(44.192.10.166) 您好!臺灣時間:2021/03/06 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊育佳
研究生(外文):Yang, Yu-Chia
論文名稱:以適應性基因演算法搭配AND/OR圖之拆卸線生產線平衡問題研究
論文名稱(外文):Applying Adaptive Genetic Algorithm and AND/OR Graph to Disassembly Line Balancing Problems
指導教授:陳建良陳建良引用關係
指導教授(外文):Chen, Jiang-Liang
口試委員:陳盈彥陳子立
口試委員(外文):Chen, Yin-YannChen, Tzu-Li
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:110
中文關鍵詞:拆卸線生產線平衡三階段啟發式適應性基因演算法優先法則AND/OR圖反應曲面法
外文關鍵詞:disassembly line balancingthree-phase heuristic adaptive genetic algorithmpriority rule-based methodAND/OR graphresponse surface methodology
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著環保意識的 抬頭與逆物流之興起, 抬頭與逆物流之興起, 製造商被迫在產品的壽命結束時收回 製造商被迫在產品的壽命結束時收回 其產品 ,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及,並思考如何使其產品零 件得以再利用、製造期能夠延長材料及件的壽命並減少報廢品處理量,然而拆卸是產回收最重要第一步。
拆卸線生產平衡問題 拆卸線生產平衡問題 (Disassembly Line Balancing Problem, DLBP)為對 拆 卸線的所有工作進行分配,使其均衡化並調整各 線的所有工作進行分配,使其均衡化並調整各 線的所有工作進行分配,使其均衡化並調整各 工作 站別的 工作負荷,常見站別的 工作負荷,常見站別的 工作負荷,常見最 佳化 拆卸線生產平衡指標有站別數量、危險零件週期時間以及工作負荷, 拆卸線生產平衡指標有站別數量、危險零件週期時間以及工作負荷, 拆卸線生產平衡指標有站別數量、危險零件週期時間以及工作負荷, 拆卸線生產平衡指標有站別數量、危險零件週期時間以及工作負荷, 拆卸線生產平衡指標有站別數量、危險零件週期時間以及工作負荷, 拆卸線生產平衡指標有站別數量、危險零件週期時間以及工作負荷, 因此本研究透過考慮資源限制的拆卸線問題,提出了一個數學模型並使用改良 此本研究透過考慮資源限制的拆卸線問題,提出了一個數學模型並使用改良 此本研究透過考慮資源限制的拆卸線問題,提出了一個數學模型並使用改良 此本研究透過考慮資源限制的拆卸線問題,提出了一個數學模型並使用改良 此本研究透過考慮資源限制的拆卸線問題,提出了一個數學模型並使用改良 後的 AND / OR圖( TAOG)作為業之間的優先關係圖 )作為業之間的優先關係圖 。本研究 在確定的週期 時間下, 提出了 三階段 啟發式適應性 啟發式適應性 啟發式適應性 啟發式適應性 啟發式適應性 啟發式適應性 基因演 算法 (Adaptive Genetic Algorithm, AGA)求解拆卸線 求解拆卸線 生產線平衡問題 生產線平衡問題 生產線平衡問題 生產線平衡問題 ,並減少 人員使用量 人員使用量 。於實驗結果表示 。於實驗結果表示 。於實驗結果表示 ,該方 法優於現有的中,大規模 法優於現有的中,大規模 法優於現有的中,大規模 拆卸 線生產線 平衡問題的 解決 方法 ,並 能有效提高 拆卸 線生產之 效率 。
Due to increasing environmental concerns, manufacturers are forced to take back their products at the end of products’ useful functional life. Manufacturers need to arrange how to recover product components and subassemblies for reuse, remanufacture, and recycle to extend the life of materials in use and reduce the disposal volume. However, disassembly is the first essential step on product recovery. The disassembly line balancing problem (DLBP) is the process of allocating a set of disassembly tasks to an ordered sequence of workstations in such a way that optimizes performance (e.g., number of stations, hazardous components number, cycle time and work load). Therefore, in this study, a mathematical model is presented for the DLBP by considering resource and labor constraints. Utilizing a transformed AND/OR Graph (TAOG) as the main input is to ensure the feasibility of the precedence relations among the tasks. The objective of this model is to minimize the number of labors used under determined cycle time. This research proposed a three-phase heuristic adaptive genetic algorithm (AGA) to optimize the labors number in the disassembly line. The experimental results indicate that the proposed method is superior to the existing approaches for medium and large scale in DLBPs.
摘要 ......................................................... I
Abstract .................................................... II
致謝 ........................................................ III
Contents .................................................... IV
List of Tables .............................................. VI
List of Figures ............................................ VIII
Chapter 1: Introduction ..................................... 1
1.1 Background .............................................. 1
1.2 Objectives .............................................. 4
1.3 Research Method ......................................... 5
1.4 Organization of Thesis .................................. 6
Chapter 2: Literature Review ................................ 7
2.1 Disassembly Line Balancing Problem (DLBP) ............... 7
2.2 Disassembly Relations and Diagram ....................... 13
2.3 Genetic Algorithm (GA) .................................. 14
Chapter 3: Problem Definition ............................... 17
3.1 Characteristics of Transformed AND/OR Graph (TAOG) ...... 17
3.2 Problem Statement ....................................... 20
3.3 Notations and Assumptions ............................... 23
3.4 Problem Formulation ..................................... 25
Chapter 4: Methodology ...................................... 32
4.1 DLBP Solution Module .................................... 32
4.2 Three-Phase Heuristic Adaptive Genetic Algorithms (AGA).. 33
4.2.1 Phase 1: Derive the Disassembly Path from TAOG .........34
4.2.2 Phase 2: Priority Rule-Based Method (PRBM) ......... .. 35
4.2.3 Phase 3: Heuristic AGA ................................ 36
4.2.3.1 Initial Population .................................. 37
4.2.3.2 Decoding ............................................ 37
4.2.3.3 Evaluation of Fitness Value ......................... 43
4.2.3.4 Generation Replacement .............................. 43
4.2.3.5 Selection ........................................... 44
4.2.3.6 Crossover ........................................... 45
4.2.3.7 Mutation ............................................ 48
4.3 Response Surface Methodology (RSM)....................... 49
4.4 Response Surface Design ................................. 52
4.4.1 Central Composite Circumscribed (CCC) Design .......... 53
4.4.2 Central Composite Inscribed (CCI) Design .............. 53
4.4.3 Central Composite Face-Centered (CCF) Design........... 54
Chapter 5: Computational Study .............................. 55
5.1 Illustrated Example ..................................... 55
5.2 Experimental Design Case ................................ 63
5.3 AGA Parameter Setting ................................... 67
5.3.1 Result of AGA Parameter Setting for Simple Case ....... 71
5.3.2 Substitute the Best AGA Parameter into Complex Case ... 76
5.4 Influence of System Parameters Setting .................. 79
Chapter 6: Conclusion ....................................... 85
Reference ................................................... 87
Appendix .................................................... 95
Agrawal, S., & Tiwari, M. K. (2008). A collaborative ant colony algorithm to stochastic mixed-model U-shaped disassembly line balancing and sequencing problem. International Journal of Production Research, 46(6), 1405-1429.
Altekin, F. T., Kandiller, L., & Ozdemirel, N. E. (2008). Profit-oriented disassembly-line balancing. International Journal of Production Research, 46(10), 2675-2693.
Altekin, F. T., & Akkan, C. (2012). Task-failure-driven rebalancing of disassembly lines. International Journal of Production Research, 50(18), 4955-4976.
Avikal, S., & Mishra, P. K. (2012). A new U-shaped heuristic for disassembly line balancing problems. Pratibha: International Journal of Science, Spirituality, Business and Technology, 1(1), 2277-7261.
Avikal, S., Jain, R., & Mishra, P. K. (2013). A heuristic for U–shaped disassembly line balancing problems. MIT International Journal of Mechanical Engineering, 3(1), 51-56.
Avikal, S., Mishra, P. K., Jain, R., & Yadav, H. C. (2013). A PROMETHEE method based heuristic for disassembly line balancing problem. Industrial Engineering & Management Systems, 12(3), 254-263.
Avikal, S., Mishra, P. K., & Jain, R. (2014). A fuzzy AHP and PROMETHEE method-based heuristic for disassembly line balancing problems. International Journal of Production Research, 52(5), 1306-1317.
Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve production and operations management problems: a review. International Journal of Production Research, 41(17), 3955-4009.
Aydemir-Karadag, A., & Turkbey, O. (2013). Multi-objective optimization of stochastic disassembly line balancing with station paralleling. Computers & Industrial Engineering, 65(3), 413-425.
Bentaha, M. L., Battaïa, O., & Dolgui, A. (2014). A sample average approximation method for disassembly line balancing problem under uncertainty. Computers & Operations Research, 51(1), 111-122.
Bentaha, M. L., Battaïa, O., & Dolgui, A. (2015). An exact solution approach for disassembly line balancing problem under uncertainty of the task processing times. International Journal of Production Research, 53(6), 1807-1818.
Brennan, L., Gupta, S. M., & Taleb, K. N. (1994). Operations planning issues in an assembly/disassembly environment. International Journal of Operations & Production Management, 14(9), 57-67.
De Mello, L. H., & Sanderson, A. C. (1990). AND/OR graph representation of assembly plans. IEEE Transactions on Robotics and Automation, 6(2), 188-199.
Dimopoulos, C., & Zalzala, A. M. (2000). Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. IEEE Transactions on Evolutionary Computation, 4(2), 93-113.
Ding, L. P., Feng, Y. X., Tan, J. R., & Gao, Y. C. (2010). A new multi-objective ant colony algorithm for solving the disassembly line balancing problem. The International Journal of Advanced Manufacturing Technology, 48(5-8), 761-771.
Erel, E., & Gokcen, H. (1999). Shortest-route formulation of mixed-model assembly line balancing problem. European Journal of Operational Research, 116(1), 194-204.
Gottipolu, R. B., & Ghosh, K. (1997). Representation and selection of assembly sequences in computer-aided assembly process planning. International Journal of Production Research, 35(12), 3447-3466.
Güngör, A., & Gupta, S. M. (1999a). Disassembly line balancing. Proceedings of The 1999 Annual Meeting of the Northeast Decision Sciences, RI, Newport.
Güngör, A., & Gupta, S. M. (1999b). Issues in environmentally conscious manufacturing and product recovery: A survey. Computers and Industrial Engineering, 36(5), 811–853.
Güngör, A., & Gupta, S. M. (2001). A solution approach to the disassembly line balancing problem in the presence of task failures. International Journal of Production Research, 39(7), 1427-1467.
Güngör, A., & Gupta, S. M. (2002). Disassembly line in product recovery. International Journal of Production Research, 40(11), 2569–2589.
Gupta, S. M., McGovern, S. M., & Kamarthi, S. V. (2003, January). Solving disassembly sequence planning problems using combinatorial optimization. In Proceedings of the 2003 Annual Meeting of the Northeast Decision Sciences Institute, 178-180.
Gutjahr, A. L., & Nemhauser, G. L. (1964). An algorithm for the line balancing problem. Management Science, 11(2), 308-315.
Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.
Hezer, S., & Kara, Y. (2015). A network-based shortest route model for parallel disassembly line balancing problem. International Journal of Production Research, 53(6), 1849-1865.
Kalayci, C. B., Gupta, S. M., & Nakashima, K. (2012). A simulated annealing algorithm for balancing a disassembly line. In Design for Innovative Value Towards a Sustainable Society, 714-719.
Kalayci, C. B., & Gupta, S. M. (2013a). Ant colony optimization for sequence-dependent disassembly line balancing problem. Journal of Manufacturing Technology Management, 24(3), 413-427.

Kalayci, C. B., & Gupta, S. M. (2013b). Balancing a sequence-dependent disassembly line using simulated annealing algorithm. Applications of Management Science, 16, 81-103.
Kalayci, C. B., & Gupta, S. M. (2013c). A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent disassembly line balancing problem. The International Journal of Advanced Manufacturing Technology, 69(1-4), 197-209.
Kalayci, C. B., & Gupta, S. M. (2013d). Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem. Expert Systems with Applications, 40(18), 7231-7241.
Kalayci, C. B., & Gupta, S. M. (2014). A tabu search algorithm for balancing a sequence-dependent disassembly line. Production Planning & Control, 25(2), 149-160.
Kalayci, C. B., Polat, O., & Gupta, S. M. (2014). A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem. Annals of Operations Research, 1-34.
Kalayci, C. B., Polat, O., & Gupta, S. M. (2015). A variable neighborhood search algorithm for disassembly lines. Journal of Manufacturing Technology Management, 26(2), 182-194.

Kalayci, C. B., Hancilar, A., Gungor, A., & Gupta, S. M. (2015). Multi-objective fuzzy disassembly line balancing using a hybrid discrete artificial bee colony algorithm. Journal of Manufacturing Systems, 37, 672-682.
Kalaycilar, E. G., Azizoğlu, M., & Yeralan, S. (2016). A disassembly line balancing problem with fixed number of workstations. European Journal of Operational Research, 249(2), 592-604.
Koc, A., Sabuncuoglu, I., & Erel, E. (2009). Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph. Institute of Industrial Engineers Transactions, 41(10), 866-881.
Lambert, A. J. D. (1999). Linear programming in disassembly/clustering sequence generation. Computers & Industrial Engineering, 36(4), 723-738.
Lambert, A. J. (2003). Disassembly sequencing: a survey. International Journal of Production Research, 41(16), 3721-3759.
McGovern, S. M., & Gupta, S. M. (2006). Ant colony optimization for disassembly sequencing with multiple objectives. The International Journal of Advanced Manufacturing Technology, 30(5-6), 481-496.
McGovern, S. M., & Gupta, S. M. (2007a). Combinatorial optimization analysis of the unary NP-complete disassembly line balancing problem. International Journal of Production Research, 45(18-19), 4485-4511.

McGovern, S. M., & Gupta, S. M. (2007b). A balancing method and genetic algorithm for disassembly line balancing. European Journal of Operational Research, 179(3), 692-708.
Mete, S., Çil, Z. A., Ağpak, K., Özceylan, E., & Dolgui, A. (2016). A solution approach based on beam search algorithm for disassembly line balancing problem. Journal of Manufacturing Systems, 41, 188-200.
Mete, S., Çil, Z. A., Özceylan, E., & Ağpak, K. (2016). Resource constrained disassembly line balancing problem. IFAC-PapersOnLine, 49(12), 921-925.
Moore, K. E., Güngör, A., & Gupta, S. M. (2001). Petri net approach to disassembly process planning for products with complex AND/OR precedence relationships. European Journal of Operational Research, 135(2), 428-449.
Moyer, L. K., & Gupta, S. M. (1997). Environmental concerns and recycling/disassembly efforts in the electronics industry. Journal of Electronics Manufacturing, 7(1), 1-22.
Özceylan, E., & Paksoy, T. (2013). Reverse supply chain optimization with disassembly line balancing. International Journal of Production Research, 51(20), 5985-6001.
Özceylan, E., Paksoy, T., & Bektaş, T. (2014). Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing. Transportation Research Part E: Logistics and Transportation Review, 61, 142-164.
Paksoy, T., Güngör, A., Özceylan, E., & Hancilar, A. (2013). Mixed model disassembly line balancing problem with fuzzy goals. International Journal of Production Research, 51(20), 6082-6096.
Reveliotis, S. A. (2007). Uncertainty management in optimal disassembly planning through learning-based strategies. Institute of Industrial Engineers Transactions, 39(6), 645-658.
Rubinovitz, J. and Levitin G. (1995). Genetic algorithm for assembly line balancing. International Journal of Production Economics, 41(1), 343-354.
Tasan, S. O. & Tunali, S. (2008). A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing 19(1), 49-69.
Tuncel, E., Zeid, A., & Kamarthi, S. (2014). Solving large scale disassembly line balancing problem with uncertainty using reinforcement learning. Journal of Intelligent Manufacturing, 25(4), 647-659.
Zacharia, P. T. and Nearchou A. C. (2013). A meta-heuristic algorithm for the fuzzy assembly line balancing type-E problem. Computers & Operations Research, 40(12), 3033-3044.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔