跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:瑞茲
研究生(外文):Rezki El Arif
論文名稱:具有傳輸零點之多頻帶通濾波器設計與實現
論文名稱(外文):Design and Implementation of Miniaturized Multi-Band Bandpass Filter with Tunable Transmission Zeros
指導教授:洪子聖洪子聖引用關係Sholeh Hadi Pramono
指導教授(外文):Tzyy-Sheng HorngSholeh Hadi Pramono
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:66
中文關鍵詞:多頻段傳輸零點帶通濾波器多層板
外文關鍵詞:Multi bandTransmission ZerosBandpass filteMulti Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文提出了一種應用於微型多頻帶通濾波器的多層堆疊步
階阻抗諧振器( SSIR) , 此多層諧振器結構有助於減小濾波器尺
寸。基於耦合諧振器的理論,可以藉由耦合係數及外部品質因子
的決定來設計多個通帶,另外還提出一種控制阻帶傳輸零點的方
法。 本論文所設計第一個帶通濾波器操作中心頻率為 3.5 GHz,
頻寬為 7.2%,整體尺寸不考慮饋入線為 4.2 mm  5.2 mm, 並藉
由電或磁耦合來控制傳輸零點。第二個帶通濾波器設計提出了一
個新的方法來效調整傳輸零點,此方法乃利用貫孔及其與接地平
面間的環形槽。 第三個帶通濾波器設計為三頻帶通濾波器,此設
計利用微型化 SSIR,使用了三層金屬,基板為 RT/Duroid 6010,
厚度為 0.568 mm, 介電常數為 10.2, 濾波器尺寸為 2.8 mm  2.5
mm。第四種設計為利用 SSIR 結構的四頻帶通濾波器,此設計可
以透過適當地調整兩耦合 SSIR 在第一層及第二層的間隙寬度來
分別控制第一及第三通帶與第二及第四通帶。
Abstract
This thesis presents a stacked stepped impedance resonator (SSIR) structure for
designing compact multi-band bandpass filters (BPFs). The multilayer resonator structure is
used to reduce the filter size. Moreover, based on the theory of coupled resonators, the desired
characteristics of its multiple passbands can be obtained by determining the coupling
coefficients and external quality factors. Furthermore, a novel technique has been developed
to create controllable transmission zeros (TZs) in the stopbands. This thesis includes four
bandpass filter designs with specific requirements. The first BPF design was designed with the
center frequency of 3.5 GHz and the FBW of 7.2%. The TZ can be created and adjusted using
either magnetic or electric coupling. The overall size of this filter is 4.2 mm 5.2 mm without
the feeding lines. The second design proposed a new approach to tune the TZs. By using
through vias with the isolation ring slots on the ground plane, the TZs can be controlled
effectively. The third design is about the tri-band BPF using stacked stepped impedance
resonators (SSIRs). It was designed on a 0.568 mm thick three-layer RT/Duroid 6010 substrate
with dielectric constant of 10.2. It occupies an area of 2.8 mm 2.5 mm. The fourth design
uses the SSIR structure to design a compact quad-band BPF. The first and third passbands and
the second and fourth passbands can be separately adjusted by changing the width of the gaps
between two coupled SSIRs in the second and first layer, respectively
Table of Contents
論文審定書.................................................................................................................................i
Acknowledgements....................................................................................................................ii
Abstract (Chinese) ....................................................................................................................iii
Abstract (English) .....................................................................................................................iv
Table of Contents.......................................................................................................................v
List of Tables ...........................................................................................................................vii
List of Figures.........................................................................................................................viii
List of Symbols.........................................................................................................................xi
Chapter 1....................................................................................................................................1
Introduction................................................................................................................................1
1.1 Background..........................................................................................................................1
1.2 Motivation............................................................................................................................2
1.3 Structure of Contribution of Thesis .....................................................................................3
Chapter 2....................................................................................................................................5
Coupled Multilayer Resonators .................................................................................................5
2.1 Microstrip Lines...................................................................................................................5
2.2 Effective Dielectric Constant and Characteristic Impedance ..............................................6
2.3 Coupled Resonator Circuits .................................................................................................7
2.3.1 Synchronously Tuned Coupled-Resonator Circuits..........................................................8
2.3.2 Mixed Coupling ..............................................................................................................13
2.4 General Formula for Extracting Coupling Coefficient k ...................................................16
2.5 General Formula for Extracting Quality Factor Qe ...........................................................17
2.6 Multilayer BPFs .................................................................................................................18
Chapter 3..................................................................................................................................20
Design of Miniaturized BPFs...................................................................................................20
3.1 Experimental Set-up...........................................................................................................20
3.2 Design of One-Band BPF Using FR-4 Substrate...............................................................21
3.2.1 Design Procedure............................................................................................................21
3.2.2 Result and Approach for Tunable TZs............................................................................23
3.3 Miniaturized BPF Using Additional Ring Slot..................................................................26
3.3.1Filter Design Procedure ...................................................................................................26
3.3.2 Result and Analysis.........................................................................................................29
3.4 Design of Tri-band BPF.....................................................................................................31
3.4.1 Design Procedure............................................................................................................31
3.4.3. Analysis and results of a Tri-band BPF ........................................................................34
3.5 Design of Quadband BPF ..................................................................................................40
3.5.1 Design Procedure............................................................................................................41
3.5.3 Result and Analysis.........................................................................................................44
Chapter 4..................................................................................................................................50
Conclusion ...............................................................................................................................50
References................................................................................................................................51
[1] David M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc. 2005, pp. 49-156.
[2] M. Dishal, “Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters,’’ Proc. IRE, vol. 39, no. 11, pp.1448–1455, Nov. 1951.
[3] Hong, J.-S.: “Couplings of asynchronously tuned coupled microwave resonators”, IEE Proc., Microw. Antennas Propag., 2000, 147, (5), pp. 354–358
[4] J-K. Xiao, M. Zhu, Y. Li., and J.G Ma, “Coplanar waveguide bandpass filters with separated electric and magnetic couplings,” Electron. Lett., vol. 52 No. 2 pp. 122–124, 2016.
[5] F. Zhu, Wi. Hong, J-X. Chen, and K. Wu, “Quarter-Wavelength Stepped-Impedance Resonator Filter With Mixed Electric and Magnetic Coupling,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, February 2014.
[6] Q.X. Chu, and H. Wang, “A Compact Open-Loop Filter With Mixed Electric and Magnetic Coupling,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 2, February 2008.
[7] A. Djaiz and A. Denidni, “A new compact microstrip two-layer bandpass filter using aperture-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 1929–1936, May. 2006.
[8] U. Y. Kongpop, E. J. Wollack, T. Doiron, J. Papapolymerou, and J. Laskar, “A Bandpass Filter Design Using Half-Wavelength Stepped Impedance Resonators With Internal Couplings,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 8, pp. 443–445, Aug. 2006.
[9] A. Abdel-Rahman, A. R. Ali, S. Amari, and A. S. Omar, “Compact bandpass filters using defected ground structure (DGS) coupled resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 12–17.
[10] S.-C. Lin, C.-H. Wang, C.-H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 1, pp. 137–146, Jan. 2007.
[11] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and
their applications to microstrip bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 2, pp. 755–762, Feb. 2006.
[12] W. Chen, Y.J. Zhao, Z.X. Jun, “Compact and Wide Upper-Stopband Triple-Mode Broadband Microstrip BPF,” TELKOMNIKA, Vol.10, No.2, pp. 353~358, June 2012.
[13] K. Ma, J.G. Ma, K.S. Yeo, M. A. Do, “A Compact Size Coupling Controllable Filter With Separate Electric and Magnetic Coupling Paths,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, March 2006.
[14] S.C. Tang, C.H. Yu, Y.C. Chiou, J.T. Kuo, “Extraction of electric and magnetic coupling for coupled symmetric microstrip resonator bandpass filter with tunable transmission zero,” IEEE Trans. Microwave Theory Tech., vol. 54, NO. 3, March 2006.
[15] Q.X. Chu, H.Wang, “A Compact Open-Loop Filter With Mixed Electric and Magnetic Coupling. IEEE Trans. Microwave Theory Tech., vol. 56, NO. 2, Feb. 2008.
[16] J.K. Xiao, Y. Li, J.G. Ma, X.P. Bai, “Transmission Zero Controllable Bandpass Filters with Dual and Quad-Band,” Electron. Lett., vol. 51 No. 13 pp. 1003–1005, 2015.
[17] C.-H. Lee, C.-I. G. Hsu, and H.-K. Jhuang, “Design of a new triband microstrip bandpass filter using combined quarter wavelength type SIRs,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 11, pp. 594–596, Nov. 2006
[18] C.-I. G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microwave Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[19] Q.-X. Chu and X.-M. Lin, “Advanced triple-band band pass filter using tri-section SIR,” Electron. Lett., vol. 44, no. 4, pp. 295–296, 2008.
[20] D. A. Letavin and V. A. Chechetkin,” Miniature microwave bandpass filter with two circular spiral resonators,” in Proc. ICACCI’16, 2016, p. 2315
[21] R. Garg, I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, 3rd ed., London, UK: Artech House, 2013.
[22] C. Z. Hua and W. Chao, “Design of stepped impedance resonator bandpass hairpin filter,” in Proc. ICEPT’16, 2016, p. 1409.
[23] Z. Awang, Microwave Systems Design, Berlin, Germany: Springer, 2014.
[24] C.H. Chen, C.H. Huang, T.S. Horng, S.M. Wu, J.Y. Li, C.C. Chen, C.T. Chiu, C.P. Hung, “Very Compact Stacked LC Resonator-Based Bandpass Filters With a Novel Approach to Tune the Transmission Zeros,” IEEE Microwave Wireless Component Letters. vol. 19, no. 5, 2009.
[25] K. Ma, J.-G. Ma, K. S. Yeo, and M. A. Do “A Compact Size Coupling Controllable Filter With Separate Electric and Magnetic Coupling Paths,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, 2006.
[26] C. -H. Chen, C. -H. Huang, T. -S. Horng, and S. -M. Wu, “Highly Miniaturized Multiband Bandpass Filter Design Based on a Stacked Spiral Resonator Structure,” IEEE Trans. Microwave Theory Tech., vol. 60, no. 5, 2012.
[27] M. Xiao, X. Li and G. Sun, “Quad-band bandpass filter based on single stepped-impedance ring resonator,” Electron. Lett., vol. 52, No. 10, pp. 848–849, 2016.
[28] F. Zhu, W. Hong, J. -X Chen, and K. Wu,, “Quarter-Wavelength Stepped-Impedance Resonator Filter With Mixed Electric and Magnetic Coupling,” IEEE Microw. Compon. Lett., Vol. 24, No. 2, 2014.
[29] L. Gao, X. Y. Zhang, B. -J. Hu, and Q. Xue, “Novel Multi-Stub Loaded Resonators and Their Applications to Various Bandpass Filters,” IEEE Trans. Microwave Theory Tech., vol. 62, No. 5, 2014.
[30] Y. Sung, “Dual-mode dual-band filter with band notch structures,” IEEE Microw. IEEE Microw. Compon. Lett., vol. 20, no. 2, pp. 73–75, 2010.
[31] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001, pp. 109–272.
[32] F. Zhu, W. Hong, J.-X. Chen, and K. Wu, “Quarter-Wavelength Stepped-Impedance Resonator Filter With Mixed Electric and Magnetic Coupling,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, 2014.
[33] X. Guan, Y. Peng, H. Liu, J.L., Baoping Ren, F. Qin,” Compact Triple-Band High-Temperature Superconducting Filter Using Coupled-Line Stepped Impedance Resonator,” IEEE Trans. Microwave Theory Tech., vol. 26, No. 7, 2016.
[34] S. Liu, J. Xu, “Compact tri-band bandpass filter using SISRLR,” Electron. Lett., vol. 52 No. 18 pp. 1539–1541, 2016.
[35] J. K Xiao, M. Zhu, Y. Li, J.G. Ma, “Coplanar waveguide bandpass filters with separated electric and magnetic couplings,” Electron. Lett., vol. 52 No. 2 pp. 122–124, 2016.
[36] C.-F. Chen, S.-F. Chang, B.-H. Tseng, and J.-H. Weng, “Compact dual band stopped impedance resonator filter with separate coupling path,“ Electron. Lett., vol. 50, no. 21, pp. 1551–1552, 2014.
[37] S. Zhang and L. Zhu, “Synthesis of dual-band band pass filters with λ/4 stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 5, pp. 1812–1819, 2013
[38] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Design of dual- and triplepassband filters using alternately cascaded multiband resonators,”IEEE Trans. Microwave Theory Tech., vol. 54, no. 9, pp. 3550–3557, Sept. 2006.
[39] H.-W. Liu, Y. Wang, X.-M. Wang, J.-H. Lei, W.-Y. Xu, Y.-L. Zhao, B.-P. Ren, and X.-H. Guan, “Compact and high selectivity tri-band bandpass filter using multimode stepped-impedance resonator,” IEEE Microwave Wireless Compon. Lett., vol. 23, no. 10, pp. 536–538, 2013.
[40] J.–Z. Chen, N. Wang, Y. He, and C.–H. Liang, “Fourth-order triband bandpass filter using square ring loaded resonators,” Electron. Lett., vol. 47, no. 15, pp. 858–859, 2011.
[41] L. Lin, S.-J. Shun, B. Wu, and C.-H. Liang, “Dual-band bandpass filter with wide upper stopband using quad-mode stepped impedance stub-loaded resonator,” Electron. Lett., vol. 50, no. 16, pp. 1145–1146, 2014.
[42] S. Zhang and L. Zhu, “Synthesis of dual-band band pass filters with λ/4 stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 5, pp. 1812–1819, 2013.
[43] X. Luo, H. Qian, J.-G. Ma, and K. S. Yeo, “Compact dual band bandpass filter using novel embedded spiral resonator (ESR),” IEEE Microwave Wireless Compon. Lett., vol. 20, no. 8, pp. 435–437, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊