跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江函桂
研究生(外文):Chiang, Han-Kuei
論文名稱:I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
論文名稱(外文):I. Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region II. Solvent isotope effect on the dark adaptation of bacteriorhodopsin in purple membrane
指導教授:朱立岡
指導教授(外文):Chu, Li-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:光迴圈效率波長相依性能量傳遞細菌視紫質溶劑同位素效應暗適應過程
外文關鍵詞:xanthorhodopsinphtotcycle activityenergy transferbacteriorhodopsinsolvent isotope effectdark adaptation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
第一篇
Xanthorhodopsin (xR)為鑲嵌於嗜鹽真桿菌Salinibacter ruber細胞膜上之光合成蛋白。xR的反應中心與其他視紫質蛋白質不同,除了視黃醛分子之外,尚有另一個類胡蘿蔔素分子Salinixanthin (SX)作為視黃醛的天線,延伸短波長光吸收範圍,而SX吸收的光子能量會傳遞至視黃醛上使xR進行光迴圈反應,此特性為目前所知生物體內最簡單的能量傳遞系統。本實驗將使用可調變激發波長之時間解析差異吸收光譜,觀察xR之M態瞬態濃度與其激發波長相依性,進而獲得能量傳遞效率,並討論SX吸收接近紫外光區較高能量光子的能量傳遞過程。
以570 nm直接激發xR視黃醛吸收峰,可得到最高的光迴圈效率。吾人以此波長量得的M態瞬態濃度為基準,將其他波長與之比較,計算相對M態量子產率。激發波長520–430 nm區域中,越靠近短波長處視黃醛吸收越少,光迴圈所需能量逐漸轉變為由SX吸收光子並進行能量傳遞而提供,因此量子產率隨波長變短而遞減。其中,視黃醛在430 nm處幾乎已無吸收,故在此激發波長下所得之光迴圈效率可視為單獨激發SX的結果。從文獻得知430 nm光子能量足以由雙光子方式激發細菌視紫質(bacterorhopdopsin, bR)視黃醛之S2能階並進行後續光迴圈反應,但在xR系統內,激發波長430 nm與460 nm所得之M態量子產率兩者皆為37%左右,表示兩激發波長下所偵測之M中間態皆為視黃醛S1能階之光迴圈產物,激發態之SX不會直接傳遞能量至視黃醛S2能階並進行其後的光迴圈反應。

第二篇
細菌視紫質為嗜鹽古生菌Halobacterium salinarum細胞膜上之光合成蛋白,光激發其中的化學分子視黃醛可使其進行光異構化,引發其光迴圈反應及質子幫浦而形成膜內外側的氫離子梯度,可做為合成ATP之化學勢位。除了光異構化反應外,視黃醛也會進行由all-trans、15-anti至13-cis、15-syn之熱異構化反應,意即暗適應態的生成。過去研究中指出此反應具有溶劑反同位素效應,但其涉及之動力學與熱力學現象並未充分討論。故本實驗將使用溶劑H2O及D2O,由紫外可見吸收光譜法觀察以紫膜形式存在之細菌視紫質的視黃醛吸收峰在溫度30˚C—55˚C內隨時間變化之吸收光譜。
吾人發現在此溫度區間內,反應溫度低於45˚C時具有反同位素效應,即kf (D2O) / kf (H2O) > 1。經由建立反應模型並以過渡態理論分析實驗數據,得到視黃醛分子在H2O及D2O環境中由基態至過渡態的反應焓ΔH*f分別為24.7±1.2與20.1±0.4 kcal mol–1,而相對的反應熵ΔΔS*f = ΔS*f (D2O) − ΔS*f (H2O)為–14.4±3.9 cal mol–1 K–1,配合文獻研究可計算得D2O環境中吉布斯自由能低於H2O環境0.4—0.7 kcal mol-1。在此研究結果表示在熱異構化反應中,相較於反應物,分子處於過渡態時,其結構中具有較強的氫鍵。

Part I.
Xanthorhodopsin (xR) is a dual-chromophore proton-pump photosynthetic protein comprising one retinal Schiff base and one light-harvesting antenna salinixanthin (SX). The excitation wavelength-dependent transient population of the intermediate M demonstrates that the excitation of the retinal at 570 nm leads to the highest photocycle activity and the excitations of SX at 460 and 430 nm reduce the activity to ca. 37% relatively, suggesting an energy transfer pathway from the S2 state of the SX to the S1 state of the retinal and a quick internal vibrational relaxation in the S2 state of SX prior to the energy transfer from SX to retinal.

Part II.
The thermal retinal isomerization from all-trans, 15-anti to 13-cis, 15-syn of bacteriorhodopsin in purple membrane in H2O and D2O during dark adaptation was investigated at 30—55°C at neutral pH. In this temperature range, phase transition of purple membrane and destruction of the tertiary structure of bacteriorhodopsin did not take place. We found that the solvent isotope effect is inverted below about 45°C; i.e., kf (D2O) / kf (H2O) > 1. Applying the transition state theory, the changes in enthalpy from the initial state to the transition state along the thermal trans-to-cis forward reaction coordinate, ΔH*f, were determined to be 24.7 ± 1.2 and 20.1 ± 0.4 kcal mol−1 in H2O and D2O, respectively. The relative entropic change of the transition state in H2O and D2O, ΔΔS*f = ΔS*f (D2O) − ΔS*f (H2O), was −14.4 ± 3.9 cal mol−1 K−1. In addition, the Gibbs free energy of trans-to-cis thermal isomerization reaction in D2O is 0.4—0.7 kcal mol−1 lower than that in H2O. It is the first time the entropy and enthalpy of the transition state have been quantified to elucidate the solvent isotope effect in the retinal thermal isomerization of bacteriorhodopsin during dark adaptation. The solvent isotope effect on the thermodynamics properties and kinetics implied that the hydrogen bonding in the transition state during the dark adaptation of bR is stronger than that in the initial state.

第一篇
第一章 緒論
1.1 前言 1
1.2 文獻回顧 1
1.2.1 xR的發現與研究 1
1.2.2 SX至視黃醛的能量傳遞效率 3
1.3 實驗動機與目的 4
第二章 xR基本性質介紹
2.1 xR的結構與質子幫浦性質 10
2.2 xR的光譜特性 11
2.2.1 靜態吸收光譜 11
2.2.2 光迴圈反應與瞬態吸收光譜 12
2.2.3 圓二色光譜 13
2.3 能量傳遞機制 14
第三章 實驗方法
3.1 光譜原理簡介 27
3.1.1 靜態紫外可見吸收光譜法 27
3.1.2 單波長瞬態吸收光譜法 30
3.1.3 圓二色光譜法 31
3.2 儀器架設 34
3.2.1 靜態紫外可見吸收光譜儀 34
3.2.2 單波長瞬態吸收光譜術儀器架設 34
3.2.3 圓二色光譜儀器架設 36
3.3 實驗方法 36
3.3.1 嗜鹽菌Salinibacter ruber M31菌株培養 36
3.3.2 xR萃取 38
3.3.3 實驗樣品製備 39
3.3.4 實驗藥品 40
3.4 儀器參數設定 40
3.4.1 靜態紫外可見吸收光譜儀 40
3.4.2 單波長可見光瞬態吸收光譜儀 40
3.4.3 圓二色光譜儀 41
第四章 實驗結果與討論
4.1 xR光迴圈動力學 51
4.2 M中間態的時間側寫 51
4.3 M態的瞬態濃度 52
4.4 M態瞬態濃度與雷射能量之相依性 53
4.5 相對量子產率與激發波長於430—570 nm之相依性 54
4.6 穩態吸收光譜與光致褪色程度 56
第五章 結論

第二篇
第一章 緒論
1.1 前言 1
1.2 文獻回顧 1
1.2.1 細菌視紫質及紫膜的發現與研究 1
1.2.2 溫度對細菌視紫質三級結構的影響 3
1.3 實驗動機與目的 5
第二章 細菌視紫質之基本性質
2.1 bR的結構與基本性質 9
2.1.1 bR的結構 9
2.1.2 bR的光迴圈 10
2.1.3 bR的光適應態及暗適應態 10
2.2 bR與PM的光譜特性 11
2.2.1 靜態吸收光譜 11
2.2.2 圓二色光譜 12
2.3 視黃醛熱異構化反應與機制 13
2.3.1 熱異構化反應相關研究 13
2.3.2 熱異構化反應之反應機制 13
第三章 實驗方法
3.1樣品製備 26
3.1.1 嗜鹽古生菌Halobacterium Salinarum S9菌株培養及紫膜萃取 26
3.1.2 實驗樣品製備 27
3.1.3 實驗藥品 27
3.2 儀器架設 28
3.2.1 變溫紫外可見吸收光譜 28
3.2.2 擷取隨時間變化吸收光譜之實驗步驟 28
3.2.3 擷取不同溫度下之圓二色光譜之實驗步驟 28
3.2.4 儀器參數設定 29
3.3 數據處理 30
3.3.1 隨時間變化之差異吸收光譜 30
3.3.2 動力學模型及其適解 30
3.3.3 吉布斯自由能、正逆反應焓差值及正逆反應熵差值之計算 32
第四章 結果與討論
4.1 於H2O以及D2O環境中之bR靜態光譜 40
4.1.1 可見光吸收光譜 40
4.1.2 圓二色光譜 40
4.2 時間變化靜態吸收光譜 41
4.3 bR熱異構化反應動力學之溶劑同位素效應 42
4.4 bR熱異構化溶劑同位素效應與反應熱 44
第五章 結論




第一篇
第一章
(1)Lanyi, J. K.; Balashov, S. P. Xanthorhodopsin. In Halophiles and Hypersaline Environments; Ventosa, A., Oren, A., Ma, Y., Eds.; Springer: Berlin, 2011; Chap. 17, p. 319–340.
(2)Antón, J.; Oren, A.; Benlloch, S.; Rodríguez-Valera, F.; Amann, R.; Rosselló-Mora, R. Int. J. Syst. Evol. Microbiol. 2002, 52, 485–491.
(3)Mongodin, E. F.; Nelson, K. E.; Daugherty, S.; DeBoy, R. T.; Wister, J.; Khouri, H.; Weidman, J.; Walsh, D. A.; Papke, R. T.; Sanchez Perez, G.; Sharma, A. K.; Nesbø, C. L.; MacLeod, D.; Bapteste, E.; Doolittle, W. F.; Charlebois, R. L.; Legault, B.; Rodriguez-Valera, F. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18147–18152.
(4)Peña, A.; Valens, M.; Santos, F.; Buczolits, S.; Antón, J.; Kämpfer, P.; Busse, H.-J.; Amann, R.; Rosselló-Mora, R. Extremophiles 2005, 9, 151–161.
(5)Balashov, S. P.; Imasheva, E. S.; Boichenko, V. A.; Antón, J.; Wang, J. M.; Lanyi, J. K. Science 2005, 309, 2061–2064.
(6)Balashov, S. P.; Lanyi, J. K. Cell. Mol. Life Sci. 2007, 64, 2323–2328.
(7)Luecke, H.; Schobert, B.; Stagno, J.; Imasheva, E. S.; Wang, J. M.; Balashov, S. P.; Lanyi, J. K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 16561–16565.
(8)Lutnaes, B. F.; Oren, A.; Liaaen-Jensen, S. J. Nat. Prod. 2002, 65, 1340–1343.
(9)Ran, T.; Ozorowski, G.; Gao, Y.; Sineshchekov, O. A.; Wang, W.; Spudich, J. L.; Luecke, H. Acta Crystallogr. 2013, D69, 1965–1980.
(10)Balashov, S. P.; Imasheva, E. S.; Lanyi, J. K. Biochemistry 2006, 45, 10998–11004.
(11)Polívka, T.; Balashov, S. P.; Chábera, P.; Imasheva, E. S.; Yartsev, A.; Sundström, V.; Lanyi, J. K. Biophys. J. 2009, 96, 2268–2277.
(12)Zhu, J.; Gdor, I.; Smolensky, E.; Friedman, N.; Sheves, M.; Ruhman, S. J. Phys. Chem. B 2010, 114, 3038–3045.
(13)Gdor, I.; Zhu, J.; Loevsky, B.; Smolensky, E.; Friedman, N.; Sheves, M.; Ruhman, S. Phys. Chem. Chem. Phys. 2011, 13, 3782–3787.
(14)Šlouf, V.; Balashov, S. P.; Lanyi, J. K.; Pullerits, T.; Polívka, T. Chem. Phys. Lett. 2011, 516, 96–101.
(15)Imasheva, E. S.; Balashov, S. P.; Wang, J. M.; Lanyi, J. K. Photochem. Photobiol. 2006, 82, 1406–1413.
(16)Koganov, E. S.; Brumfeld, V.; Friedman, N.; Sheves, M. J. Phys. Chem. B 2015, 119, 456−464.
(17)Boichenko, V. A.; Wang, J. M.; Antón, J.; Lanyi, J. K.; Balashov, S. P. Biochim. Biophys. Acta 2006, 1757, 1649–1656.
(18)Balashov, S. P.; Imasheva, E. S.; Wang, J. M.; Lanyi, J. K. Biophys. J. 2008, 95, 2402–2414.
(19)Fujimoto, K. J.; Hayashi, S. J. Am. Chem. Soc. 2009, 131, 14152–14153.
第二章
(1)Luecke, H.; Schobert, B.; Stagno, J.; Imasheva, E. S.; Wang, J. M.; Balashov, S. P.; Lanyi, J. K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 16561–16565.
(2)Lutnaes, B. F.; Oren, A.; Liaaen-Jensen, S. J. Nat. Prod. 2002, 65, 1340–1343.
(3)Balashov, S. P.; Lanyi, J. K. Cell. Mol. Life Sci. 2007, 64, 2323–2328.
(4)Lanyi, J. K.; Balashov, S. P. Xanthorhodopsin. In Halophiles and Hypersaline Environments; Ventosa, A., Oren, A., Ma, Y., Eds.; Springer: Berlin, 2011; Chap. 17, p. 319–340.
(5)Schobert, B.; Brown, L. S.; Lanyi, J. K. J. Mol. Biol. 2003, 330, 553–570.
(6)Becher, B.; Tokunaga, F.; Ebrey, T. G. Biochemistry 1978, 17, 2292−2300.
(7)Balashov, S. P.; Imasheva, E. S.; Boichenko, V. A.; Antón, J.; Wang, J. M.; Lanyi, J. K. Science 2005, 309, 2061–2064.
(8)Polívka, T.; Balashov, S. P.; Chábera, P.; Imasheva, E. S.; Yartsev, A.; Sundström, V.; Lanyi, J. K. Biophys. J. 2009, 96, 2268–2277.
(9)Balashov, S. P.; Imasheva, E. S.; Wang, J. M.; Lanyi, J. K. Biophys. J. 2008, 95, 2402–2414.
(10)Imasheva, E. S.; Balashov, S. P.; Wang, J. M.; Smolensky, E.; Sheves, M.; Lanyi, J. K. Photochem. Photobiol. 2008, 84, 977–984.
(11)Smolensky, E.; Sheves, M. Biochemistry 2009, 48, 8179–8188.
(12)Kühlbrandt, W. Nature 2000, 406, 569–570.
(13)Garczarek, F.; Gerwert, K. Nature 2006, 439, 109–112.
(14)Imasheva, E. S.; Balashov, S. P.; Wang, J. M.; Lanyi, J. K. Photochem. Photobiol. 2006, 82, 1406–1413.
(15)Šlouf, V.; Balashov, S. P.; Lanyi, J. K.; Pullerits, T.; Polívka, T. Chem. Phys. Lett. 2011, 516, 96–101.
(16)Balashov, S. P.; Imasheva, E. S.; Lanyi, J. K. Biochemistry 2006, 45, 10998–11004.
(17)Koganov, E. S.; Hirshfeld, A.; Sheves, M. Biochemistry 2013, 52, 1290−1301.
(18)Koganov, E. S.; Brumfeld, V.; Friedman, N.; Sheves, M. J. Phys. Chem. B 2015, 119, 456−464.
(19)Zhu, J.; Gdor, I.; Smolensky, E.; Friedman, N.; Sheves, M.; Ruhman, S. J. Phys. Chem. B 2010, 114, 3038–3045.
(20)Gdor, I.; Zhu, J.; Loevsky, B.; Smolensky, E.; Friedman, N.; Sheves, M.; Ruhman, S. Phys. Chem. Chem. Phys. 2011, 13, 3782–3787.
(21)Birge, R. R.; Zhang, C.-F. J. Chem. Phys. 1990, 92, 7178–7195.
第三章
(1)Balashov, S. P.; Imasheva, E. S.; Boichenko, V. A.; Antón, J.; Wang, J. M.; Lanyi, J. K. Science 2005, 309, 2061–2064.
(2)Lanyi, J. K.; Balashov, S. P. Xanthorhodopsin. In Halophiles and Hypersaline Environments; Ventosa, A., Oren, A., Ma, Y., Eds.; Springer: Berlin, 2011; Chap. 17, p. 319–340.
(3)Wikipedia, Polarization (waves). Retrieved from https://en.wikipedia.org/wiki/ Polarization_(waves)
(4)Bulheller, B. M.; Rodger, A.; Hirst, J. D. Phys. Chem. Chem. Phys. 2007, 9, 2020–2035.
(5)Smolensky, E.; Sheves, M. Biochemistry 2009, 48, 8179–8188.
(6)Imasheva, E. S.; Balashov, S. P.; Wang, J. M.; Lanyi, J. K. Photochem. Photobiol. 2006, 82, 1406–1413.
(7)Aviv model 62DS Circular Dichroism Spectrometer Instruction Manual. Aviv Associates Inc. Retrieved from https://chemistry.osu.edu/~foster.281/ instrumentation/documentation/CD_instruction_manual.pdf
(8)Koganov, E. S.; Brumfeld, V.; Friedman, N.; Sheves, M. J. Phys. Chem. B 2014, 119, 456–464.
第四章
(1)Balashov, S. P.; Imasheva, E. S.; Boichenko, V. A.; Antón, J.; Wang, J. M.; Lanyi, J. K. Science 2005, 309, 2061–2064.
(2)Imasheva, E. S.; Balashov, S. P.; Wang, J. M.; Lanyi, J. K. Photochem. Photobiol. 2006, 82, 1406–1413.
(3)Tittor, J.; Oesterhelt, D. FEBS J. 1990, 263, 269–273.
(4)Boichenko, V. A.; Wang, J. M.; Antón, J.; Lanyi, J. K.; Balashov, S. P. Biochim. Biophys. Acta 2006, 1757, 1649–1656.
(5)Balashov, S. P.; Imasheva, E. S.; Wang, J. M.; Lanyi, J. K. Biophys. J. 2008, 95, 2402–2414.
(6)Polívka, T.; Balashov, S. P.; Chábera, P.; Imasheva, E. S.; Yartsev, A.; Sundström, V.; Lanyi, J. K. Biophys. J. 2009, 96, 2268–2277.
(7)Zhu, J.; Gdor, I.; Smolensky, E.; Friedman, N.; Sheves, M.; Ruhman, S. J. Phys. Chem. B 2010, 114, 3038–3045.
(8)Gdor, I.; Zhu, J.; Loevsky, B.; Smolensky, E.; Friedman, N.; Sheves, M.; Ruhman, S. Phys. Chem. Chem. Phys. 2011, 13, 3782–3787.
(9)Fujimoto, K. J.; Hayashi, S. J. Am. Chem. Soc. 2009, 131, 14152–14153.
(10)Birge, R. R.; Zhang, C.-F. J. Chem. Phys. 1990, 92, 7178–7195.
(11)Humphrey, T. W.; Lu, H.; Logunov, I.; Werner, H.-J.; Schulten, K. Biophys. J. 1998, 75, 1689–1699.
(12)Kobayashi, T.; Saito, T.; Ohtani, H. Nature 2001, 414, 531–534.
(13)Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A. Science 1998, 279, 1886–1891.
(14)Nielsen, I. B.; Lammich, L.; Andersen, L. H. Phys. Rev. Lett. 2006, 96, 018304.
(15)Smolensky, E.; Sheves, M. Biochemistry 2009, 48, 8179–8188.

第二篇
第一章
(1)Oesterhelt, D.; Stoeckenius, W. Proc. Natl. Acad. Sci U.S.A. 1973, 70, 2853–2857.
(2)Stoeckenius, W.; Rowen, R. J. Cell Biol. 1967, 34, 365–393.
(3)Stoeckenius, W.; Kunau, W. H. J. Cell Biol. 1968, 38, 337–357.
(4)Oesterhelt, D.; Stoeckenius, W. Nat. New Biol. 1971, 233, 149–152.
(5)Blaurock, A. E.; Stoeckenius, W. Nat. New Biol. 1971, 233, 152–155.
(6)Stoeckenius, W.; Lozier, R. H. J. Supramol. Struc. 1974, 2, 769–774.
(7)Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W. Biophys. J. 1975, 15, 955–962.
(8)Racker, E.; Stoeckenius, W. J. Biol. Chem. 1974, 249, 662–663.
(9)Henderson R. J. Mol. Biol. 1976, 93, 123–138.
(10)Henderson, R.; Baldwin, J. M.; Ceska, T. A. J. Mol. Biol. 1990, 213, 899–929.
(11)Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899–911.
(12)Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A. Biochim. Biophys. Acta 1985, 808, 94–102.
(13)Mathies, R. A.; Cruz, C. H. B.; Pollard, W. T.; C. V. Shank. Science 1988, 240, 777–779.
(14)Terner, J.; Campion, A.; El-sayed, M. A. Proc. Natl. Acad. Sci U.S.A. 1977, 74, 5212–5216.
(15)Eisfeld, W.; Pusch, C.; Diller, R.; Lohrmann, R.; Stockburger, M. Biochemistry 1993, 32, 7196–7215.
(16)Braiman, M. S.; Bousché, O.;Rothschild, K. J. Proc. Natl. Acad. Sci U.S.A. 1991, 88, 2388–2392.
(17)Wang, J ;El-sayed, M. A. Biophys. J. 1999, 76, 2777–2783.
(18)Du, M.; Fleming, G. R. Biophys. Chem. 1993, 48, 101–111.
(19)Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G.; Herzfeld, J. Proc. Natl. Acad. Sci U.S.A. 2008, 105, 883–888.
(20)Miyasaka, T.; Koyama, K. Thin Solid Films 1992, 210, 146–149.
(21)Koyama, K.; Yamaguchi, N.; Miyasaka, T. Science 1994, 265, 762–765.
(22)Keszthelyi, L.; Ormos, P. FEBS Lett. 1980, 109, 189–193.
(23)Wang, J.-P.; Song, L.; Yoo, S.-K; El-Sayed, M. A. J. Phys. Chem. B 1997, 101, 10599–10604.
(24)Wang, J.-P.; Yoo, S.-K; Song, L.; El-Sayed, M. A. J. Phys. Chem. B 1997, 101, 3420–3423.
(25)Liu, S. Y.; Govindjee, R.;. Ebrey,T. G Biophys. J. 1990, 57, 951–963.
(26)Tamogami, J.; Kikukawa, T.; Miyauchi, S.; Muneyuki, E.; Kamo, N Photochem. Photobiol. 2009, 85, 578–589.
(27)Zimányi, L.; Váró, G.; Chang, M.; Ni, B.; Needleman, R.; Janos K. Lanyi, J. K. Biochemistry 1992, 31, 8535–8543.
(28)Jackson, M. B.; Sturtevant J. M. Biochemistry 1978, 17, 911–915.
(29)Hiraki, K; Hamanaka, T.; Mitsui, T.; Kito, Y. Biochim. Biophys. Acta 1981, 647, 18–28.
(30)Ghimire, G. D.; Sugiyama, H.; Sonoyama, M.; Mitaku, S. Biosci. Biotechnol. Biochem. 2005, 69, 252−254.
(31)Cladera, J.; Galisteo, M. L.; Duñach, M.; Mateo P. L.; Padrós, E. Biochim. Biophys. Acta 1988, 943, 148−156.
(32)Heyes, C. D.; El-Sayed, M. A. J. Phys. Chem. B 2003, 107, 12045−12053.
(33)Yokoyama, Y.; Sonoyama, M.; Mitaku, S. Proteins 2004, 54, 442−454.
(34)Taneva, S. G.; Caaveiro, J. M. M.; Muga, A.; F. M. Goñi FEBS Lett. 1995, 367, 297−300.
(35)Yokoyama, Y.; Sonoyama, M.; Mitaku, S. J. Biochem. 2002, 131, 785−790.
(36)Neebe, M.; Rhinow, D.; Schromczyk, N.; Hampp, N. A. J. Phys. Chem. B 2008, 112, 6946−6951.
(37)Wang, J.; El-Sayed, M. A. Biophys. J. 2000, 78, 2031−2036.
(38)Wang, J.; El-Sayed, M. A. Biophys. J. 1999, 76, 2777−2783.
(39)Sonoyama, M.; Mitaku, S. J. Phys. Chem. B 2004, 108, 19496−19500.
(40)Shnyrov, V. L.; Mateo P. L. FEBS Lett. 1993, 324, 237−240
(41)Janovjak, H.; Kessler, M.; Oesterhelt, D.; Gaub, H.; Müller, D. J. EMBO J. 2003, 22, 5220−5229.
(42)Váró, G.; Lanyi, J. K. Biochemistry 1991, 30, 5016−5022.
(43)Ludmann, K.; Gergely, C.; Váró, G. Biophys. J. 1998, 75, 3110−3119.
(44)Seltzer, S. J. Am. Chem. Soc. 1992, 114, 3516−3520.
第二章
(1)Henderson, R. J. Mol. Biol. 1976, 93, 123−138.
(2)Cartailler, J.-P.; Luecke, H. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 285−310.
(3)Dracheva, S.; Bose, S.; Hendler, R. W. FEBS Lett. 1996, 382, 209−212.
(4)Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899−911.
(5)Neutze, R.; Pebay-Peyroula, E.; Edman, K.; Royant, A.; Navarro, J.; Landau, E. M. Biochim. Biophys. Acta 2002, 1565, 144−167.
(6)Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Wang Song, Q.; Schmidt, E.; Stuart, J. A.; Seetharaman, S.; Wise, K. J. J. Phys. Chem. B 1999, 103, 10746−10766.
(7)Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, K. J. Phys. Chem. B 2001, 105, 905−918.
(8)Henderson, R.; Baldwin, J. M.; Ceska, T. A. J. Mol. Biol. 1990, 213, 899−929.
(9)Lanyi, J. K. Annu. Rev. Physiol. 2004, 66, 665−688.
(10)Lanyi, J. K. J. Biol. Chem. 1997, 272, 31209−31212.
(11)Lanyi, J. K. Biochim. Biophys. Acta 2006, 1757, 1012−1018.
(12)Garczarek, F.; Gerwert, K. Nature 2006, 439, 109−112.
(13)Riesle, J.; Oesterhelt, D.; Dencher, N. A.; Heberle, J. Biochemistry 1996, 35, 6635−6643.
(14)Kimura, Y.; Vassylyev, D. G.; Miyazawa, A.; Kidera, A.; Matsushima, M.; Mitsuoka, K.; Murata, K.; Hirai, T.; Fujiyoshi, Y. Nature 1997, 389, 206−211.
(15)Stoeckenius, W.; Bogomolni, R. A. Ann. Rev. Biochem. 1982, 52, 587−616.
(16)Wang, J.-P.; Link, S.; Heyes, C. D.; El-Sayed, M. A. Biophys. J. 2002, 83, 1557−1566.
(17)Kung, M. C.; Devault, D.; Hess, B.; Oesterhelt, D. Biophys. J. 1975, 15, 907−911.
(18)Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A. Biochim. Biophys. Acta 1985, 808, 94−102.
(19)Haupts, U.; Tittor, J.; Oesterhelt, D. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367–399.
(20)Royant, A.; Edman, K.; Ursby, T.; Pebay-Peyroula, E.; Landauk, E. M.; R. Neutze Nature 2000, 406, 645–648.
(21)Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; R. Neutze; Landau, E. M. Nature 1999, 401, 822–826.
(22)Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi J. K. Science 1999, 286, 255–260.
(23)Wolf, S.; Freier, E.; Potschies, M.; Hofmann, E.; Gerwert, K. Angew. Chem. Int. Ed. 2010, 49, 6889–6893.
(24)Watanabe, H. C.; Ishikura, T.; Yamato, T. Proteins. 2009, 75, 53–61.
(25)Lanyi, J. K. J. Phys. Chem. B 2000, 104, 11441–11448.
(26)Mathies, R. A.; Lin, S. W.; Ames, J. B.; Pollard, W. T. Annu. Rev. Biophys. Biophys. Chem. 1991, 20, 491−518.
(27)Balashov, S. P. Biochim. Biophys. Acta 2000, 1460, 75−94.
(28)Maeda, A.; Iwasa, T.; Yoshizawa, T. J. Biochem. 1977, 82, 1599−1604.
(29)Stoeckenius, W.; Lozier, R. H.; Bogomolni, R. A. Biochim. Biophys. Acta 1979, 505, 215−278.
(30)Sperling, W.; Carl, P.; Rafferty, Ch. N.; Dencher, N. A. Biophys. Struct. Mech. 1977, 3, 79−94.
(31)Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829−834.
(32)Logunov, I.; Schulten, K. J. Am. Chem. Soc. 1996, 118, 9727−9735.
(33)Oesterhelt, D. ;Meentzen, M.; Schuhmann, L. Eur. J. Biochem. 1973, 40,453−463.
(34)Heyn, M. P; Dudda, C.; Otto, H.; Seiff, F.; Wallat, I. Biochemistry 1989, 28, 9166−9172.
(35)Kalisky, O.; Feitelson, J.; Ottolenghi, M. Biochemistry 1981, 20, 205−209.
(36)Bennett, J. A.; Birge, R. R. J. Chem. Phys. 1980, 73, 4234−4246.
(37)Becher, B.; Tokunaga, F.; Ebrey, T. G. Biochemistry 1978, 17, 2292−2300.
(38)Muccio, D. D.; Cassim, J. Y. Biophys. J. 1979, 26, 427−440.
(39)Ebrey, T. G.; Becher, B.; Mao, B.; Kilbride, P. J. Mol. Biol. 1977, 112, 377−397.
(40)Heyn, M. P.; Bauer, P.-J.; Dencher, N. A. Biochem. Biophys. Res. Commun. 1975, 67, 897−903.
(41)Yokoyama, Y.; Sonoyama, M.; Mitaku, S. J. Biochem. 2002, 131, 785−790.
(42)Kovács, I.; Hollós-Nagy, K.; Váró, G. J. Photochem. Photobiol. B 1995, 27, 21−25.
(43)Baudry, J.; Crouzy, S.; Roux, B.; Smith, J. C. Biophys. J. 1999, 76, 1909−1917.
(44)Seltzer, S.; Zuckermann, R. J. Am. Chem. Soc. 1985, 107, 5523−5525.
(45)Seltzer, S. J. Am. Chem. Soc. 1992, 114, 3516−3520.
(46)Seltzer, S. J. Am. Chem. Soc. 1987, 109, 1627−1631.
(47)Birnbaum, D.; Seltzer, S. Bioorg. Chem. 1991, 19, 18−28.
(48)Nishikawa, T.; Murakami, M.; Kouyama, T. J. Mol. Biol. 2005, 352, 319−328.
(49)Tsuda, M.; Ebrey, T. G. Biophys. J. 1980, 30, 149−157.
(50)Schulte, A.; Bradley, L., II. Biophys. J. 1995, 69, 1554−1562.
(51)Bryl, K.; Yoshihara, K. Eur. Biophys. J. 2002, 31, 539−548.
第三章
(1)Oesterhelt, D.; Stoeckenius, W. Methods Enzymol. 1974, 31, 667−678.
(2)Liu, J.; Liu, M. Y.; Fu, L.; Zhu, G. A.; Yan, E. C. Y. J. Biol. Chem. 2011, 286, 38408−38416.
(3)Schlebach, J. P.; Cao, Z.; Bowie, J. U.; Park, C. Protein Sci. 2012, 21, 97−106.
(4)Ng, K. C.; Chu, L.-K. J. Phys. Chem. B 2013, 117, 6241−6249.
(5)Maeda, A.; Iwasa, T.; Yoshizawa, T. J. Biochem. 1977, 82, 1599−1604.
(6)Stoeckenius, W.; Lozier, R. H.; Bogomolni, R. A. Biochim. Biophys. Acta 1979, 505, 215−278.
(7)Sperling, W.; Carl, P.; Rafferty, Ch. N.; Dencher, N. A. Biophys. Struct. Mech. 1977, 3, 79−94.
(8)Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829−834.
(9)Atkins, P.; de Paula, J. Transition State Theory In Atkins’ Physical Chemistry; Crowe, J., Fiorillo, J., Hughes, R. Eds.; W. H. Freeman and Company: New York, 2006; Ch. 24, 880–880.
第四章
(1)Becher, B.; Tokunaga, F.; Ebrey, T. G. Biochemistry 1978, 17, 2293−2300.
(2)Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829−834.
(3)Cassim, J. Y. Biophys. J. 1992, 63, 1432−1442.
(4)Yokoyama, Y.; Sonoyama, M.; Mitaku, S. Proteins 2004, 54, 442−454.
(5)Schlebach, J. P.; Cao, Z.; Bowie, J. U.; Park, C. Protein Sci. 2012, 21, 97−106.
(6)Ng, K. C.; Chu, L.-K. J. Phys. Chem. B 2013, 117, 6241−6249.
(7)Liu, J.; Liu, M. Y.; Nguyen, J. B.; Bhagat, A.; Mooney, V.; Yan, E. C. Y. J. Am. Chem. Soc. 2009, 131, 8750−8751.
(8)Liu, J.; Liu, M. Y.; Fu, L.; Zhu, G. A.; Yan, E. C. Y. J. Biol. Chem. 2011, 286, 38408−38416.
(9)Kovács, I.; Hollós-Nagy, K.; Váró, G. J. Photochem. Photobiol. B 1995, 27, 21−25.
(10)Seltzer, S. J. Am. Chem. Soc. 1992, 114, 3516−3520.
(11)Tachikawa, H.; Iyama, T. J. Photochem. Photobiol. B 2004, 76, 55−60.
(12)Humphrey, W.; Lu, H.; Logunov, I.; Werner, H.-J.; Schulten, K. Biophys. J. 1998, 75, 1689−1699.
(13)Tallent, J. R.; Stuart, J. A.; Song, Q. W.; Schmidt, E. J.; Martin, C. H.; Birge, R. R. Biophys. J. 1998, 75, 1619−1634.
(14)Seltzer, S. J. Am. Chem. Soc. 1987, 109, 1627−1631.
(15)Birnbaum, D.; Seltzer, S. Bioorg. Chem. 1991, 19, 18−28.
(16)Schulte, A.; Bradley, L., II. Biophys. J. 1995, 69, 1554−1562.
(17)Kubli-Garfias, C.; Salazar-Salinas, K.; Perez-Angel, E. C.; Seminario, J. M. J. Mol. Model 2011, 17, 2539−2547.
(18)Makhatadze, G. I.; Clore, G. M.; Gronenborn, A. M. Nat. Struct. Biol. 1995, 2, 852−855.
(19)Makhatadze, G. I.; Privalov, P. L. Adv. Protein Chem. 1995, 47, 307−425.
(20)Seltzer, S.; Zuckermann, R. J. Am. Chem. Soc. 1985, 107, 5523−5525.
(21)Maeda, A.; Iwasa, T.; Yoshizawa, T. J. Biochem. 1977, 82, 1599−1604.
(22)Stoeckenius, W.; Lozier, R. H.; Bogomolni, R. A. Biochim. Biophys. Acta 1979, 505, 215−278.
(23)Sperling, W.; Carl, P.; Rafferty, Ch. N.; Dencher, N. A. Biophys. Struct. Mech. 1977, 3, 79−94.
(24)Groenendijk, G. W. T.; De Grip, W. J.; Daemen, F. J. M. Biochim. Biophys. Acta 1980, 617, 430−438.
(25)Oesterhelt, D.; Meentzen, M.; Schumann, L. Eur. J. Biochem. 1973, 40, 453−463.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. Computational modelling in biology and chemistry: noise in developmental biology and equilibrium kinetics in a chemical system
2. 產品涉入與產品來源國影響購買意願: 以越南市場進口汽車品牌為例
3. 澎湖褒歌研究 以廈門歌謠為對照的觀察
4. 應用於生醫感測平台之 28 奈米極低功率近/次臨界 先進先出記憶體設計
5. Kano二維品質模式於新產品設計之應用 – 以C公司所研發之穿戴式腦波帽為例
6. 原住民族就業服務政策執行之研究 –以桃園市為例
7. 以隱喻抽取技術探討特定地景與目的地意象之關聯 ~~以龍井區竹坑南寮步道為例~~
8. 結合雲端建構學生成績資訊系統 - 以彰化縣某國小學六年級為例
9. 《蘋果樹下 》:回家的旅程 手繪動畫創作
10. 乙二醇製程反應氣體及環氧乙烷水溶液 (9 mass%) 熱失控反應研究
11. Cross-Cultural Adjustment of Expatriates - Cases Analysis
12. 一、(+)-Antrocin的全合成研究 二、N-型有機場效電晶體:硫化苝雙亞醯胺合成及研究 三、四氫異奎林噻唑烷之連鎖加成反應研究
13. 1. 可應用為n型有機場效電晶體之均苯四甲二硫醯亞胺 及其衍生物之合成 2. γ-氨基-α,β-不飽和酮類與3,4-二氫異喹啉應用於 aza-Michael 加成反應之探討
14. 探討青年人生活壓力、拒菸自我效能 及吸菸決策權衡之關係
15. 探討志願服務機構志工管理者與志工之互動關係 ─以財團法人「張老師」基金會為例