(3.238.186.43) 您好!臺灣時間:2021/03/02 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:凡恩森
研究生(外文):Nguyen, Son-Vinh
論文名稱:全複印型單片式染料敏化太陽能電池
論文名稱(外文):All-printable monolithic dye-sensitized solar cells
指導教授:衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員:王復民陳志銘
口試委員(外文):Wang, Fu-MingChen, Chih-Ming
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:79
中文關鍵詞:染料敏化太陽能電池全複印型
外文關鍵詞:dye-sensitized solar cellsall-printable monolithic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽電池由於具備高光電轉換效率特性而備受研究學者關注並已發展將近二十五年,可全複印型單片式染敏電池因簡單組裝及可大面積製程的優勢而注目並賦予未來高可行性發展。鑒於前述特點,吾人針對全複印型單片式染敏電池進行深入研究並初步建立相關電池製程。吾人在本研究中將此結構分別應用於液態及固態染敏太陽電池並將其研究成果細分成五個章節以便於說明:
第一章為太陽能及其光伏電池的介紹。
第二章為介紹染料敏化太陽電池的組成、光電運作轉換機制、不同結構類型染敏電池及全複印型單片式染敏電池的文獻回顧整理。
第三章為實驗部分,此章主要描述包含碳漿料及隔層漿料的製備(此章第二部分)、全複印型單片式液態及固態染敏電池的製作方法。此外,在固態染敏電池部分,各結構組成包含緻密層、電洞傳輸層中所使用材料及染料選擇皆有所細述說明。在其製備優化後將液態及固態元件施以光電測試並比較其差異性。
第四章為實驗結果與討論,吾人將其分為三個部分:(i)選擇重量比為1:4的碳黑及石墨烯混合漿料進行陰極製備並將其以450oC高溫進行鍛燒; (ii) 全複印型單片式液態染敏元件效率相較於一般傳統式染敏電池,因具備高串聯電阻而致使其低光電轉換效率; (iii)經由探討緻密層及電動傳輸層製備及其優化技術,目前全複印型單片式固態染敏元件的短路電流可達至3.439 mA.cm-2,足以匹配傳統使用鍍金作為陰極的固態元件(短路電流為3.534 mA.cm-2)。最後,吾人將具長碳鏈有機染料取代釕金屬染料作為光敏化劑並使其元件效率提升1.790%及高穩定性。
第五章為結論、未來工作及全複印型單片式染敏電池的展望。
Dye sensitized solar cells have been paying much attention for 25 years due to its high power conversion efficiency. All-printable monolithic structure is known for simple process and easy to apply at large scale. The bright future of this structure is undebatable. Basing on that, our lab has set up all-printable monolithic PV fabrication process. In this research, all-printable monolithic structure had applied in liquid-based and solid-state DSC. These are 5 chapters in this dissertation:
Chapter I is introduction to solar energy and terminologies in solar cells.
Chapter II generally introduced to components in dye-sensitized solar cells, its operation principle, several structures using in dye-sensitized solar cells and literature review to all-printable monolithic structure in PV devices.
Chapter III is experimental section. Carbon and spacer paste fabrication were mentioned in second section of this part. Liquid-based all-printable monolithic dye-sensitized solar cells was fabricated. Besides that, some components in solid-state all-printable monolithic dye-sensitized solar cells such as blocking layer, spiro-OMeTAD deposition methods, sensitizer also introduce. After choosing the appropriate component, solid-state all-printable monolithic dye-sensitized solar cells was fabricated. Liquid-based and solid-state conventional devices were fabricated for comparing.
Chapter IV is the results and discussion. We separated into 3 parts: (i) the carbon black: graphite of 20 wt.% and annealing temperature at 450 oC were chosen; (ii) liquid-based all-printable monolithic dye-sensitized solar cells is lower PCE than conventional using liquid electrolyte due to high series resistance; (iii) after investigating blocking layer and spiro-OMeTAD deposition method, solid-state all-printable monolithic device achived Jsc of 3.439 mA.cm-2 which is comparable to conventional one using gold as counter electrode (3.534 mA.cm-2). Changing Ru-based sensitizer by organic sensitizer with long alkyl chains improved performance of device. The PCE of 1.790 % was achived with high stability.
Chapter V is conclusions , future works and outlook for all-printable monolithic dye-sensitized solar cells.
Abstract i
摘要 iii
Acknowledgement v
Table of Contents vi
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
1-1. Solar energy 1
1-2. Classification of Photovoltaic Technology 3
1-3. Terminologies of a solar cell 4
Chapter 2 Dye-sensitized Solar Cells 10
2-1. The components of a DSC 10
2-1-1. Transparent conducting oxide glass (TCO) 10
2-1-2. Electron transporting materials 11
2-1-3. Sensitizer 13
2-1-4. Hole transporting materials 17
2-1-5. Counter electrode 21
2-2. Operation principle of a DSC 22
2-3. Structure of DSC 23
2-4. The advantage of DSC 25
2-5. Literature review of all-printable monolithic PV devices 25
Motivation 29
Chapter 3 Experimental 30
3-1. Chemicals and materials 30
3-2. Fabrication of conventional sandwich DSC 31
3-3. Fabrication of all-printable monolithic DSC 33
3-3-1. Carbon paste preparation 33
3-3-2. ZrO2 paste preparation 33
3-3-3. Preparation of blocking layers 34
3-3-4. Spiro-OMeTAD deposition methods 34
3-3-5. All-printable monolithic devices fabrication 35
3-4. Fabrication of conventional solid-state DSC 36
3-5. Characteristic methods 37
3-5-1. Scanning electron microscopy (SEM) 37
3-5-2. Energy-dispersive X-rays Spectroscopy (EDS) 37
3-5-3. Cyclic Voltammetry (CV) 38
3-5-4. Photovoltaics measurement 38
3-5-5. Electrochemical impedance spectroscopy (EIS) 39
3-5-6. UV-Vis spectroscopy 39
3-5-7. Sheet resistance measurement 39
Chapter 4 Results and Discussions 40
4-1. Morphology construction of devices 40
4-1-1. The effect of CB: graphite ration 40
4-1-2. The effect of annealing temperature 41
4-1-3. Spacer 43
4-2. All-printable monolithic liquid-based DSC 44
4-3. All-printable solid-state DSC 52
4-3-1. Preliminary sDSC- ZrO2/C results 52
4-3-2. The effect of blocking layer 53
4-3-3. The effect of spiro-OMeTAD deposition methods 58
4-3-4. The effect of sensitizer 63
4-3-5. The effect of TiO2 NPs particle 65
4-3-6. The stability of sDSC – ZrO2/C 66
4-4. Charge transport in solid-state dye-sensitized solar cells 67
Chapter 5 Conclusions and Future works 71
5-1. Conclusions 71
5-2. Future works and Outlook 71
Reference 73
1. Sills, B., Solar May Produce Most of World’s Power by 2060, IEA Says. Retrieved April 2011, 25, 2012.
2. Riegel, E. R., Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology, Vol. 1. New York: Springer: 2007.
3. Bishop, J. K.; Rossow, W. B., Spatial and temporal variability of global surface solar irradiance. Journal of Geophysical Research: Oceans 1991, 96 (C9), 16839-16858.
4. Twidell, J.; Weir, T., Renewable energy resources. Routledge: 2015.
5. Fraunhofer, I., Photovoltaics Report 11/03/2016. Nov: 2016.
6. Lu, K., Materials in energy conversion, harvesting, and storage. John Wiley & Sons: 2014.
7. Zhao, J.; Wang, A.; Green, M. A., 24· 5% Efficiency silicon PERT cells on MCZ substrates and 24· 7% efficiency PERL cells on FZ substrates. Progress in Photovoltaics: Research and Applications 1999, 7 (6), 471-474.
8. Lindholm, F. A.; Fossum, J. G.; Burgess, E. L., Application of the superposition principle to solar-cell analysis. IEEE Transactions on Electron Devices 1979, 26 (3), 165-171.
9. Wolf, M.; Rauschenbach, H., Series resistance effects on solar cell measurements. Advanced energy conversion 1963, 3 (2), 455-479.
10. Riordan, C.; Hulstron, R. In What is an air mass 1.5 spectrum?(Solar cell performance calculations), Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, IEEE: 1990; pp 1085-1088.
11. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M., Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. Journal of the American Chemical Society 1988, 110 (4), 1216-1220.
12. O’regan, B.; Grfitzeli, M., A low-cost, high-efficiency solar cell based on dye-sensitized. nature 1991, 353 (6346), 737-740.
13. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications 2015, 51 (88), 15894-15897.
14. Zumeta, I.; Ayllon, J.; Gonzalez, B.; Domenech, X.; Vigil, E., TiO 2 films obtained by microwave-activated chemical-bath deposition used to improve TiO 2-conducting glass contact. Solar Energy Materials and Solar Cells 2009, 93 (10), 1728-1732.
15. Sima, C.; Grigoriu, C.; Antohe, S., Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 2010, 519 (2), 595-597.
16. Kawashima, T.; Ezure, T.; Okada, K.; Matsui, H.; Goto, K.; Tanabe, N., FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1), 199-202.
17. Dürr, M.; Schmid, A.; Obermaier, M.; Rosselli, S.; Yasuda, A.; Nelles, G., Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature materials 2005, 4 (8), 607-611.
18. Nang Dinh, N.; Bernard, M.-C.; Hugot-Le Goff, A.; Stergiopoulos, T.; Falaras, P., Photoelectrochemical solar cells based on SnO2 nanocrystalline films. Comptes Rendus Chimie 2006, 9 (5-6), 676-683.
19. Anta, J. A.; Guillén, E.; Tena-Zaera, R., ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (21), 11413-11425.
20. Boucharef, M.; Di Bin, C.; Boumaza, M. S.; Colas, M.; Snaith, H. J.; Ratier, B.; Boucle, J., Solid-state dye-sensitized solar cells based on ZnO nanocrystals. Nanotechnology 2010, 21 (20), 205203.
21. Park, N.-G.; Van de Lagemaat, J.; Frank, A., Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B 2000, 104 (38), 8989-8994.
22. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry 2004, 32 (1), 33-177.
23. Nishikiori, H.; Qian, W.; El-Sayed, M. A.; Tanaka, N.; Fujii, T., Change in titania structure from amorphousness to crystalline increasing photoinduced electron-transfer rate in dye-titania system. The Journal of Physical Chemistry C 2007, 111 (26), 9008-9011.
24. Schmidt-Mende, L.; Grätzel, M., TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 2006, 500 (1-2), 296-301.
25. Snaith, H. J.; Humphry-Baker, R.; Chen, P.; Cesar, I.; Zakeeruddin, S. M.; Gratzel, M., Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology 2008, 19 (42), 424003.
26. Olson, C.; Veldman, D.; Bakker, K.; Lenzmann, F., Characterization of the Pore Filling of Solid State Dye Sensitized Solar Cells with Photoinduced Absorption Spectroscopy. International Journal of Photoenergy 2011, 2011, 1-11.
27. Vesce, L.; Riccitelli, R.; Soscia, G.; Brown, T. M.; Di Carlo, A.; Reale, A., Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: study and experimentation of TiCl 4 treatment. Journal of Non-Crystalline Solids 2010, 356 (37), 1958-1961.
28. Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Bach, U.; Schmidt-Mende, L.; Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; Gratzel, M., Control of dark current in photoelectrochemical (TiO2/I--I3-)) and dye-sensitized solar cells. Chem Commun (Camb) 2005, (34), 4351-3.
29. Sommeling, P.; O'regan, B.; Haswell, R.; Smit, H.; Bakker, N.; Smits, J.; Kroon, J.; Van Roosmalen, J., Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. The Journal of Physical Chemistry B 2006, 110 (39), 19191-19197.
30. O'Regan, B. C.; Durrant, J. R.; Sommeling, P. M.; Bakker, N. J., Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. The Journal of Physical Chemistry C 2007, 111 (37), 14001-14010.
31. Zhang, S.; Yang, X.; Numata, Y.; Han, L., Highly efficient dye-sensitized solar cells: progress and future challenges. Energy & Environmental Science 2013, 6 (5), 1443.
32. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153.
33. Jin, Z.; Masuda, H.; Yamanaka, N.; Minami, M.; Nakamura, T.; Nishikitani, Y., Efficient electron transfer ruthenium sensitizers for dye-sensitized solar cells. The Journal of Physical Chemistry C 2009, 113 (6), 2618-2623.
34. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M., Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. The Journal of Physical Chemistry B 2003, 107 (51), 14336-14341.
35. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M., Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society 2008, 130 (32), 10720-10728.
36. Wang, M.; Moon, S. J.; Xu, M.; Chittibabu, K.; Wang, P.; Cevey-Ha, N. L.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M., Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. Small 2010, 6 (2), 319-24.
37. Huang, S.; Schlichthörl, G.; Nozik, A.; Grätzel, M.; Frank, A., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B 1997, 101 (14), 2576-2582.
38. Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Grätzel, M.; Frank, A. J., Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement. The Journal of Physical Chemistry B 2005, 109 (49), 23183-23189.
39. Zhang, Z.; Zakeeruddin, S. M.; O'Regan, B. C.; Humphry-Baker, R.; Grätzel, M., Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. The Journal of Physical Chemistry B 2005, 109 (46), 21818-21824.
40. Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P., Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 2015, 137 (11), 3799-802.
41. Tingare, Y. S.; Vinh, N. S. n.; Chou, H. H.; Liu, Y. C.; Long, Y. S.; Wu, T. C.; Wei, T. C.; Yeh, C. Y., New Acetylene‐Bridged 9, 10‐Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‐Sensitized Solar Cells. Advanced Energy Materials 2017.
42. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M. Dye-sensitized solar cells for efficient power generation under ambient lighting; Nature Publishing Group: 2017.
43. Schmidt‐Mende, L.; Bach, U.; Humphry‐Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.; Grätzel, M., Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells. Advanced Materials 2005, 17 (7), 813-815.
44. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science 2011, 334 (6056), 629-634.
45. Boschloo, G.; Hagfeldt, A., Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of chemical research 2009, 42 (11), 1819-1826.
46. Snaith, H. J.; Schmidt-Mende, L., Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells. Advanced Materials 2007, 19 (20), 3187-3200.
47. Kusama, H.; Konishi, Y.; Sugihara, H.; Arakawa, H., Influence of alkylpyridine additives in electrolyte solution on the performance of dye-sensitized solar cell. Solar energy materials and solar cells 2003, 80 (2), 167-179.
48. Paulsson, H.; Kloo, L.; Hagfeldt, A.; Boschloo, G., Electron transport and recombination in dye-sensitized solar cells with ionic liquid electrolytes. Journal of Electroanalytical Chemistry 2006, 586 (1), 56-61.
49. Lan, J.-L.; Wei, T.-C.; Feng, S.-P.; Wan, C.-C.; Cao, G., Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities. The Journal of Physical Chemistry C 2012, 116 (49), 25727-25733.
50. Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M., CoII (dbbip) 22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. The Journal of Physical Chemistry B 2001, 105 (43), 10461-10464.
51. Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S., Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society 2005, 127 (26), 9648-9654.
52. Olsen, E.; Hagen, G.; Lindquist, S. E., Dissolution of platinum in methoxy propionitrile containing LiI/I 2. Solar Energy Materials and Solar Cells 2000, 63 (3), 267-273.
53. Fantacci, S.; De Angelis, F.; Nazeeruddin, M. K.; Grätzel, M., Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation. The Journal of Physical Chemistry C 2011, 115 (46), 23126-23133.
54. Bach, U.; Lupo, D.; Comte, P.; Moser, J.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395 (6702), 583-585.
55. Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M., Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. The Journal of Physical Chemistry B 2003, 107 (31), 7536-7539.
56. Snaith, H. J.; Schmidt‐Mende, L., Advances in liquid‐electrolyte and solid‐state dye‐sensitized solar cells. Advanced Materials 2007, 19 (20), 3187-3200.
57. Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N. L.; Yi, C.; Nazeeruddin, M. K.; Gratzel, M., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J Am Chem Soc 2011, 133 (45), 18042-5.
58. Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M. E.; Kirkpatrik, J.; Ball, J. M.; Docampo, P.; McPherson, I., Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (7), 2572-2579.
59. Snaith, H., Solid-State Dye-Sensitized Solar Cells Incorporating Molecular Hole-Transporters. Dye-Sensitized Solar Cells, edited by K. Kalyanasundaram (CRC Press, Lausanne, 2010) 2010.
60. Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U., High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters 2001, 79 (13), 2085-2087.
61. Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Grätzel, M., Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters 2007, 7 (11), 3372-3376.
62. Moia, D.; Cappel, U. B.; Leijtens, T.; Li, X.; Telford, A. M.; Snaith, H. J.; O’Regan, B. C.; Nelson, J.; Barnes, P. R. F., The Role of Hole Transport between Dyes in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2015, 119 (33), 18975-18985.
63. Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, M.; Zakeeruddin, S. M.; Grätzel, M., Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. Journal of the American Chemical Society 2008, 131 (2), 558-562.
64. Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S., A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2 (13), 4474-4490.
65. Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 2001, 46 (22), 3457-3466.
66. Chen, C.-M.; Chen, C.-H.; Cherng, S.-J.; Wei, T.-C., Electroless deposition of platinum on indium tin oxide glass as the counterelectrode for dye-sensitized solar cells. Materials Chemistry and Physics 2010, 124 (1), 173-178.
67. Murakami, T. N.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Cesar, I.; Liska, P.; Humphry-Baker, R.; Comte, P.; Péchy, P., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of the Electrochemical Society 2006, 153 (12), A2255-A2261.
68. Han, H.; Bach, U.; Cheng, Y.-B.; Caruso, R. A.; MacRae, C., A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters 2009, 94 (10), 103102.
69. Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T., Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films. The Journal of Physical Chemistry B 1999, 103 (16), 3110-3119.
70. Kay, A.; Grätzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, 44 (1), 99-117.
71. Vesce, L.; Riccitelli, R.; Mincuzzi, G.; Orabona, A.; Soscia, G.; Brown, T. M.; Di Carlo, A.; Reale, A., Fabrication of Spacer and Catalytic Layers in Monolithic Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics 2013, 3 (3), 1004-1011.
72. Xu, M.; Liu, G.; Li, X.; Wang, H.; Rong, Y.; Ku, Z.; Hu, M.; Yang, Y.; Liu, L.; Liu, T.; Chen, J.; Han, H., Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics 2013, 14 (2), 628-634.
73. Liu, G.; Wang, H.; Li, X.; Rong, Y.; Ku, Z.; Xu, M.; Liu, L.; Hu, M.; Yang, Y.; Xiang, P.; Shu, T.; Han, H., A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta 2012, 69, 334-339.
74. Rong, Y.; Han, H., Monolithic quasi-solid-state dye-sensitized solar cells based on graphene-modified mesoscopic carbon-counter electrodes. Journal of Nanophotonics 2013, 7 (1), 073090-073090.
75. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295-298.
76. Hsieh, T.-Y.; Huang, C.-K.; Su, T.-S.; Hong, C.-Y.; Wei, T.-C., Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance. ACS Applied Materials & Interfaces 2017, 9 (10), 8623-8633.
77. Hsieh, T.-Y.; Wei, T.-C.; Wu, K.-L.; Ikegami, M.; Miyasaka, T., Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chemical Communications 2015, 51 (68), 13294-13297.
78. Kavan, L.; Grätzel, M., Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta 1995, 40 (5), 643-652.
79. Rong, Y.; Li, X.; Ku, Z.; Liu, G.; Wang, H.; Xu, M.; Liu, L.; Hu, M.; Xiang, P.; Zhou, Z., Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells 2012, 105, 148-152.
80. Wang, H.; Liu, G.; Li, X.; Xiang, P.; Ku, Z.; Rong, Y.; Xu, M.; Liu, L.; Hu, M.; Yang, Y., Highly efficient poly (3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy & Environmental Science 2011, 4 (6), 2025-2029.
81. Jones, T. W.; Duffy, N. W.; Wilson, G. J., Efficient All-Printable Solid-State Dye-Sensitized Solar Cell Based on a Low-Resistivity Carbon Composite Counter Electrode and Highly Doped Hole Transport Material. The Journal of Physical Chemistry C 2015, 119 (21), 11410-11418.
82. Ding, I. K.; Tétreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Grätzel, M.; McGehee, M. D., Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials 2009, 19 (15), 2431-2436.
83. Rusling, J. F.; Suib, S. L., Characterizing materials with cyclic voltammetry. Advanced Materials 1994, 6 (12), 922-930.
84. Ecker, B.; Egelhaaf, H.-J.; Steim, R.; Parisi, J. r.; von Hauff, E., Understanding s-shaped current–voltage characteristics in organic solar cells containing a TiO x interlayer with impedance spectroscopy and equivalent circuit analysis. The Journal of Physical Chemistry C 2012, 116 (31), 16333-16337.
85. Wang, J. C.; Ren, X. C.; Shi, S. Q.; Leung, C. W.; Chan, P. K. L., Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Organic Electronics 2011, 12 (6), 880-885.
86. Docampo, P.; Hey, A.; Guldin, S.; Gunning, R.; Steiner, U.; Snaith, H. J., Pore Filling of Spiro‐OMeTAD in Solid‐State Dye‐Sensitized Solar Cells Determined Via Optical Reflectometry. Advanced Functional Materials 2012, 22 (23), 5010-5019.
87. Schmidt-Mende, L.; Zakeeruddin, S. M.; Grätzel, M., Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Applied Physics Letters 2005, 86 (1), 013504.
88. Ding, I. K.; Melas-Kyriazi, J.; Cevey-Ha, N.-L.; Chittibabu, K. G.; Zakeeruddin, S. M.; Grätzel, M.; McGehee, M. D., Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading. Organic Electronics 2010, 11 (7), 1217-1222.
89. Bailie, C. D.; Unger, E. L.; Zakeeruddin, S. M.; Gratzel, M.; McGehee, M. D., Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Phys Chem Chem Phys 2014, 16 (10), 4864-70.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔