy of Sciences of the United States of America 108, 16998-17003, doi:10.1073/pnas.1101874108 (2011). 44.Ponchon L,Catala M,Seijo B et al. Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Research 41, 13, doi:10.1093/nar/gkt576 (2013). 45.Golmohammadi R,Fridborg K,Bundule M et al. The crystal structure of bacteriophage Q beta at 3.5 A resolution. Structure (London, England : 1993) 4, 543-554 (1996). 46.Brown S D, Fiedler J D & Finn M G. Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry 48, 11155-11157, doi:10.1021/bi901306p (2009). 47.Aksyuk A A & Rossmann M G. Bacteriophage Assembly. Viruses 3, 172-203, doi:10.3390/v3030172 (2011). 48.Rhee J K,Hovlid M,Fiedler J D et al. Colorful virus-like particles: fluorescent protein packaging by the Qbeta capsid. Biomacromolecules 12, 3977-3981, doi:10.1021/bm200983k (2011). 49.Liu F,Ge S,Li L et al. Virus-like particles: potential veterinary vaccine immunogens. Res Vet Sci 93, 553-559, doi:10.1016/j.rvsc.2011.10.018 (2012). 50.Rhee J K,Baksh M,Nycholat C et al. Glycan-Targeted Virus-like Nanoparticles for Photodynamic Therapy. Biomacromolecules 13, 2333-2338, doi:10.1021/bm300578p (2012). 51.Patterson D P,Rynda-Apple A,Harmsen A L et al. Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano 7, 3036-3044, doi:10.1021/nn4006544 (2013). 52.Brun A,Bárcena J,Blanco E et al. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Research 157, 1-12, doi:http://dx.doi.org/10.1016/j.virusres.2011.02.006 (2011). 53.Aanei I L,ElSohly A M,Farkas M E et al. Biodistribution of Antibody-MS2 Viral Capsid Conjugates in Breast Cancer Models. Molecular Pharmaceutics 13, 3764-3772, doi:10.1021/acs.molpharmaceut.6b00566 (2016). 54.Ashley C E,Carnes E C,Phillips G K et al. Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-Like Particles. ACS Nano 5, 5729-5745, doi:10.1021/nn201397z (2011). 55.Chen L S,Wang M,Ou W C et al. Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene therapy 17, 1033-1041, doi:10.1038/gt.2010.50 (2010). 56.Chang L,Wang G,Jia T et al. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget 7, 23988-24004, doi:10.18632/oncotarget.8115 (2016). 57.Hovlid M L,Lau J L,Breitenkamp K et al. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS Nano 8, 8003-8014, doi:10.1021/nn502043d (2014). 58.Anand P,O''Neil A,Lin E et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep 5, 12497, doi:10.1038/srep12497 (2015). 59.Wadia J S, Stan R V & Dowdy S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine 10, 310-315, doi:10.1038/nm996 (2004). 60.Richard J P,Melikov K,Vives E et al. Cell-penetrating peptides - A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry 278, 585-590, doi:10.1074/jbc.M209548200 (2003). 61.Trabulo S,Cardoso A L,Mano M et al. Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals 3, 961 (2010). 62.Debaisieux S,Rayne F,Yezid H et al. The Ins and Outs of HIV-1 Tat. Traffic 13, 355-363, doi:10.1111/j.1600-0854.2011.01286.x (2012). 63.Brooks H, Lebleu B & Vivès E. Tat peptide-mediated cellular delivery: back to basics. Advanced drug delivery reviews 57, 559-577, doi:http://dx.doi.org/10.1016/j.addr.2004.12.001 (2005). 64.Vives E, Brodin P & Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry 272, 16010-16017, doi:10.1074/jbc.272.25.16010 (1997). 65.Banks W A, Robinson S M & Nath A. Permeability of the blood–brain barrier to HIV-1 Tat. Experimental Neurology 193, 218-227, doi:https://doi.org/10.1016/j.expneurol.2004.11.019 (2005). 66.Liu L,Guo K,Lu J et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials 29, 1509-1517, doi:http://dx.doi.org/10.1016/j.biomaterials.2007.11.014 (2008). 67.Zensi A,Begley D,Pontikis C et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. Journal of controlled release : official journal of the Controlled Release Society 137, 78-86, doi:10.1016/j.jconrel.2009.03.002 (2009). 68.Sarkar G,Curran G L,Sarkaria J N et al. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PloS one 9, e97655, doi:10.1371/journal.pone.0097655 (2014). 69.Wagner S,Zensi A,Wien S L et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PloS one 7, e32568, doi:10.1371/journal.pone.0032568 (2012). 70.Lim F, Spingola M & Peabody D S. The RNA-binding site of bacteriophage Qbeta coat protein. The Journal of biological chemistry 271, 31839-31845 (1996). 71.Witherell G W & Uhlenbeck O C. Specific RNA binding by Q.beta. coat protein. Biochemistry 28, 71-76, doi:10.1021/bi00427a011 (1989). 72.Roldao A,Mellado M C,Castilho L R et al. Virus-like particles in vaccine development. Expert review of vaccines 9, 1149-1176, doi:10.1586/erv.10.115 (2010). 73.Schiller J T & Lowy D R. Papillomavirus-like particle based vaccines: cervical cancer and beyond. Expert opinion on biological therapy 1, 571-581, doi:10.1517/14712598.1.4.571 (2001). 74.Wang J W & Roden R B S. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert review of vaccines 12, 10.1586/erv.1512.1151, doi:10.1586/erv.12.151 (2013). 75.Boden D,Pusch O,Silbermann R et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Research 32, 1154-1158, doi:10.1093/nar/gkh278 (2004). 76.Yan H,Wang L,Wang J et al. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 6, 410-420, doi:10.1021/nn203749v (2012). 77.Li J,Cai P,Shalviri A et al. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano 8, 9925-9940, doi:10.1021/nn501069c (2014).
|