(3.235.236.13) 您好!臺灣時間:2021/05/15 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡宛靜
研究生(外文):TSAI,WAN-CHING
論文名稱:二甲醚、甲乙醚和乙酸光電子光譜的理論研究
論文名稱(外文):A theoretical study of the photoelectron spectra of dimethyl ether, ethyl methyl ether, and acetic acid
指導教授:張嘉麟張嘉麟引用關係
指導教授(外文):CHANG,JIA-LIN
口試委員:賴金宏陳錦章
口試委員(外文):LAI,CHIN-HUNGCHEN,CHIING-CHANG
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士在職專班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:法蘭克—康登因子光電子光譜密度泛函理論游離能二甲醚甲乙醚乙酸
外文關鍵詞:Franck-Condon factorphotoelectron spectrumdensity-functional theorydimethyl etherethyl methyl etheracetic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究進行二甲醚、甲乙醚、以及乙酸光電子光譜的理論研究,我們使用密度泛函理論的B3LYP及M06-2X的計算方法,搭配aug-cc-pVTZ計算基組,計算這三個分子與其正離子的平衡結構及振動頻率,並以本研究室開發的計算方法計算法蘭克-康登因子,進而模擬它們的光電子光譜。其中二甲醚和甲乙醚游離成正離子時,結構變化很大,法蘭克-康登因子很小,因此我們以鞍點結構模擬其光譜。另外,我們使用偶合簇理論的CCSD(T)計算方法,搭配aug-cc-pVXZ(X = D, T, Q, 5)基組,計算分子與離子的完備基組極限能量,以獲得絕熱游離能。研究結果顯示,二甲醚、甲乙醚、以及乙酸的模擬光電子光譜與實驗相符合,游離能的計算值也與實驗差異不大,其中甲乙醚的差距為-0.093 eV,二甲醚為-0.003 eV,乙酸為-0.007 eV。
The photoelectron spectra of dimethyl ether, ethyl methyl ether, and acetic acid were studied by theoretical calculations. The equilibrium geometries and harmonic vibrational frequencies of the three molecules and their cations were computed by using the density functional theory (B3LYP and M06-2X functionals) associated with the aug-cc-pVTZ basis set. The Franck-Condon factors were calculated and the photoelectron spectra of the target molecules were simulated. For dimethyl ether and ethyl methyl ether, their Franck-Condon factors were very small due to drastic geometrical changes, and we computed their photoelectron spectra by using the geometries at the saddle point. The energies of the molecules and cations were also calculated by using the CCSD(T) method associated with the basis sets of aug-cc-pVXZ (X = D, T, Q, 5), which were extrapolated to the complete basis set limit in order to obtain the adiabatic ionization energies. The simulated photoelectron spectra of dimethyl ether, ethyl methyl ether, and acetic acid are in agreement with experiments. The calculated ionization energies are also consistent with experimental values, with deviations of -0.093, -0.003, and -0.007 eV for ethyl methyl ether, dimethyl ether and acetic acid, respectively.
摘要..................I
Abstrat..............II
目錄.................III
表目次................V
圖目次................VII
第一章 緒論...........1
1.1 研究動機.......1
1.2 文獻探討.......2
1.2.1 法蘭克-康登因子...2
1.2.2 二甲醚、甲乙醚及乙酸分子的研究.....3
第二章 研究方法.........5
2.1 量子化學計算方法..5
2.1.1 密度泛函理論......5
2.1.2 基組.............7
2.1.3 完備基組極限......8
2.1.4 偶合簇理論........8
2.2 分子與離子平衡結構與振動模式的計算..9
2.3 法蘭克-康登因子計算.......10
2.4 光譜模擬...........14
第三章 結果與討論.........15
3.1 平衡結構........ 15
3.2 振動頻率.........23
3.3 光電子光譜模擬....31
3.4 游離能計算........40
第四章 結論.......46
參考文獻....48

[1] T. A. Semelsberger, R. L. Borup, H. L. Greene, Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156 (2006) 497.
[2] J. Franck, E. G. Dymond, Elementary processes of photochemical reactions, Transactions of the Faraday Society, 21 (1926) 536.
[3] E. Condon, A theory of intensity distribution in band systems, Physical Review, 28 (1926) 1182.; E. Condon, Nuclear motions associated with electron transitions in diatomic molecules, Physical Review, 32 (1928) 858.
[4] F. Duschinsky, Acta Physicochim. URSS 7 (1937) 551.
[5] J.-L. Chang, A new formula to calculate Franck–Condon factors for displaced and distorted harmonic oscillators, Journal of Molecular Spectroscopy, 232 (2005) 102.
[6] J.-L. Chang, A new method to calculate Franck–Condon factors of multidimensional harmonic oscillators including the Duschinsky effect, The Journal of Chemical Physics, 128 (2008) 174111.
[7] J.-L. Chang, C.-H. Huang, S.-C. Chen, T.-H. Yin, Y.-T. Chen, An analytical approach for computing Franck‐Condon integrals of harmonic oscillators with arbitrary dimensions, Journal of Computational Chemistry, 34 (2013) 757.
[8] Y. Niide, M. Hayashi, Reinvestigation of microwave spectrum of dimethyl ether and rs structures of analogous molecules. Journal of Molecular Spectroscopy, 220 (2003) 65-79
[9] Y. R. Miao, Li, J. M., Deng, J. K., C. G. Ning,. High resolution (e, 2e) spectroscopy of dimethyl ether. Journal of Electron Spectroscopy and Related Phenomena, 193 (2014) 1.
[10] K. H. Hellwege, A.M. Hellwege (ed.). Landolt-Bornstein: Group II: Atomic and Molecular Physics Volume 7: Structure Data of Free Polyatomic Molecules. Springer-Verlag, Berlin, 1976.
[11] L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, 23 (1927) 542.
[12] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review, 136 (1964) 864.
[13] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, 140 (1965) A1133.
[14] J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Review B, 54 (1996) 16533.
[15] C. Adamo, J. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, The Journal of Chemical Physics, 108 (1998) 664.
[16] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, 77 (1996) 3865.
[17] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37 (1988) 785.
[18] S. H. Vosco, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of physics, 58 (1980) 1200.
[19] D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters, 45 (1980) 566.
[20] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, 45 (1992) 13244.
[21] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, 23 (1981) 5048.
[22] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98 (1993) 5648.
[23] J. P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations, The Journal of Chemical Physics, 105 (1996) 9982.
[24] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics, 110 (1999) 6158.
[25] J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics, 118 (2003) 8207.
[26] Y. Zhao,D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional, Theoretical Chemistry Accounts, 120 (2008) 215.
[27] Y. Zhao, D. G. Truhlar, Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states, The Journal of Physical Chemistry A, 110 (2006) 13126.
[28] T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, 90 (1989) 1007.
[29] G. A. Petersson, A. Bennett, T. G. Tensfelt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements, The Journal of Chemical Physics, 89 (1988) 2193.
[30] K. A. Peterson, D. E. Woon, T. H. Dunning, Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2→ H2 + H reaction, The Journal of Chemical Physics, 100 (1994) 7410.
[31] J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces, International Journal of Quantum Chemistry, 14 (1978) 545.
[32] http://cccbdb.nist.gov/www.nist.gov.
[33] T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39
[34] F. M. Benoit, A. G. Harrison, Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, Journal of American Chemical Society, 99 (1977) 3980.
[35] K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Society Press, Tokyo, 1981.
[36] I. Watanabe , Y. Yokoyama, S. Ikeda, Lone pair ionization potentials of carboxylic acids determined by He(I) photoelectron spectroscopy, Bulletin of the Chemical Society of Japan, 46 (1973) 1959.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top