跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂盈暄
研究生(外文):Lu, Ying-Hsuan
論文名稱:運用有效篩選因子方法求解大規模分量式模擬最佳化
論文名稱(外文):Large-Scale Quantile-based Simulation Optimization Using Efficient Factor Screenings
指導教授:張國浩張國浩引用關係
指導教授(外文):Chang, Kuo-Hao
口試委員:吳建瑋林春成
口試委員(外文):Wu, Chien-WeiLin, Chun-Cheng
口試日期:2017-06-12
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:57
中文關鍵詞:因子篩選隨機系統分量迴歸模擬最佳化
外文關鍵詞:Factor ScreeningStochastic SystemQuantile EstimationSimulation Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨機系統模擬是目前廣泛使用的技術之一,在現實生活中可以應用在很多領域,然而,處理系統之隨機性本身是一相當困難之問題,對於大型隨機系統,其困難度更是大幅增加。由於模擬模型的建立需要非常接近真實系統,即使現代電腦運算資源發達,若要針對大規模問題進行最佳化,成千上百的因子所需花費的模擬資源仍相當可觀,因此,篩選因子方法常被用於最佳化方法前來找出重要因子減少其求解成本。目前已有許多篩選因子方法及最佳化方法可供選擇,然而,典型的模擬最佳化方法是將問題視為一個隨機系統並以期望值作為績效指標衡量,相較於期望值,分量可以適用於ㄧ些期望值不適用的問題中,卻少有以分量作為績效衡量指標的研究。因此本研究提出一個有效率的模擬最佳化架構,透過分量式的篩選因子方法搭配分量式最佳化方法來進行模擬最佳化,稱其為STRONG-Q,STRONG-Q是以CSB及STRONG作修改,使其可以處理目標式為分量的問題,在篩選因子方法中,透過型一誤差及檢定力的控制,可確保重要因子能被篩選中且不重要因子不被篩選中,使後續的最佳化步驟能正確且有效率地進行。
Screening experiments are often conducted before optimization in order to reduce computation resources by identifying the important factors of the problem. In the literatures, factor screening and simulation optimization approaches mostly adopted expectation as performance measures. The methodologies that are focused on other alternatives, however, are difficult to develop due to a lack of nice statistical properties as expectation. Quantile is an important alternative to the expectation for spatial data and moreover, it enables risk control. In this study, we propose a novel approach called STRONG-Q that integrates efficient quantile-based factor screening methods into the framework of STRONG, which is a newly-developed Response-Surface-based framework, for large-scale quantile-based simulation optimization problems. The quantile-based factor screening method can effectively control the Type I error and enables the large-scale quantile-based simulation optimization problems to be solved efficiently when it is integrated into STRONG.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 2
1.1 研究背景與動機 2
1.2 研究目的 4
1.3 論文架構 4
第二章 文獻探討 6
2.1 篩選因子方法 6
2.2 分量估計方法 10
2.3 模擬最佳化方法 10
第三章 問題定義 15
3.1 分量式篩選因子 15
3.2 分量式最佳化 17
第四章 STRONG-Q演算法 18
4.1 STRONG-Q之篩選因子架構 19
4.1.1 篩選因子實驗 19
4.1.2 分量估計 21
4.1.3 篩選因子流程 22
4.1.4 漸進式分量因子篩選 27
4.2 STRONG-Q之最佳化架構 29
4.2.1 最佳化架構 29
4.2.2 樣本數與設計點 31
4.2.3 Stage Ι 32
4.2.4 Stage ΙΙ 35
第五章 數值實驗 39
5.1 篩選因子正確性 39
5.1.1 數值模型 39
5.1.2 篩選結果 41
5.2 演算法比較 44
5.2.1 測試函數 44
5.2.2 績效指標 45
5.2.3 數值結果 46
第六章 實證研究 50
6.1 送報生問題 (News Vendor Problem) 50
6.2 多產品組裝生產問題 (Multiproduct Assembly) 52
第七章 結論與未來研究 54
參考文獻 55
Banks, Jerry. Handbook of simulation: principles, methodology, advances, applications, and practice. John Wiley & Sons, 1998.
Bassett, Gilbert W., and Roger W. Koenker. "Strong consistency of regression quantiles and related empirical processes." Econometric Theory 2.02 (1986): 191-201.
Batur, Demet, and F. Choobineh. "A quantile-based approach to system selection." European Journal of Operational Research 202.3 (2010): 764-772.
Bekki, Jennifer M., et al. "Simulation-based cycle-time quantile estimation in manufacturing settings employing non-FIFO dispatching policies." Journal of Simulation 3.2 (2009): 69-83.
Bettonvil, Bert, and Jack PC Kleijnen. "Searching for important factors in simulation models with many factors: Sequential bifurcation." European Journal of Operational Research 96.1 (1997): 180-194.
Bickel, Peter J., and Erich L. Lehmann. "Descriptive statistics for nonparametric models II. Location." The Annals of Statistics (1975): 1045-1069.
Borror, Connie M., Douglas C. Montgomery, and Raymond H. Myers. "Evaluation of statistical designs for experiments involving noise variables." Journal of Quality Technology 34.1 (2002): 54.
Brodin, Erik. Extreme value statistics and quantile estimation with applications in finance and insurance. Chalmers University of Technology, 2007.
Chang, Kuo-Hao, L. Jeff Hong, and Hong Wan. "Stochastic trust-region response-surface method (strong)-a new response-surface framework for simulation optimization." INFORMS Journal on Computing 25.2 (2013): 230-243.
Cheng, Russell CH. "Searching for important factors: sequential bifurcation under uncertainty." Proceedings of the 29th conference on Winter simulation. IEEE Computer Society, 1997.
Conn, Andrew R., Nicholas IM Gould, and Philippe L. Toint. Trust region methods. Society for Industrial and Applied Mathematics, 2000.
Dielman, Terry, Cynthia Lowry, and Roger Pfaffenberger. "A comparison of quantile estimators." Communications in Statistics-Simulation and Computation 23.2 (1994): 355-371.
Fu, Michael C. "Gradient estimation." Handbooks in operations research and management science 13 (2006): 575-616.
Fu, Michael C. "Optimization for simulation: Theory vs. practice." INFORMS Journal on Computing 14.3 (2002): 192-215.
Fu, Michael C., and D. Hill. "Optimization of discrete event systems via simultaneous perturbation stochastic approximation." IIE transactions 29.3 (1997): 233-243.
Glover, Fred. "Tabu search-part I." ORSA Journal on computing 1.3 (1989): 190-206.
Goldberg, David, Kalyanmoy Deb, and Bradley Korb. "Messy genetic algorithms: Motivation, analysis, and first results." Complex systems 3 (1989): 493-530.
Harrell, Frank E., and C. E. Davis. "A new distribution-free quantile estimator." Biometrika 69.3 (1982): 635-640.
Kirkpatrick, Scott. "Optimization by simulated annealing: Quantitative studies." Journal of statistical physics 34.5-6 (1984): 975-986.
Kleijnen, Jack PC, Bert Bettonvil, and Fredrik Persson. "Finding the important factors in large discrete-event simulation: sequential bifurcation and its applications." (2003).
Kleijnen, Jack PC, Henri Pierreval, and Jin Zhang. "Methodology for determining the acceptability of system designs in uncertain environments." European Journal of Operational Research 209.2 (2011): 176-183.
Koenker, Roger. Quantile regression. No. 38. Cambridge university press, 2005.
Montgomery, Douglas C. Design and analysis of experiments. John Wiley & Sons, 2017.
Moré, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom. "Testing unconstrained optimization software." ACM Transactions on Mathematical Software (TOMS) 7.1 (1981): 17-41.
Myers, Raymond H., Douglas C. Montgomery, and Christine M. Anderson-Cook. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 2016.
Neddermeijer, H. Gonda, et al. "A framework for response surface methodology for simulation optimization." Proceedings of the 32nd conference on Winter simulation. Society for Computer Simulation International, 2000.
Nicolai, Robin P., et al. "Automated response surface methodology for stochastic optimization models with unknown variance." Proceedings of the 36th conference on Winter simulation. Winter Simulation Conference, 2004.
Rizvi, M. Haseeb, and Milton Sobel. "Nonparametric procedures for selecting a subset containing the population with the largest α-quantile." The Annals of Mathematical Statistics (1967): 1788-1803.
Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.
Sanchez, Susan M., Hong Wan, and Thomas W. Lucas. "Two-phase screening procedure for simulation experiments." ACM Transactions on Modeling and Computer Simulation (TOMACS) 19.2 (2009): 7.
Shapiro, Alexander, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic programming: modeling and theory. Society for Industrial and Applied Mathematics, 2009.
Shen, Hua, and Hong Wan. "Controlled sequential factorial design for simulation factor screening." European Journal of Operational Research 198.2 (2009): 511-519.
Tekin, Eylem, and Ihsan Sabuncuoglu. "Simulation optimization: A comprehensive review on theory and applications." IIE transactions 36.11 (2004): 1067-1081.
Wan, Hong, Bruce E. Ankenman, and Barry L. Nelson. "Controlled sequential bifurcation: A new factor-screening method for discrete-event simulation." Operations Research 54.4 (2006): 743-755.
Wan, Hong, Bruce E. Ankenman, and Barry L. Nelson. "Simulation factor screening with controlled sequential bifurcation in the presence of interactions." Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (2006): 60208-3119.
Wilcox, Rand R., et al. "Comparing two independent groups via the lower and upper quantiles." Journal of Statistical Computation and Simulation 84.7 (2014): 1543-1551.
莊承霖. "分量最佳化之梯度搜尋架構." 清華大學工業工程與工程管理學系學位論文 (2014): 1-43.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top