跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育瑋
研究生(外文):Chang, Yu Wei
論文名稱:設計與合成二茂鐵衍生物及其應用於全彩串聯式有機發光二極體之載子產生材料
論文名稱(外文):Ferrocene Derivatives as Charge Generation Materials in Full-Color Tandem Organic Light Emitting Diodes
指導教授:鄭建鴻鄭建鴻引用關係
指導教授(外文):Cheng, Chien Hong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:225
中文關鍵詞:有機發光二極體串聯式元件磷光載子產生材料
外文關鍵詞:OLEDtandem devicephosphorescencecharge generation materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們合成出兩種以二茂鐵為中心結構的載子產生材料,藉由導入雙取代的聯苯 (BBPFc, Fc02) 與單取代的苯胺 (DPAFc, Fc07),使其具有傳遞電洞的特性,同時保有二茂鐵的電化學穩定性質。與 C60 搭配作為載子產生層,因二茂鐵衍生物的 HOMO 能階 (4.8 ~ 5.0 eV) 與 C60 的 LUMO 能階 (4.5 eV) 相近,可有效產生並傳遞載子,應用於綠色磷光串聯式元件中,最大外部量子效率可達 59.5 %,電流效率 238.4 cd/A,功率效率 135.9 lm/W,為目前文獻中以 Ir(ppy)3 為發光客體之最高功率效率紀錄。而在紅色磷光元件中,可達到最大外部量子效率 50.4 %,電流效率53.1 cd/A,功率效率33.3 lm/W。藍色磷光可達到最大外部量子效率 58.2 %,電流效率 156.6 cd/A,功率效率54.6 lm/W。成功得到高效率的綠、紅、藍色磷光元件表現,並且降低元件滾降現象,其中,又因Fc02具有較快的電洞遷移率,因此元件效率表現最佳。
接著,我們改以吡嗪[2,3-g]喹啉衍生物 PQDMN 與二茂鐵衍生物搭配作為串聯式元件中的載子產生層,因其以丙二腈及氰基團為官能基,可擁有低LUMO能階 (4.2 eV) 且堆疊性佳,具有良好載子產生及傳遞特性,應用於串聯式元件中無須 MoO3幫助電洞注入,即可達到單層光色元件的兩倍效率。在串聯式綠色磷光元件中,使用Fc07 可達到最大外部量子效率 59.7 %,電流效率 232.6 cd/A,功率效率 132.7 lm/W 的優異表現。紅色磷光方面,Fc02 可達到最大外部量子效率 51.2 %,電流效率 52.7 cd/A,功率效率29.6 lm/W。在藍色磷光元件中,Fc02 則可達到最大外部量子效率 68.0 %,電流效率 195.7 cd/A,功率效率65.5 lm/W,為目前文獻中以 FIrpic 為發光客體之最高功率效率紀錄。
最後,我們分別利用 C60 與 PQDMN搭配二茂鐵衍生物,製作高效率雙波段白光元件,在 C60 / Fc07的串聯式白光元件中,其最大外部量子效率為 49.9 %,最大電流效率 150.6 cd/A,最大功率效率 49.6 lm/W,CIE 座標 (0.31, 0.39) ; 而 PQDMN/ Fc02的白色磷光元件,其最大外部量子效率可達 53.4 %,最大電流效率 150.5 cd/A,最大功率效率 62.8 lm/W,CIE 座標 (0.31, 0.41),為目前使用 Ir(pq)3作白光元件的文獻中最高的效率紀錄。

In this thesis, we synthesized two novel p - type of charge generation materials, one is composed of a ferrocene core and bis(biphenyl) group, and the other is composed of a ferrocene core and bis(biphenyl)amino group. The molecular design not only enhances the thermal property and the carrier mobility of ferrocene, but also maintains its electrochemical stability. In cooperation with C60 as charge generation layer (CGL) in tandem OLED, the CGL could generate and inject charge into the adjacent electron or hole injection layers efficiently due to the small energy gap between the HOMO levels of ferrocene derivatives and the LUMO level of C60. Applications of this CGL in tandem R,G,B devices, it shows high performance with maximum EQE of 50.4 %, 59.5 %, 58.2 % and maximum current efficiency of 53.1 cd/A, 238.4 cd/A, 156.6 cd/A and maximum power efficiency of 33.3 lm/W, 135.9 lm/W, 54.6 lm/W, respectively. Remarkably, the efficiency roll – off of the devices is low and the power efficiency of the green device is among the best of Ir(ppy)3 – based green devices.
Next, we applied the ferrocene derivatives with a new n – type CGL, pyrazine quinoxaline derivatives, PQDMN. With the malononitile and Cyanide functional group, PQDMN could have low LUMO level as 4.2 eV and the aromatic ring could adjust the molecular interaction which enhances thermal stability and carrier transporting capability. The tandem R, G, B devices exhibit high efficiencies of maximum EQE of 51.2 %, 59.7 %, 68.0 % and maximum current efficiency of 52.7 cd/A, 232.6 cd/A, 195.7 cd/A and maximum power efficiency of 29.6 lm/W, 132.7 lm/W, 65.5 lm/W, respectively. Especially, the power efficiency of the blue device is among the best of FIrpic – based blue devices.
In the last chapter, we applied these two sets of CGL in white phosphorescent OLED, since we have developed such highly efficient RGB devices. The two- color tandem WOLED constructed with C60 / Fc07 CGL reveals a maximum EQE as high as 49.9 %, a maximum current efficiency of 150.6 cd/A and a maximum power efficiency of 49.6 lm/W, with a stable CIE coordination (0.31, 0.39) from the luminance of 500 ~ 3000 cd/m2. As for PQDMN / Fc07, the white device gives a maximum EQE as high as 53.4 %, a maximum current efficiency of 150.5 cd/A and a maximum power efficiency of 62.8 lm/W, with a stable CIE coordination (0.31, 0.41) from the luminance of 500 ~ 3000 cd/m2.


摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 VIIX
第一章 緒論 1
第一節 有機電激發光之演進 2
第二節 有機分子放光機制 5
第三節 OLED 元件與發光原理 7
第四節 OLED 元件效率與壽命表現 9
第五節 串聯式有機發光二極體 (Tandem OLED) 14
參考文獻 19
第二章 二茂鐵衍生物與碳六十於串聯式磷光元件之應用 22
前言與研究動機 103
第一節 二茂鐵衍生物的合成與性質鑑定 26
第二節 二茂鐵衍生物之物理性質探討 29
第三節 二茂鐵衍生物應用於磷光串聯式元件之研究 33
結論 92
實驗部分 94
參考文獻 99
第三章 二茂鐵衍生物與吡嗪[2,3-g]喹啉衍生物於串聯式磷光元件之應用 102
前言與研究動機 103
第一節 材料性質介紹 105
第二節 二茂鐵衍生物應用於磷光串聯式元件之研究 108
結論 156
參考文獻 159
第四章 二茂鐵衍生物於串聯式白色磷光元件之應用 160
前言與研究動機 161
第一節 二茂鐵衍生物與碳六十應用於串聯式白色磷光元件 167
第二節 二茂鐵衍生物與吡嗪[2,3-g]喹啉應用於串聯式白色磷光元件 189
結論 207
參考文獻 209
附錄一 量測原理、藥品、儀器與元件製作 211
附錄二 核磁共振光譜資料 219

CHAPTER 1.
1.M. Pope, H.P.K., P. Magnante, Journal of Chemical Physics, 1963, 38, 2042.
2.C.W. Tang, S.A.V., Applied Physics Letters, 1987, 51, 913.
3.C.W. Tang, S.A.V., C.H. Chen, Journal of Applied Physics, 1989, 65, 3610.
4.P. E. Burrows, G.G., V.Bulovic, Z. Shen, S. R. Forrest, M. E. Thompson, IEEE Transactions on Electron Devices, 1997, 44, 1188.
5.http://www.olympusmicro.com/primer/java/jablonski/lightandcolor/index.html
6.林敬二, 林宗義, 儀器分析第四版 上冊. 1994. p. 174.
7.M. A. Baldo, D.F.O.B., Y. You, A. Shoustikov,S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151.
8.http://www.uniregensburg.de/Fakultaeten/nat_Fak_IV/Physikalische_Chemie/Yersin/OLEDvde.htm
9.Shih-Chun Lo, N.A.H.M., Jonathan P. J. Markham, Steven W. Magennis, Paul L. Burn,Oleg V. Salata, and Ifor D. W. Samuel, Advanced Materials, 2002, 14, 975.
10.梁從主, 陳琬鎔, 曾偉菁, 科學發展月刊. 2013. p. 58.
11.G. Gu, D.Z.G., P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, OPTICS LETTERS, 1997, 22, 396.
12.B. Kim, Y.P., D. Yokoyama, J. Kido, J. Park, , in The 12th International Meeting on Information Display. 2012.
13.Zhang, Q., J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, Journal of American Chemical Society, 2012, 134, 14706.
14.Su, S.-J., E. Gonmori, H. Sasabe and J. Kido, Advanced Materials, 2008, 20.
15.Su, S.J., H. Sasabe, Y.J. Pu, K. Nakayama and J. Kido, Advanced Materials, 2010, 22, 3311.
16.http://coloriq.com/zh-hans/author/admin/
17.Toshio Matsumoto, T.N., Jun Endo, Koichi Mori, Norifumi Kawamura, Akira Yokoi, Junji Kido, SID 03 Digest, 2003979.
18.Hung, W.Y., G.C. Fang, S.W. Lin, S.H. Cheng, K.T. Wong, T.Y. Kuo and P.T. Chou, Sci Rep, 2014, 4, 5161.
19.Lee, S., H. Shin and J.J. Kim, Adv Mater, 2014, 26, 5864.
20.Sun, H., Y. Chen, L. Zhu, Q. Guo, D. Yang, J. Chen and D. Ma, Advanced Electronic Materials, 2015, 1, 1500176.
21.Pu, Y.J., T. Chiba, K. Ideta, S. Takahashi, N. Aizawa, T. Hikichi and J. Kido, Advanced Materials, 2015, 27, 1327.
22.Ou, Q.-D., L. Zhou, Y.-Q. Li, J.-D. Chen, C. Li, S. Shen and J.-X. Tang, Advanced Optical Materials, 2015, 3, 87.

CHAPTER 2
1.Burrows, P.E., S.R. Forrest, S.P. Sibley and M.E. Thompson, Applied Physics Letters, 1996, 69, 2959.
2.Guo, F. and D. Ma, Applied Physics Letters, 2005, 87, 173510.
3.Chang, C.-C., J.-F. Chen, S.-W. Hwang and C.H. Chen, Applied Physics Letters, 2005, 87, 253501.
4.Kanno, H., R.J. Holmes, Y. Sun, S. Kena-Cohen and S.R. Forrest, Advanced Materials, 2006, 18, 339.
5.Qi, X., M. Slootsky and S. Forrest, Applied Physics Letters, 2008, 93, 193306.
6.Liao, L.S., K.P. Klubek and C.W. Tang, Applied Physics Letters, 2004, 84, 167.
7.Law, C.W., K.M. Lau, M.K. Fung, M.Y. Chan, F.L. Wong, C.S. Lee and S.T. Lee, Applied Physics Letters, 2006, 89, 133511.
8.Ding, L., Y.-Q. Sun, H. Chen, F.-S. Zu, Z.-K. Wang and L.-S. Liao, J. Mater. Chem. C, 2014, 2, 10403.
9.Chen, C.-W., Y.-J. Lu, C.-C. Wu, E.H.-E. Wu, C.-W. Chu and Y. Yang, Applied Physics Letters, 2005, 87, 241121.
10.Chiba, T., Y.-J. Pu, R. Miyazaki, K.-i. Nakayama, H. Sasabe and J. Kido, Organic Electronics, 2011, 12, 710.
11.Chen, Y., H. Tian, Y. Geng, J. Chen, D. Ma, D. Yan and L. Wang, Journal of Materials Chemistry, 2011, 21, 15332.
12.Lee, S., J.-H. Lee, J.-H. Lee and J.-J. Kim, Advanced Functional Materials, 2012, 22, 855.
13.METZMACH, K.D., Journal of Physics D Applied Physics, 1970, 3, L5.
14.Kang, J.-W., et al., Journal of Materials Chemistry, 2007, 17, 3714.
15.Khan, M.A., W. Xu, H. Khizar ul, Y. Bai, X.Y. Jiang, Z.L. Zhang, W.Q. Zhu, Z.L. Zhang and W.Q. Zhu, Journal of Applied Physics, 2008, 103, 014509.
16.Sun, H., Y. Chen, L. Zhu, Q. Guo, D. Yang, J. Chen and D. Ma, Advanced Electronic Materials, 2015, 1, 1500176.
17.Baiquan Liu, M.X., Lei Wang,Hong Tao,Yueju Su,Dongyu Gao, and L.L. Jianhua Zou, Junbiao Peng, Journal of Solid State Science and Technology, 2013, 2, 258.
18.Ye, T., S. Shao, J. Chen, L. Wang and D. Ma, ACS Appl Mater Interfaces, 2011, 3, 410.
19.Su, S.-J., T. Chiba, T. Takeda and J. Kido, Advanced Materials, 2008, 20, 2125.
20.Liu, S., R. Wu, J. Huang and J. Yu, Applied Physics Letters, 2013, 103, 133307.

CHAPTER 3
1.Chiba, T., Y.-J. Pu, R. Miyazaki, K.-i. Nakayama, H. Sasabe and J. Kido, Organic Electronics, 2011, 12, 710.
2.Law, C.W., K.M. Lau, M.K. Fung, M.Y. Chan, F.L. Wong, C.S. Lee and S.T. Lee, Applied Physics Letters, 2006, 89, 133511.
3.謝維庭, 設計與合成吡嗪[2,3-g]喹啉衍生物與其應用於有機電激發光元件之載子產生層, in 化學系. 2015, 國立清華大學.
4.Lee, S., J.-H. Lee, J.-H. Lee and J.-J. Kim, Advanced Functional Materials, 2012, 22, 855.
5.Seino, Y., S. Inomata, H. Sasabe, Y.J. Pu and J. Kido, Adv Mater, 2016, 28, 2638.
6.Sun, H., Y. Chen, L. Zhu, Q. Guo, D. Yang, J. Chen and D. Ma, Advanced Electronic Materials, 2015, 1, 1500176.

CHAPTER 4
1.Junji Kido, M.K., Katsutoshi Nagai, Science, 1995, 267, 1332.
2.Kamtekar, K.T., A.P. Monkman and M.R. Bryce, Adv Mater, 2010, 22, 572.
3.Sun, Y., N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson and S.R. Forrest, Nature, 2006, 440, 908.
4.Hung, W.Y., G.C. Fang, S.W. Lin, S.H. Cheng, K.T. Wong, T.Y. Kuo and P.T. Chou, Sci Rep, 2014, 4, 5161.
5.Reineke, S., F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 2009, 459, 234.
6.Wang, Q., J. Ding, D. Ma, Y. Cheng, L. Wang and F. Wang, Advanced Materials, 2009, 21, 2397.
7.Chang, C.-C., J.-F. Chen, S.-W. Hwang and C.H. Chen, Applied Physics Letters, 2005, 87, 253501.
8.Chen, Y., H. Tian, J. Chen, Y. Geng, D. Yan, L. Wang and D. Ma, Journal of Materials Chemistry, 2012, 22, 8492.
9.Lee, S., H. Shin and J.J. Kim, Adv Mater, 2014, 26, 5864.
10.Ding, L., Y.-Q. Sun, H. Chen, F.-S. Zu, Z.-K. Wang and L.-S. Liao, J. Mater. Chem. C, 2014, 2, 10403.
11.Seino, Y., S. Inomata, H. Sasabe, Y.J. Pu and J. Kido, Adv Mater, 2016, 28, 2638.
12.Lai, C.-C., M.-J. Huang, H.-H. Chou, C.-Y. Liao, P. Rajamalli and C.-H. Cheng, Advanced Functional Materials, 2015, 25, 5548.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊