(3.238.98.214) 您好!臺灣時間:2021/05/08 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:詹于萱
研究生(外文):CHAN,YU-HSUAN
論文名稱:丙酮和丁酮光電子光譜的理論研究
論文名稱(外文):A theoretical study of the photoelectron spectra of propanone and butanone
指導教授:張嘉麟張嘉麟引用關係
指導教授(外文):CHANG,JIA-LIN
口試委員:賴金宏陳錦章
口試委員(外文):LAI,CHIN-HUNGCHEN,CHIING-CHANG
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士在職專班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:法蘭克—康登因子光電子光譜密度泛函理論游離能丙酮丁酮
外文關鍵詞:Franck-Condon factorphotoelectron spectrumdensity functional theoryionization energypropanonebutanone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用密度泛函數理論的B3LYP泛函數以及M06-2X泛函數,以aug-cc-pVTZ為基組,計算出丙酮(CH3COCH3)和丁酮(CH3COC2H5)分子基態與其正離子的優化平衡結構與振動頻率。接著利用本研究室所開發的法蘭克-康登因子計算方法,求出丙酮和丁酮電離成正離子的法蘭克-康登因子,並據以模擬其光電子光譜圖,最後再與實驗光譜圖做對照。此外,本研究也採用CCSD(T)/aug-cc-pVXZ (X=D,T,Q,5)方法計算各分子與正離子的單點能,並外推至完備基組極限,求得其絕熱游離能,再與實驗值比較。在本研究中,我們分析了丙酮和丁酮光電子光譜的振動結構,並發現模擬光譜與實驗光譜相符,而絕熱游離能的計算結果也與實驗值接近,差距分別為0.03(丙酮)和-0.06(丁酮) eV。
The equilibrium geometries, harmonic vibrational frequencies, and normal modes of propanone, butanone, and their cations were calculated by using the density functional theory (B3LYP and M06-2X functionals) with the basis set aug-cc-pVTZ. The Franck-Condon factors were computed by using the method developed by our group and the photoelectron spectra of propanone and butanone were simulated. The adiabatic ionization energies were also calculated by extrapolating the CCSD(T) energies to the complete basis set limit from the basis sets aug-cc-pVXZ (X = D, T, Q, 5). The vibrational structures in the photoelectron spectra of propanone and butanone were analyzed. The simulated photoelectron spectra of both molecules are in harmony with experiements. The computed adiabatic ionization energies are also in agreement with experiment, with deviations of 0.03 and -0.06 eV for propanone and butanone, respectively.
目錄
摘要……………………………………………………………………………I
Abstract………………………………………………………………II
目錄……………………………………………………………………………III
表次……………………………………………………………………………V
圖次……………………………………………………………………………VII
第一章 緒論 …………………………………………………………………1
1.1 研究動機………………………………………………………1
1.2 文獻探討………………………………………………………3
1.2.1 法蘭克-康登因子……………………………………3
1.2.2 丙酮文獻探討.………………………………………5
1.2.3 丁酮文獻探討 ………………………………………5
第二章 研究方法1……………………………………………………………7
2.1量子化學計算方法……………………………………………7
2.1.1 密度泛函理論11………………………………………7
2.1.2 基組1…………………………………………………13
2.1.3 偶合簇理論 1…………………………………………15
2.2 分子與離子的計算.…………………………………………17
2.3 法蘭克康登因子.……………………………………………17
2.4 模擬光譜1……………………………………………………22
第三章 結果與討論…………………………………………………………23
3.1 平衡結構1……………………………………………………23
3.2 振動頻率1……………………………………………………33
3.3 法蘭克-康登因子光電子光譜………………………………44
3.4 絕熱游離能的計算 …………………………………………59
第四章 結論…………………………………………………………………64
參考文獻………………………………………………………………………66

[1]J.-L. Chang, C.-H. Huang, S.-C. Chen, T.-H. Yin, Y.-T. Chen, An analytical approach for computing Franck‐Condon integrals of harmonic oscillators with arbitrary dimensions. J. Comput. Chem. 34 (2013) 757-765.
[2]IUPAC Gold Book: ketones, https://doi.org/10.1351/goldbook.
[3]S. S. Likhodii, I. Serbanescu, M. A. Cortez, P. Murphy, O. C. Snead III, W. M. Burnham, Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann. Neurol. 54 (2003) 219-226.
[4]Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for 2-butanone. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
[5]E. Condon, A theory of intensity distribution in band systems. Phys. Rev. 28 (1926) 1182.
[6]E. Hutchisson, Band spectra intensities for symmetrical diatomic molecules. Phys. Rev. 36 (1930) 410.
[7]C. Manneback, Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules. Physica, 17 (1951) 1001-1010.
[8]F. Ansbacher, A note on the overlap integral of two harmonic oscillator wave functions. Z. Naturforschung A, 14 (1959) 889-892.
[9]S. Koide, Über die Berechnung von Franck-Condon-Integralen. Z. Naturforschung A, 15 (1960) 123-128.
[10]T. E. Sharp, H. M. Rosenstock, Franck—Condon Factors for Polyatomic Molecules. J. Chem. Phys. 41 (1964) 3453-3463.
[11]J.-L. Chang, A new formula to calculate Franck–Condon factors for displaced and distorted harmonic oscillators. J. Mol. Spectrosc. 232 (2005) 102.
[12]J.-L. Chang, A new method to calculate Franck–Condon factors of multidimensional harmonic oscillators including the duschinsky effect. J. Chem. Phys 128 (2008) 174111.
[13]L. M. Sverdlov, M. A. Kovner, E. P. Krainov, Vibrational spectra of polyatomic molecules. Wiley, New York, 1974.
[14]Y. G. Smeyers M. L. Senent, V. Botella, D. C. Moule, An ab initio structural and spectroscopic study of acetone - An analysis of the far infrared torsional spectra of acetone-h6 and -d6, J. Chem. Phys. 98 (1993) 2754.
[15]G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, Princeton, N.J., 1966 .
[16]J. R. Durig, F. S. Feng, A. Wang, H. V. Phan, Conformational stability, barriers to internal rotation, ab initio calculations, and vibrational assignment of 2-butanone, Can. J. Chem. 69 (1991) 1845-1856.
[17]T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39
[18]L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, 23 (1927) 542-548.
[19]P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev., 136 (1964) 864.
[20]W. Kohn, L. J. Sham, Phys. Rev. A 140 (1965) 1133.
[21]D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters.45 (1980) 566.
[22]J. P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in electronic structure of solids, edited by P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, 1991.
[23]P. Zieschea, S. Kurthb, J. P. Perdewb, Density functionals from LDA to GGA, Computational Materials Science, 1998.
[24]P. A. M. Dirac, Note on exchange phenomena in the Thomas atom, Proceedings of the Cambridge Philosophical Society, 1930.
[25]A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A.38 (1988) 3098.
[26]J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54 (1996) 16533.
[27]C. Adamo, J. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J. Chem Phys. 108 (1998) 664.
[28]J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett.77 (1996) 3865.
[29]D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters. 45 (1980) 566.
[30]C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37 (1988) 785.
[31]D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters. 45 (1980) 566.
[32]J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B. 23 (1981) 5048.
[33]J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B. 45 (1992) 13244.
[34]A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648.
[35]J. P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys.105 (1996) 9982.
[36]J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207.
[37]Y. Zhao,D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional, Theoretical Chemistry Accounts. 120 (2008) 215.
[38]E. G. Lewars. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics (1st ed.). 2011.
[39]T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90(1989) 1007.
[40]G. A. Petersson, A. Bennett, T. G. Tensfelt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements, J. Chem. Phys. 89 (1988) 2193.
[41]K. A. Peterson, D. E. Woon, T. H. Dunning, Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+ H2→ H2 + H reaction, J. Chem. Phys.100 (1994) 7410.
[42]J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces, Int. J. Quant. Chem . 14 (1978) 545.
[43]http://cccbdb.nist.gov/www.nist.gov.
[44]R. McDiarmid, On the absorption spectrum of the 3s Rydberg state of acetone. J. Chem. Phys. 4 (1991) 95.
[45]Wing-Cheung Tam,D.Yee and C.E. Brion"Photoelectron spectra of some aldehydes and ketones,J. Electron Spectroscopy and Related Phenomena. 4(1974)77-80.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔