(54.236.58.220) 您好!臺灣時間:2021/02/27 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張威昌
研究生(外文):Chang, Wei-Chang
論文名稱:以新型氣相電場結合式技術分析混成式奈米材料膠體之生成與穩定機制
論文名稱(外文):Gas-Phase Characterization of Hybrid Nanomaterial Colloids Using In-situ Ion Mobility-coupling Techniques: Mechanistic Study in Material Assembly and Colloid Stability
指導教授:蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員:何榮銘呂世源汪上曉
口試委員(外文):Ho, Rong-MingLu, Shih-YuanWong, Shang-Hsiao
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:氣溶膠結合式電場技術電移動度粒徑質量表面積奈米粒子混成式材料膠體
外文關鍵詞:AerosolIon Mobility-coupling TechniquesMobilityMassSurface AreaNanoparticleHybridColloid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中我們以電噴灑式氣相奈米粒子流動分析儀(ES-DMA)為基礎,開發適用膠體混成式奈米材料之分析技術與方法,以量測膠體混成式奈米材料於水溶液相中的粒徑分布、濃度與膠體穩定性等。為了克服只使用單一量測技術造成的量測限制,我們結合不同分析技術之優勢,例如:以ES-DMA銜接上氣溶膠粒子重量分析儀(APM),可量測膠體混成式奈米材料其重量參數;亦或是搭配氣溶膠式表面積分析儀(ASAA),來量測水相中的膠體材料單粒平均表面積,以提升材料後端應用之價值。研究成果顯示我們可以針對分散型與混成式奈米材料所處之環境條件,量測對應之粒徑分布及數量濃度產生的變化,進而從定量上分析奈米材料在不同環境下的膠體穩定性之變化與材料生成機制。
而藉由結合式氣相分析技術取得粒徑分布、數量平均表面積、重量分布,我們可以成功分析出:(1)表面改質硫醇基化聚乙二醇配體之奈米銀粒子在酸性環境下之聚集與表面溶解動力學,(2)氧化石墨烯在進行混成反應前之基礎表面積、邊界長度等物理特性資訊,以及(3)氧化石墨烯與奈米銀粒子進行靜電組裝混成後,材料生成機制與環境因子對膠體穩定性之影響。
這個工作發展一套新型結合式且即時的氣相定量分析技術來量測混成式奈米材料之特性,透過ES-DMA結合即時性相輔分析方法:APM與ASAA,並搭配TEM等非即時影像分析技術,我們可提供完整混成式奈米材料之物理大小、重量、表面積、影像資訊,藉此評估其穩定性、基礎性質以及對應之功能性的影響。同時,此研究範疇亦可用於探討影響混成式奈米材料配方化學的重要參數之面向(e.g., 混成式奈米材料的組成與其在奈米科技應用上之表現性)。
We develop a new gas-phase quantitative approach for in-situ characterization of hybrid nanomaterial colloids using the concept of ion mobility instrumentation coupling. Electrospray-differential mobility analysis (ES-DMA), a gas-phase electrophoretic method, is used for quantifying particle size distributions and number concentrations of nanomaterial colloids. Aerosol particle mass analyzer (APM) and aerosol electrometer coupled to ES-DMA are used for in-situ measuring particle mass and surface area of size-classified aerosolized nanomaterial colloids, respectively. Transmission electron microscopy is employed complementary to provide the imagery of hybrid nanomaterial colloid.
Combining the information of the mobility size distribution, aerosol surface area measurement, and the aerosol mass-based distribution, we can quantify (1) the kinetics of aggregation and surface dissolution of silver nanoparticles (AgNPs) conjugated with thiolated polyethylene glycol (SH-PEG) under an acidic environment; (2) The lateral size, surface area of the synthesized graphene oxide (GO) colloid prior to hybridization; (3) The electrostatic-directed assembly of AgNP@GO colloids and the corresponding stability.
This study demonstrates a facile, prototype methodology to determine important formulation factors relevant to the formation of hybrid nanomaterial colloids and the performance in a variety of nanotechnological and bio-nanotechnological applications.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第 1 章 緒論 1
1-1 分散式奈米材料 1
1-2 混成式奈米材料 3
1-3 混成式奈米材料之特性分析在當今所遇到之困難與挑戰 5
1.3.1 配體-奈米銀粒子混成式奈米粒子之鑑定方法與穩定性之影響 6
1.3.2 氧化石墨烯之物理性質鑑定方法與其應用性之關聯 9
1.3.3 奈米銀粒子與氧化石墨烯混成式奈米粒子之生成鑑定方法與穩定性之影響
11
1-4 研究方法與目的 13
第 2 章 實驗方法 15
2-1 實驗藥品 15
2-2 樣品準備方式 16
2.2.1 PEG6K-HS-AgNPs膠體溶液樣品製備方式 16
2.2.2 GO膠體溶液樣品製備方式 19
2.2.3 AgNP@GO膠體溶液樣品製備方式 20
2-3 實驗儀器 23
2-4 實驗儀器原理及方法 24
2.4.1 電噴灑式氣相奈米粒子流動分析儀(ES-DMA) 24
2.4.2 氣溶膠粒子重量分析儀(APM) 26
2.4.3 氣溶膠式表面積分析儀(ASAA) 28
2.4.4 穿透式電子顯微鏡(TEM) 30
2.4.5 界面電位分析儀 32
第 3 章 結果與討論 34
3-1 SH-PEG表面改質之奈米銀粒子:表面溶解與分子脫附之動力學分析 34
3.1.1 AgNPs的配體吸附性質檢測 34
3.1.2 PEG6K-HS-AgNPs於酸性環境下的穩定度分析 40
3.1.3 探討PEG6K-HS-AgNPs之表面溶解現象 45
3.1.4 探討PEG6K-HS-AgNPs在酸性環境下引發之SH-PEG脫附現象 48
3.1.5 PEG6K-HS-AgNPs混成式奈米材料研究之總結 53
3-2 以氣相靜電新式結合技術定量分析膠體氧化石墨烯 54
3.2.1 GO之基礎物理特性分析 54
3.2.2 GO之表面積模型推導 58
3.2.3 GO之數量平均表面積分析 62
3.2.4 GO研究之總結 65
3-3 以氣相結合式技術定量分析AgNP@GO混成式奈米粒子之組成與膠體穩定性 66
3.3.1 AgNP@GO混成式奈米粒子之生成與特性分析 66
3.3.2 探討AgNP@GO混成式奈米粒子之膠體穩定性 71
3.3.3 AgNP@GO混成式奈米粒子研究之總結 74
第 4 章 結論 75
第 5 章 未來展望 76
第 6 章 參考文獻 78
(1) Mathaes, R.; Winter, G.; Besheer, A.; Engert, J. Non-Spherical Micro- and Nanoparticles: Fabrication, Characterization and Drug Delivery Applications. Expert Opin Drug Del 2015, 12, 481-492.
(2) Thanh, T. T.; Ba, H.; Lai, T. P.; Nhut, J. M.; Ersen, O.; Begin, D.; Janowska, I.; Nguyen, D. L.; Granger, P.; Cuong, P. H. A Few-Layer Graphene-Graphene Oxide Composite Containing Nanodiamonds as Metal-Free Catalysts. J Mater Chem A 2014, 2, 11349-11357.
(3) Hung, A. H.; Holbrook, R. J.; Rotz, M. W.; Glasscock, C. J.; Mansukhani, N. D.; MacRenaris, K. W.; Manus, L. M.; Duch, M. C.; Dam, K. T.; Hersam, M. C.; Meade, T. J. Graphene Oxide Enhances Cellular Delivery of Hydrophilic Small Molecules by Co-Incubation. Acs Nano 2014, 8, 10168-10177.
(4) Compton, O. C.; Nguyen, S. T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711-723.
(5) Sheldon, M. T.; van de Groep, J.; Brown, A. M.; Polman, A.; Atwater, H. A. Plasmoelectric Potentials in Metal Nanostructures. Science 2014, 346, 828-831.
(6) Eckhardt, S.; Brunetto, P. S.; Gagnon, J.; Priebe, M.; Giese, B.; Fromm, K. M. Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine. Chem Rev 2013, 113, 4708-4754.
(7) Padmos, J. D.; Boudreau, R. T. M.; Weaver, D. F.; Zhang, P. Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles. Langmuir 2015, 31, 3745-3752.
(8) da Silva, A. G. M.; Rodrigues, T. S.; Wang, J. L.; Yamada, L. K.; Alves, T. V.; Ornellas, F. R.; Ando, R. A.; Camargo, P. H. C. The Fault in Their Shapes: Investigating the Surface-Plasmon-Resonance-Mediated Catalytic Activities of Silver Quasi-Spheres, Cubes, Triangular Prisms, and Wires. Langmuir 2015, 31, 10272-10278.
(9) Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles. Acs Nano 2014, 8, 7630-7638.
(10) Sotiriou, G. A.; Pratsinis, S. E. Antibacterial Activity of Nanosilver Ions and Particles. Environ Sci Technol 2010, 44, 5649-5654.
(11) Nowack, B.; Krug, H. F.; Height, M. 120 Years of Nanosilver History: Implications for Policy Makers. Environ Sci Technol 2011, 45, 1177-1183.
(12) Guo, S. H.; Tsai, S. J.; Kan, H. C.; Tsai, D. H.; Zachariah, M. R.; Phaneuf, R. J. The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence. Adv Mater 2008, 20, 1424-+.
(13) Serrano-Montes, A. B.; de Aberasturi, D. J.; Langer, J.; Giner-Casares, J. J.; Scarabelli, L.; Herrero, A.; Liz-Marzan, L. M. A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into Sers-Active Monolayers. Langmuir 2015, 31, 9205-9213.
(14) Chen, J. N.; Peng, H.; Wang, X. P.; Shao, F.; Yuan, Z. D.; Han, H. Y. Graphene Oxide Exhibits Broad-Spectrum Antimicrobial Activity against Bacterial Phytopathogens and Fungal Conidia by Intertwining and Membrane Perturbation. Nanoscale 2014, 6, 1879-1889.
(15) Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. Acs Nano 2011, 5, 6971-6980.
(16) Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229-1232.
(17) Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem Rev 2014, 114, 7150-7188.
(18) Huang, C. H.; Su, C. Y.; Okada, T.; Li, L. J.; Ho, K. I.; Li, P. W.; Chen, I. H.; Chou, C.; Lai, C. S.; Samukawa, S. Ultra-Low-Edge-Defect Graphene Nanoribbons Patterned by Neutral Beam. Carbon 2013, 61, 229-235.
(19) Wang, S. W.; Tristan, F.; Minami, D.; Fujimori, T.; Cruz-Silva, R.; Terrones, M.; Takeuchi, K.; Teshima, K.; Rodriguez-Reinoso, F.; Endo, M.; Kaneko, K. Activation Routes for High Surface Area Graphene Monoliths from Graphene Oxide Colloids. Carbon 2014, 76, 220-231.
(20) Zhao, X. L.; Xu, Z.; Xie, Y.; Zheng, B. N.; Kou, L.; Gao, C. Polyelectrolyte-Stabilized Graphene Oxide Liquid Crystals against Salt, Ph, and Serum. Langmuir 2014, 30, 3715-3722.
(21) Hasan, S. A.; Rigueur, J. L.; Harl, R. R.; Krejci, A. J.; Gonzalo-Juan, I.; Rogers, B. R.; Dickerson, J. H. Transferable Graphene Oxide Films with Tunable Microstructures. Acs Nano 2010, 4, 7367-7372.
(22) Yang, J. H.; Lee, Y. D. Highly Electrically Conductive Rgo/Pva Composites with a Network Dispersive Nanostructure. J Mater Chem 2012, 22, 8512-8517.
(23) Yang, J. H.; Lin, S. H.; Lee, Y. D. Preparation and Characterization of Poly(L-Lactide)-Graphene Composites Using the in Situ Ring-Opening Polymerization of Plla with Graphene as the Initiator. J Mater Chem 2012, 22, 10805-10815.
(24) Lee, J.; Chae, H. R.; Won, Y. J.; Lee, K.; Lee, C. H.; Lee, H. H.; Kim, I. C.; Lee, J. M. Graphene Oxide Nanoplatelets Composite Membrane with Hydrophilic and Antifouling Properties for Wastewater Treatment. J Membrane Sci 2013, 448, 223-230.
(25) He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. A New Structural Model for Graphite Oxide. Chem Phys Lett 1998, 287, 53-56.
(26) Rao, J. H. Shedding Light on Tumors Using Nanoparticles. Acs Nano 2008, 2, 1984-1986.
(27) Gomes-da-Silva, L. C.; Fonseca, N. A.; Moura, V.; de Lima, M. C. P.; Simoes, S.; Moreira, J. N. Lipid-Based Nanoparticles for Sirna Delivery in Cancer Therapy: Paradigms and Challenges. Accounts Chem Res 2012, 45, 1163-1171.
(28) Liu, L. J.; Burnyeat, C. A.; Lepsenyi, R. S.; Nwabuko, I. O.; Kelly, T. L. Mechanism of Shape Evolution in Ag Nanoprisms Stabilized by Thiol-Terminated Poly(Ethylene Glycol): An in Situ Kinetic Study. Chem Mater 2013, 25, 4206-4214.
(29) Shannahan, J. H.; Lai, X. Y.; Ke, P. C.; Podila, R.; Brown, J. M.; Witzmann, F. A. Silver Nanoparticle Protein Corona Composition in Cell Culture Media. Plos One 2013, 8.
(30) Tsai, D. H.; DelRio, F. W.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Competitive Adsorption of Thiolated Polyethylene Glycol and Mercaptopropionic Acid on Gold Nanoparticles Measured by Physical Characterization Methods. Langmuir 2010, 26, 10325-10333.
(31) Tai, J. T.; Lai, C. S.; Ho, H. C.; Yeh, Y. S.; Wang, H. F.; Ho, R. M.; Tsai, D. H. Protein Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir 2014, 30, 12755-12764.
(32) Zheng, Y. H.; Zheng, L. R.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M. Ag/Zno Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg Chem 2007, 46, 6980-6986.
(33) Singh, J.; Sahu, K.; Pandey, A.; Kumar, M.; Ghosh, T.; Satpati, B.; Som, T.; Varma, S.; Avasthi, D. K.; Mohapatra, S. Atom Beam Sputtered Ag-Tio2 Plasmonic Nanocomposite Thin Films for Photocatalytic Applications. Appl Surf Sci 2017, 411, 347-354.
(34) Tsai, T. Y.; Wang, H. L.; Chen, Y. C.; Chang, W. C.; Chang, J. W.; Lu, S. Y.; Tsai, D. H. Noble Metal-Titania Hybrid Nanoparticle Clusters and the Interaction to Proteins for Photo-Catalysis in Aqueous Environments. J Colloid Interf Sci 2017, 490, 802-811.
(35) Wang, Q. Z.; Ma, Q.; Lian, J. H.; Zhong, J. B.; Wang, F. P.; Li, J. Z.; He, Y. F.; Wang, R. M. Bovine Serum Albumin Modified Zno to Degrade Organic Dyes under Ultraviolet Light Irradiation. New J Chem 2016, 40, 5604-5610.
(36) Liu, J. Y.; Hurt, R. H. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ Sci Technol 2010, 44, 2169-2175.
(37) Liu, J. Y.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. Controlled Release of Biologically Active Silver from Nanosilver Surfaces. Acs Nano 2010, 4, 6903-6913.
(38) Liu, J. Y.; Wang, Z. Y.; Liu, F. D.; Kane, A. B.; Hurt, R. H. Chemical Transformations of Nanosilver in Biological Environments. Acs Nano 2012, 6, 9887-9899.
(39) Pettibone, J. M.; Gigault, J.; Hackley, V. A. Discriminating the States of Matter in Metallic Nanoparticle Transformations: What Are We Missing? Acs Nano 2013, 7, 2491-2499.
(40) Martin, M. N.; Allen, A. J.; MacCuspie, R. I.; Hackley, V. A. Dissolution, Agglomerate Morphology, and Stability Limits of Protein-Coated Silver Nanoparticles. Langmuir 2014, 30, 11442-11452.
(41) MacCuspie, R. I.; Allen, A. J.; Hackley, V. A. Dispersion Stabilization of Silver Nanoparticles in Synthetic Lung Fluid Studied under in Situ Conditions. Nanotoxicology 2011, 5, 140-156.
(42) Gorham, J. M.; MacCuspie, R. I.; Klein, K. L.; Fairbrother, D. H.; Holbrook, R. D. Uv-Induced Photochemical Transformations of Citrate-Capped Silver Nanoparticle Suspensions. J Nanopart Res 2012, 14.
(43) Tsai, D. H.; Lu, Y. F.; DelRio, F. W.; Cho, T. J.; Guha, S.; Zachariah, M. R.; Zhang, F.; Allen, A.; Hackley, V. A. Orthogonal Analysis of Functional Gold Nanoparticles for Biomedical Applications. Anal Bioanal Chem 2015, 407, 8411-8422.
(44) Khlebtsov, B. N.; Khanadeev, V. A.; Tsvetkov, M. Y.; Bagratashvili, V. N.; Khlebtsov, N. G. Surface-Enhanced Raman Scattering Substrates Based on Self-Assembled Pegylated Gold and Gold-Silver Core-Shell Nanorods. J Phys Chem C 2013, 117, 23162-23171.
(45) Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle Pegylation for Imaging and Therapy. Nanomedicine-Uk 2011, 6, 715-728.
(46) Luo, C. C.; Zhang, Y. H.; Zeng, X. W.; Zeng, Y. W.; Wang, Y. G. The Role of Poly(Ethylene Glycol) in the Formation of Silver Nanoparticles. J Colloid Interf Sci 2005, 288, 444-448.
(47) Shameli, K.; Bin Ahmad, M.; Jazayeri, S. D.; Sedaghat, S.; Shabanzadeh, P.; Jahangirian, H.; Mahdavi, M.; Abdollahi, Y. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method. Int J Mol Sci 2012, 13, 6639-6650.
(48) Tsai, D. H.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods. Langmuir 2011, 27, 2464-2477.
(49) Tseng, S. H.; Chou, M. Y.; Chu, I. M. Cetuximab-Conjugated Iron Oxide Nanoparticles for Cancer Imaging and Therapy. Int J Nanomed 2015, 10, 3663-3685.
(50) Yang, Y. M.; Wu, K. C.; Huang, Z. L.; Chang, C. H. On the Stability of Liposomes and Catansomes in Aqueous Alcohol Solutions. Langmuir 2008, 24, 1695-1700.
(51) Tsai, D. H.; Cho, T. J.; DelRio, F. W.; Taurozzi, J.; Zachariah, M. R.; Hackley, V. A. Hydrodynamic Fractionation of Finite Size Gold Nanoparticle Clusters. J Am Chem Soc 2011, 133, 8884-8887.
(52) Tsai, D. H.; Pease, L. F.; Zangmeister, R. A.; Tarlov, M. J.; Zachariah, M. R. Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir 2009, 25, 140-146.
(53) Elzey, S.; Grassian, V. H. Nanoparticle Dissolution from the Particle Perspective: Insights from Particle Sizing Measurements. Langmuir 2010, 26, 12505-12508.
(54) Guha, S.; Li, M. D.; Tarlov, M. J.; Zechariah, M. R. Electrospray-Differential Mobility Analysis of Bionanoparticles. Trends Biotechnol 2012, 30, 291-300.
(55) Gunsolus, I. L.; Haynes, C. L. Analytical Aspects of Nanotoxicology. Anal Chem 2016, 88, 451-479.
(56) Tsai, D. H.; Zangmeister, R. A.; Pease, L. F.; Tarlov, M. J.; Zachariah, M. R. Gas-Phase Ion-Mobility Characterization of Sam-Functionalized Au Nanoparticles. Langmuir 2008, 24, 8483-8490.
(57) Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene Oxide Sheets at Interfaces. J Am Chem Soc 2010, 132, 8180-8186.
(58) Li, S.; Zhu, F. S.; Meng, F. J.; Li, H. B.; Wang, L.; Zhao, J. J.; Yue, Q. L.; Liu, J. F.; Jia, J. B. Separation of Graphene Oxide by Density Gradient Centrifugation and Study on Their Morphology-Dependent Electrochemical Properties. J Electroanal Chem 2013, 703, 135-145.
(59) Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls against Bacteria. Acs Nano 2010, 4, 5731-5736.
(60) Cote, L. J.; Kim, F.; Huang, J. X. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers. J Am Chem Soc 2009, 131, 1043-1049.
(61) de Faria, A. F.; Martinez, D. S. T.; Meira, S. M. M.; de Moraes, A. C. M.; Brandelli, A.; Souza, A. G.; Alves, O. L. Anti-Adhesion and Antibacterial Activity of Silver Nanoparticles Supported on Graphene Oxide Sheets. Colloid Surface B 2014, 113, 115-124.
(62) Fan, Z.; Kanchanapally, R.; Ray, P. C. Hybrid Graphene Oxide Based Ultrasensitive Sers Probe for Label-Free Biosensing. J Phys Chem Lett 2013, 4, 3813-3818.
(63) Gao, N.; Yang, T.; Liu, T.; Zou, Y.; Jiang, J. Graphene Oxide Wrapped Individual Silver Nanocomposites with Improved Stability for Surface-Enhanced Raman Scattering. Rsc Adv 2015, 5, 55801-55807.
(64) Tang, J.; Chen, Q.; Xu, L. G.; Zhang, S.; Feng, L. Z.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene Oxide-Silver Nanocomposite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. Acs Appl Mater Inter 2013, 5, 3867-3874.
(65) Wang, Y. W.; Cao, A. N.; Jiang, Y.; Zhang, I.; Liu, J. H.; Liu, Y. F.; Wang, H. F. Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Localized around Bacteria. Acs Appl Mater Inter 2014, 6, 2791-2798.
(66) Habiba, K.; Encarnacion-Rosado, J.; Garcia-Pabon, K.; Villalobos-Santos, J. C.; Makarov, V. I.; Avalos, J. A.; Weiner, B. R.; Morell, G. Improving Cytotoxicity against Cancer Cells by Chemo-Photodynamic Combined Modalities Using Silver-Graphene Quantum Dots Nanocomposites. Int J Nanomed 2016, 11.
(67) Fu, X. L.; Chen, L. X.; Li, J. H.; Lin, M.; You, H. Y.; Wang, W. H. Label-Free Colorimetric Sensor for Ultrasensitive Detection of Heparin Based on Color Quenching of Gold Nanorods by Graphene Oxide. Biosens Bioelectron 2012, 34, 227-231.
(68) Li, C.; Wang, X. S.; Chen, F.; Zhang, C. L.; Zhi, X.; Wang, K.; Cui, D. X. The Antifungal Activity of Graphene Oxide-Silver Nanocomposites. Biomaterials 2013, 34, 3882-3890.
(69) Salam, N.; Sinha, A.; Roy, A. S.; Mondal, P.; Jana, N. R.; Islam, S. M. Synthesis of Silver-Graphene Nanocomposite and Its Catalytic Application for the One-Pot Three-Component Coupling Reaction and One-Pot Synthesis of 1,4-Disubstituted 1,2,3-Triazoles in Water. Rsc Adv 2014, 4, 10001-10012.
(70) Sanpui, P.; Chattopadhyay, A.; Ghosh, S. S. Induction of Apoptosis in Cancer Cells at Low Silver Nanoparticle Concentrations Using Chitosan Nanocarrier. Acs Appl Mater Inter 2011, 3, 218-228.
(71) De Jong, W. H.; Borm, P. J. A. Drug Delivery and Nanoparticles: Applications and Hazards. Int J Nanomed 2008, 3, 133-149.
(72) Li, S. D.; Huang, L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol Pharmaceut 2008, 5, 496-504.
(73) Li, Y. S.; Liao, J. L.; Wang, S. Y.; Chiang, W. H. Intercalation-Assisted Longitudinal Unzipping of Carbon Nanotubes for Green and Scalable Synthesis of Graphene Nanoribbons. Sci Rep-Uk 2016, 6.
(74) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J Am Chem Soc 1958, 80, 1339-1339.
(75) Tai, J. T.; Lai, Y. C.; Yang, J. H.; Ho, H. C.; Wang, H. F.; Ho, R. M.; Tsai, D. H. Quantifying Nanosheet Graphene Oxide Using Electrospray-Differential Mobility Analysis. Anal Chem 2015, 87, 3884-3889.
(76) Li, M.; Guha, S.; Zangmeister, R.; Tarlov, M. J.; Zachariah, M. R. Method for Determining the Absolute Number Concentration of Nanoparticles from Electrospray Sources. Langmuir 2011, 27, 14732-14739.
(77) Li, M. D.; Guha, S.; Zangmeister, R.; Tarlov, M. J.; Zachariah, M. R. Quantification and Compensation of Nonspecific Analyte Aggregation in Electrospray Sampling. Aerosol Sci Tech 2011, 45, 849-860.
(78) Pease, L. F. Physical Analysis of Virus Particles Using Electrospray Differential Mobility Analysis. Trends Biotechnol 2012, 30, 216-224.
(79) Ehara, K.; Hagwood, C.; Coakley, K. J. Novel Method to Classify Aerosol Particles According to Their Mass-to-Charge Ratio - Aerosol Particle Mass Analyser. J Aerosol Sci 1996, 27, 217-234.
(80) Tajima, N.; Fukushima, N.; Ehara, K.; Sakurai, H. Mass Range and Optimized Operation of the Aerosol Particle Mass Analyzer. Aerosol Sci Tech 2011, 45, 196-214.
(81) Khalizov, A. F.; Zhang, R. Y.; Zhang, D.; Xue, H. X.; Pagels, J.; McMurry, P. H. Formation of Highly Hygroscopic Soot Aerosols Upon Internal Mixing with Sulfuric Acid Vapor. J Geophys Res-Atmos 2009, 114.
(82) Malloy, Q. G. J.; Nakao, S.; Qi, L.; Austin, R.; Stothers, C.; Hagino, H.; Cocker, D. R. Real-Time Aerosol Density Determination Utilizing a Modified Scanning Mobility Particle Sizeraerosol Particle Mass Analyzer System. Aerosol Sci Tech 2009, 43, 673-678.
(83) Lee, S. Y.; Widiyastuti, W.; Tajima, N.; Iskandar, F.; Okuyama, K. Measurement of the Effective Density of Both Spherical Aggregated and Ordered Porous Aerosol Particles Using Mobility- and Mass-Analyzers. Aerosol Sci Tech 2009, 43, 136-144.
(84) Lall, A. A.; Ma, X. F.; Guha, S.; Mulholland, G. W.; Zachariah, M. R. Online Nanoparticle Mass Measurement by Combined Aerosol Particle Mass Analyzer and Differential Mobility Analyzer: Comparison of Theory and Measurements. Aerosol Sci Tech 2009, 43, 1075-1083.
(85) Shin, W. G.; Pui, D. Y. H.; Fissan, H.; Neumann, S.; Trampe, A. Calibration and Numerical Simulation of Nanoparticle Surface Area Monitor (Tsi Model 3550 Nsam). J Nanopart Res 2007, 9, 61-69.
(86) Fissan, H.; Neumann, S.; Trampe, A.; Pui, D. Y. H.; Shin, W. G. Rationale and Principle of an Instrument Measuring Lung Deposited Nanoparticle Surface Area. J Nanopart Res 2007, 9, 53-59.
(87) Leavey, A.; Fang, J. X.; Sahu, M.; Biswas, P. Comparison of Measured Particle Lung-Deposited Surface Area Concentrations by an Aerotrak 9000 Using Size Distribution Measurements for a Range of Combustion Aerosols. Aerosol Sci Tech 2013, 47, 966-978.
(88) Fissan, H.; Asbach, C.; Kaminski, H.; Kuhlbusch, T. A. J. Total Surface Area Concentration Measurements of Nanoparticles in Gases with an Electrical Sensor. Chem-Ing-Tech 2012, 84, 365-372.
(89) Levin, M.; Witschger, O.; Bau, S.; Jankowska, E.; Koponen, I. K.; Koivisto, A. J.; Clausen, P. A.; Jensen, A.; Molhave, K.; Asbach, C.; Jensen, K. A. Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials? Aerosol Air Qual Res 2016, 16, 1105-1117.
(90) Okuda, T.; Yamazaki, H.; Hatoya, K.; Kaneyasu, N.; Yoshino, A.; Takami, A.; Funato, K.; Inoue, K.; Nishita, C.; Hara, K.; Hayashi, M. Factors Controlling the Variation of Aerosol Surface Area Concentrations Measured by a Diffusion Charger in Fukuoka, Japan. Atmosphere-Basel 2016, 7.
(91) Schmid, O.; Stoeger, T. Surface Area Is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung. J Aerosol Sci 2016, 99, 133-143.
(92) Hunter, R. J. Zeta Potential in Colloid Science : Principles and Applications; Academic Press: London ; New York, 1981. p xi, 386 p.
(93) Chang, W. C.; Tai, J. T.; Wang, H. F.; Ho, R. M.; Hsiao, T. C.; Tsai, D. H. Surface Pegylation of Silver Nanoparticles: Kinetics of Simultaneous Surface Dissolution and Molecular Desorption. Langmuir 2016, 32, 9807-9815.
(94) Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (Nps). J Phys Chem C 2008, 112, 5825-5834.
(95) Tejamaya, M.; Romer, I.; Merrifield, R. C.; Lead, J. R. Stability of Citrate, Pvp, and Peg Coated Silver Nanoparticles in Ecotoxicology Media. Environ Sci Technol 2012, 46, 7011-7017.
(96) Hinds, W. C. Aerosol Technology : Properties, Behavior, and Measurement of Airborne Particles; 2nd ed.; Wiley: New York, 1999. p xx, 483 p.
(97) Guha, S.; Ma, X.; Tarlov, M. J.; Zachariah, M. R. Quantifying Ligand Adsorption to Nanoparticles Using Tandem Differential Mobility Mass Analysis. Anal Chem 2012, 84, 6308-6311.
(98) Tsai, D. H.; Davila-Morris, M.; DelRio, F. W.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Quantitative Determination of Competitive Molecular Adsorption on Gold Nanoparticles Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Langmuir 2011, 27, 9302-9313.
(99) Siriwardana, K.; Gadogbe, M.; Ansar, S. M.; Vasquez, E. S.; Collier, W. E.; Zou, S. L.; Walters, K. B.; Zhang, D. M. Ligand Adsorption and Exchange on Pegylated Gold Nanoparticles. J Phys Chem C 2014, 118, 11111-11119.
(100) Goodman, A. M.; Cao, Y.; Urban, C.; Neumann, O.; Ayala-Orozco, C.; Knight, M. W.; Joshi, A.; Nordlander, P.; Halas, N. J. The Surprising in Vivo Instability of near-Ir-Absorbing Hollow Au-Ag Nanoshells. Acs Nano 2014, 8, 3222-3231.
(101) Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Lett 2012, 12, 4271-4275.
(102) Peretyazhko, T. S.; Zhang, Q. B.; Colvin, V. L. Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic Ph Conditions: Kinetics and Size Changes. Environ Sci Technol 2014, 48, 11954-11961.
(103) Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. S. Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environ Sci Technol 2011, 45, 4422-4428.
(104) Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M. Toxicity of Silver Nanoparticles Increases During Storage Because of Slow Dissolution under Release of Silver Ions. Chem Mater 2010, 22, 4548-4554.
(105) Regupathi, I.; Govindarajan, R.; Amaresh, S. P.; Murugesan, T. Densities and Viscosities of Polyethylene Glycol 6000+Triammonium Citrate Plus Water Systems. J Chem Eng Data 2009, 54, 3291-3295.
(106) Siriwardana, K.; Suwandaratne, N.; Perera, G. S.; Collier, W. E.; Perez, F.; Zhang, D. M. Contradictory Dual Effects: Organothiols Can Induce Both Silver Nanoparticle Disintegration and Formation under Ambient Conditions. J Phys Chem C 2015, 119, 20975-20984.
(107) Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature 2009, 458, 877-880.
(108) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 2009, 458, 872-U875.
(109) Lim, J.; Maiti, U. N.; Kim, N. Y.; Narayan, R.; Lee, W. J.; Choi, D. S.; Oh, Y.; Lee, J. M.; Lee, G. Y.; Kang, S. H.; Kim, H.; Kim, Y. H.; Kim, S. O. Dopant-Specific Unzipping of Carbon Nanotubes for Intact Crystalline Graphene Nanostructures. Nat Commun 2016, 7.
(110) Wang, J.; Shin, W. G.; Mertler, M.; Sachweh, B.; Fissan, H.; Pui, D. Y. H. Measurement of Nanoparticle Agglomerates by Combined Measurement of Electrical Mobility and Unipolar Charging Properties. Aerosol Sci Tech 2010, 44, 97-108.
(111) ICRP. Publication 66: Human Respiratory Tract Model for Radiological Protection. Ann. ICRP 1994, 24, 1-3.
(112) Nguyen, T. P.; Chang, W. C.; Lai, Y. C.; Hsiao, T. C.; Tsai, D. H. Quantitative Characterization of Colloidal Assembly of Graphene Oxide-Silver Nanoparticle Hybrids Using Aerosol Differential Mobility-Coupled Mass Analyses. Submitted for publication in Anal Bioanal Chem.
(113) Ma, X. F.; Zachariah, M. R.; Zangmeister, C. D. Crumpled Nanopaper from Graphene Oxide. Nano Lett 2012, 12, 486-489.
(114) Yuan, S.; Lu, W. G.; Chen, Y. P.; Zhang, Q.; Liu, T. F.; Feng, D. W.; Wang, X.; Qin, J. S.; Zhou, H. C. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks. J Am Chem Soc 2015, 137, 3177-3180.
(115) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 974-+.
(116) Taylor-Pashow, K. M. L.; Della Rocca, J.; Xie, Z. G.; Tran, S.; Lin, W. B. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery. J Am Chem Soc 2009, 131, 14261-+.
(117) Elzey, S.; Tsai, D. H.; Yu, L. L.; Winchester, M. R.; Kelley, M. E.; Hackley, V. A. Real-Time Size Discrimination and Elemental Analysis of Gold Nanoparticles Using Es-Dma Coupled to Icp-Ms. Anal Bioanal Chem 2013, 405, 2279-2288.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔