|
Chapter 1. [1] S. N. habisreutinger, L. Schmidt-mende, and J. K. Stolarczyk; Angew Chem. Int. Ed. 2013, 52, 7372-7408. [2] S. Enthaler, J. v. Langermann and T. Schmidt, Energy Environ. Sci., 2010, 3, 1207-1217. [3] J. G. Canadell, C. L. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, G. Marland. Proc. Natl. Acad. Sci. 2007, 104, 18866. [4] P. Tans. Trends in atmospheric carbon dioxide, NOAA/ESRL. http://www. esrl.noaa.gov/gmd/ccgg/trends (2010). [5] M. Bunn, O. Heinonen, Science 2011. 333, 1580. [6] Z. Chen, F. Blaabjerg, Renewable and Sustainable Energy Reviews 2009, 13, 1288. [7] K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, H. Fayaz, Renewable and Sustainable Energy Reviews 2011,15, 2149. [8] R. Sternberg, Renewable and Sustainable Energy Reviews 2009, 14, 713. [9] J. S. Yuan, K. H. Tiller, H. Al-Ahmad, N. R. Stewart, C. N. Stewart Jr, Trends in Plant Science 2008, 13, 421. [10] D. R. Conn, Library Journal 2011, 136, 102. [11] N. S. Lewis, G. Crabtree (Editors). Basic Research Needs for Solar Energy Utilization. Office of Science, U.S. Department of Energy, Washington, DC (2005). [12] R. Banos, et al., Renewable and Sustainable Energy Reviews 2011, 15, 1753. [13] M. Grätzel, Inorg. Chem., 2005, 44, (20), 6841–6851. [14] Lewis, N. S. et al. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005. United States: N. p., 2005. Web. doi:10.2172/899136. [15] M. D. Archer, R. Hill, Clean electricity from photovoltaics (Imperial College Press, 2001). [16] A. Goetzberger, V. U. Hoffmann, Photovoltaic solar energy generation (Springer, 2005). [17] M.I. Hoffert, Ken Caldeira, A.K. Jain, Erik F. Haites, L.D. Danny arvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Nature 1998, 395, 881. [18] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, K.-C. Ho, Angew. Chem. Int. Ed. 2006, 45, 5822. [19] P. Haueter, S. Moeller, R. Palumbo, A. Steinfeld, Sol. Energy 2000, 67 161. [20] W. Hoffmann, Sol. Energy Mater. Sol. 2006, 90, 3285. [21] J. Herion, E.A. NiekischG. Scharl, Sol. Energy Mater. 1980, 4, 101. [22] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 1999, 285, 692. [23] A. Goetzberger, C. Hebling, Sol. Energy Mater. Sol. Cells. 2000, 62, 1. [24] A. Goetzberger, J. Luther, G. Willeke, Sol. Energy Mater. Sol. Cells 2002, 74, 1. [25] K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovoltaics 2004, 12 69. [26] E. Guillén Rodríguez, Photoelectrochemical characterization of dye solar cells based on nanostructured zinc oxide substrates, “PhD thesis” (2011). [27] J. Nelson, “The Physics of Solar Cells”, (2003) Imperial College Press. [28] M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley, New York (2008). [29] M. A. Green. Third generation photovoltaics: advanced solar energy conversion. Birkhäuser (2006). [30] W. Shockley, H. J. Queisser. J. Appl. Phys. 1961, 32, 510. [31] National Renewable Energy Laboratory. Main page. Online, May 2015. URL www.nrel.gov. [32] Sharp Corporation. Sharp develops concentrator solar cell with world’s highest conversion efficiency of 44.4%. Online, June 2013. URL www.sharp-world.com/corporate/news/130614.html. [33] Fraunhofer ISE. New world record for solar cell efficiency at 46%. Online, April 2015. URL www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record- for-solar-cell-efficiency-at-46-percent. [34] a) B. O’Regan, M. Grätzel, Nature. 1991, 353, 737; b) M. Grätzel, J. Photochem. Photobiol., C, 2003, 4, 145-153. [35] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595-6663. [36] J. Bisquert, ChemPhysChem, 2011, 12, 1633-1636. [37] R. Tagliaferro, D. Colonna, T. M. Brown, A. Reale and A. Di Carlo, Opt. Express, 2013, 21, 3235-3242. [38] N. Sridhar and D. Freeman, Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, hamburg, Germany, 2011. [39] T. M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale and A. Di Carlo, J. Mater. Chem. A, 2014, 2, 10788-10817. [40] Q. Wang, S. Ito, M. Gr ̈atzel, F. Fabregat-Santiago, I. Mora-Ser ́o, J. Bisquert, T. Bessho and H. Imai, J. Phys. Chem. B, 2006, 110, 25210–25221. [41] J. Bisquert, Phys. Chem. Chem. Phys., 2008, 10, 49–72. [42] J. Halme, P. Vahermaa, K. Miettunen and P. Lund, Adv. Mater., 2010, 22, E210-E234. [43] B. C. O’Regan, J. Durrant, Acc. Chem. Res. 2009, 42, 1799. [44] J. R. Durrant, S. A. Haque and E. Palomares, Coord. Chem. Rev. 2004, 248, 1247. [45] W. R. Duncan and O. V. Prezhdo, Annu. Rev. Phys. Chem. 2007, 58, 143. [46] O. V. Prezhdo, W. R. Duncan and V. V. Prezhdo, Acc. Chem. Res. 2008, 41, 339. [47] A. Anthonysamy, Y. Lee, B. Karunagaran, V. Ganapathy, S.-W. Rhee, S. Karthikeyan, K.S. Kim, M.J. Ko, N.-G. Park, M.-J. Ju et al. J. Mater. Chem. 2011, 21, 12389-12397. [48] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R.H. Baker, P. Wang, S.M. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2008, 130, 10720-10728. [49] F. Gao, Y. Wang, J. Zang, D. Shi, M. Wang, R.H. Baker, P. Wang, S.M. Nazeeruddin, M. Gratzel, Chem. Commun. 2008, 23, 2635-2637. [50] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, J. Phys. Chem. C 2009, 113, 6290-6297. [51] Q. Yu, S. Liu, M. Zang, N. Cai, Y. Wang, P. Wang, J. Phys. Chem. C 2009, 113, 14559-14566. [52] J.F. Guillemoles, V. Barone, L. Joubert, C. Adamo, J. Phys. Chem. A 2002, 106, 11354-11360. [53] X. Zhang, J.J. Zhang, Y.Y. Xia, J. Photochem. Photobiol. A 2007, 185, 283-288. [54] O. Kitao, H. Sugihara, Inorg. Chim. Acta 2008, 361, 712-728. [55] Y. Xu, W.K. Chen, M.J. Cao, S.H. Liu, J.Q. Li, A.I. Philippopoulos, P. Falaras, Chem. Phys. 2006, 330, 204-211. [56] G.J. Wilson, G.D. Will, Inorg. Chim. Acta 2010, 363, 1627-1638. [57] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663. [58] P. Senthil Kumar, K. Vasudevan, A. Prakasam, M. Geetha, P.M. Anbarasan, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 77, 45-50. [59] B. Peng, S.Q. Yang, L.L. Li, F.Y. Cheng, J. Chen, J. Chem. Phys. 2010, 132, 304-305. [60] M. Pastore, E. Mosconi, F.D. Angelis, M. Grätzel, J. Phys. Chem. C 2010, 114, 7205-7212. [61] H.W. Ham, Y.S. Kim, Thin Solid Films. 2010, 518, 6558-6563. [62] C.M. Lan, H.P. Wu, T.Y. Pan, C.W. Chang, W.S. Chao, C.T. Chen, C.L. Wang, C.Y. Lin, E.W.G. Diau, Energy Environ. Sci. 2012, 5, 6460-6464. [63] X.F. Wang, H. Tamiaki, Energy Environ. Sci. 2010, 3, 94-106. [64] M.G. Walter, A.B. Rudine, C.C. Wamser, J. Porphyrins Phthalocyanines C 2010, 14, 759-792. [65] H. Dong, X. Zhou, C. Jiang, Theor. Chem. Acc. 2012, 131, 1102. [66] A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.Y. Yeh, S.M. Nazeeruddin, Science 2011, 334, 629-634. [67] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-Le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103-3109. [68] A. Mishra, M. K. R. Fischer, & P. Bauerele, Angew. Chem. Int. Ed. 2009, 48, 2474-2499. [69] S.-L. Li, K.-J. Jiang, K.-F. Shao, & L.-M. Yang, Chem. Commun. 2006, 26, 2792-2794. [70] J. Park, C. Barolo, F. Sauvage, N. Barbero, C. Benzi, P. Quagliotto, S. Coluccia, D. Di Censo, M. Gr tzel, M. K. Nazeeruddin, and G. Viscardi, Chem. Commun. 2012, 48, 2782. [71] J. Park, G. Viscardi, C. Barolo, and N. Barbero, Chimia 2013, 67, 129. [72] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192. [73] Z. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao, P. Wang, Angew. Chem. Int. Ed. 2015, 54, 5994. [74] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 2015, 137, 3799. [75] A. Yella, C.-L. Mai, S. M. Zakeeruddin, S.-N. Chang, C.-H. Hsieh, C.-Y. Yeh, M. Grätzel, Angew. Chem. 2014, 126, 3017. [76] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242-247. [77] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.-H. Zhu, J. Am. Chem. Soc. 2015, 137, 14055. [78] Kakiage, K. et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 15, 15894-15897. [79] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, T. Kyomen, M. Hanaya, Chem. Commun. 2015, 51, 6315. [80] Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu and H. Tian, J. Org. Chem., 2008, 73, 3791–3797. [81] L.-L. Tan, J.-F. Huang, Yong Shen, L.-M. Xiao, J.-M. Liu, D.-B. Kuanga and C.-Y. Su, J. Mater. Chem. A, 2014, 2, 8988-8994 [82] Z. Ning, Y. Fu and H. Tian, Energy Environ. Sci., 2010, 3, 1170-1181. [83] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, Chem. Mater., 2010, 22, 1915-1925. [84] M. Liang and J. Chen, Chem. Soc. Rev., 2013, 42, 3453-3488 [85] Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu and H. Tian, J. Org. Chem., 2008, 73, 3791-3797 [86] J. Tang, J. Hua, W. Wu, J. Li, Z. Jin, Y. Long and H. Tian, Energy Environ. Sci., 2010, 3, 1736-1745 [87] Z. Ning, Q. Zhang, H. Pei, J. Luan, C. Lu, Y. Cui and H. Tian, J. Phys. Chem. C, 2009, 113, 10307–10313 [88] J. Tang, W. Wu, J. Hua, J. Li, X. Li and H. Tian, Energy Environ. Sci., 2009, 2, 982–990 [89] Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gr¨azel and W. Zhu, Energy Environ. Sci., 2012, 5, 8261–8272 [90] D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Gr¨atzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 2008, 130, 6259-6266 [91] K. R. J. Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-H. Lai, Y.-M. Cheng and P.-T. Chou, Chem. Mater., 2008, 20, 1830-1840 [92] W.-I. Hung, Y.-Y. Liao, T.-H. Lee, Y.-C. Ting, J.-S. Ni, W.-S. Kao, J.-T. Lin, T.-C. Wei and Y.-S. Yen, Chem. Commun., 2015,51, 2152-2155. [93] W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigm. 2013, 98, 125-135. [94] Y. Wu and W. Zhu, Chem. Soc. Rev., 2013, 42, 2039-2058 [95] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev., 1998,177, 347. [96] M. Gratzel, Inorg. Chem., 2005, 44, 6841. [97] E. M. Barea, J. Bisquert, Langmuir 2013, 29, 8773. [98] J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, G. Cao, J. Phys. Chem. C 2012, 116, 25727. [99] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Graẗzel, Chem. Commun. 2005, 4351. [100] C. Shi, S. Dai, K. Wang, X. Pan, F. Kong, Hu, L. Vib. Spectrosc. 2005, 39, 99. [101] G. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 1997, 101, 8141. [102] K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Langmuir 2004, 20, 4205. [103] Y. Liu, H. Lin, J. T. Dy, K. Tamaki, J. Nakazaki, C. Nishiyama, S. Uchida, H. Segawa, J. Li, J. Phys. Chem. C 2014, 118, 1426. [104] Z. Sun, R.-K. Zhang, H.-H. Xie, H. Wang, M. Liang, S. Xue, J. Phys. Chem. C 2013, 117, 4364. [105] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, J. Phys. Chem. C 2009, 113, 21779. [106] N. Kopidakis, N. R. Neale, A. J. Frank, J. Phys. Chem. B 2006, 110, 12485. [107] M.-J. Kim, C.-R. Lee, W.-S. Jeong, J.-H. Im, T.I. Ryu, N.-G. Park, J. Phys. Chem. C 2010, 114, 19849. [108] N.R. Neale, N. Kopidakis, J. vande Lagemaat, M. Graẗzel, A. J. Frank, J. Phys. Chem. B 2005, 109, 23183. [109] K.-M. Lee, V. Suryanarayanan, K.-C. Ho, K. R. Justin Thomas, J. T. Lin, Sol. Energy Mater. Sol. Cells 2007, 91, 1426. Chapter 3 B. O’Regan and M. Grätzel, Nature, 1991, 353, 737. [2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242. [3] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192. [4] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103. [5] a) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595; b) C.-P. Lee, Ryan Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J.-T. Lin and K.-C. Ho, RSC Adv., 2015, 5, 23810. [6] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, Chem. Commun., 2015, 51, 15894. [7] a) B. C. O’Regan, S. Scully, A. C. Mayer, E. Palomares and J. Durrant, J. Phys. Chem. B, 2005, 109, 4616; b) Z. Zhang, S. M. Zakeeruddin, B. C. O’Regan, R. Humphry-Baker and M. Grätzel, J. Phys. Chem. B, 2005, 109, 21818. [8] a) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Chem. Commun., 2002, 1464; b) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, J. Am. Chem. Soc., 2003, 125, 475. [9] a) S. Handa, S. A. Haque and J. R. Durrant, Adv. Funct. Mater., 2007, 17, 2878; b) H. Choi, S. Kang, J. Ko, G. Gao, H. Kang, M.-S. Kang, Md. K. Nazeeruddin and M. Grätzel, Angew. Chem. Int. Ed., 2009, 48, 5938. [10] a) N. Satoh, T. Nakashima and K. Yamamoto, J. Am. Chem. Soc., 2005, 127, 13030; b) T. Nakashima, N. Satoh, K. Albrecht and K. Yamamoto, Chem. Mater., 2008, 20, 2538. [11] a) J. Xu, H. Wu, X. Jia and D. Zou, Chem. Commun., 2012, 48, 7793; b) Z. Ning, Y. Fu and H. Tian, Energy Environ. Sci., 2010, 3, 1170; c) S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy and M. Grätzel, Chem. Commun., 2008, 41, 5194; d) C. Lan, H. Wu, T. Pan, C. Chang, W. Chao, C. Chen, C. Wang, C. Lin and E. W. Diau, Energy Environ. Sci., 2012, 5, 6460; e) S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian and L. Han, Chem. Commun., 2012, 48, 6972; f) Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara, Chem. Mater., 2008, 20, 3993; g) N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc., 2006, 128, 14256; h) R. Agosta, R. Grisorio, L. De Marco, G. Romanazzi, G. P. Suranna, G. Gigli and M. Manca, Chem. Commun., 2014, 50, 9451; i) X. Sun, Y.-Q. Wang, X. Li, H. Ågren, W.-H. Zhu, H. Tian and Y.-S. Xie, Chem. Commun., 2014, 50, 15609. [12] J.-Y. Su, C.-H. Tsai, S.-A. Wang, T.-W. Huang, C.-C. Wu and K.-T. Wong, RSC Adv., 2012, 2, 3722. [13] a) T. Kim, R. M. Crooks, M. Tsen and L. Sun, J. Am. Chem. Soc., 1995, 117, 3963; b) H. Menzel, M. D. Mowery, M. Cai and C. E. Evans, Adv. Mater., 1999, 11, 131; c) D. H. Charych, J. O. Nagy, W. Spevak and M. D. Bednarski, Science, 1993, 261, 585; d) J. Tsibouklis, Adv. Mater. 1995, 7, 407; e) N. Fujita, Y. Sakamoto, M. Shirakawa, M. Ojima, A. Fujii, M. Ozaki and S. Shinkai, J. Am. Chem. Soc., 2007, 129, 4134. [14] M. I. Mangione and R. A. Spanevello, Macromolecules, 2013, 46, 4754. [15] J. A. Bergman, K. Hahne, J. Song, C. A. Hrycyna, and R. A. Gibbs, ACS Med. Chem. Lett., 2012, 3, 15. [16] a) B. Tieke, G. Wegner, D. Naegele and H. Ringsdorf, Angew. Chem., Int. Ed., 1976, 15, 764; b) B. Tieke, H.-J. Graf, G. Wegner, B. Naegele, H. Ringsdorf, A. Banerjie, D. Day and J. B. Lando, Colloid Polym. Sci., 1977, 255, 521. [17] a) D. J. Ahn and J.-M. Kim, Acc. Chem. Res., 2008, 41, 805; b) C. Zhu, L. Liu, Q. Yang, F. Lv and S. Wang, Chem. Rev., 2012, 112, 4687; c) B. Yoon, S. Lee and J.-M. Kim, Chem. Soc. Rev., 2009, 38, 1958; d) X. Sun, T. Chen, S. Huang, L. Li and H. Peng, Chem. Soc. Rev., 2010, 39, 4244. [18] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49. [19] a) S.-R. Li, C.-P. Lee, H.-T. Kuo, K.-C. Ho and S.-S. Sun, Chem. Eur. J., 2012, 18, 12085; b) S.-R. Li, C.-P. Lee, P.-F. Yang, C.-W. Liao, M. M. Lee, W.-L. Su, C.-T. Li, H.-W. Lin, K.-C. Ho and S.-S. Sun Chem. Eur. J., 2014, 20, 10052; c) S.-R. Li, C.-P. Lee, C.-W. Liao, W.-L. Su, C.-T. Li, K.-C. Ho and S.-S. Sun, Tetrahedron, 2014, 70, 6276. [20] M. Xu, M. Zhang, M. Pastore, R. Li, F. D. Angelis and P. Wang, Chem. Sci., 2012, 3, 9 Chapter 4 [1] B. O’Regan, M. Grätzel, Nature 1991, 353, 737. [2] a) M.I. Hoffert, Ken Caldeira, A.K. Jain, Erik F. Haites, L.D. Danny arvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Nature 1998, 395, 881; b) S. E. Koops, B. C. O’Regan, P. R. F. Barnes, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 4808-4818. [3] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242–247. [4] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-Le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103-3109. [5] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192. [6] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510-2536; Chem. Int. Ed. 2009, 48, 2474–2499. [7] a) W. H. Zhu, Y. Z. Wu, Z. S. Wang, W. Q. Li, X. Li, J. Chen, Z. S. Wang, H. Tian, Adv. Funct. Mater. 2011, 21, 756-763; b) W. Q. Li, Y. Z. Wu, Q. Zhang, H. Tian, W. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 1822-1830; c) W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigm. 2013, 98, 125-135. [8] a) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, W. Zhu, ACS Appl. Mater. Interfaces 2013, 5, 4986-4995; b) J. B. Yang, P. Ganesan, J. Teuscher, T. Moehl, Y. J. Kim, C. Y. Yi, P. Comte, K. Pei, T. W. Holcombe, M. K. Nazeeruddin, J. L. Hua, S. M. Zakeeruddin, H. Tian and M. Grätzel, J. Am. Chem. Soc., 2014, 136, 5722-5730; c) X. Lu, Q. Feng, T. Lan, G. Zhou, Z.-S. Wang, Chem. Mater., 2012, 24, 3179-3187. [9] a) Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gratzel, W. Zhu, Energy Environ. Sci. 2012, 5, 8261-8272; b) H.-H. Chou, Y.-C. Chen, H.-J. Huang, T.-H. Lee, J. T. Lin, C. Tsai, K. Chen, J. Mater. Chem. 2012, 22, 10929-10938 [10] Y. Cui, Y. Z. Wu, X. F. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. H. Zhu, Z. S. Wang, Chem. Mater. 2011, 23, 4394-4401. [11] W. Q. Li, Y. Z. Wu, Q. Zhang, H. Tian and W. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 1822. [12] S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M. K. Nazeeruddin, J. Ko, Chem. Commun. 2011, 2874-2876 [13] T. W. Holcombe, J.-H. Yum, J. Yoon, P. Gao, M. Marszalek, D. D. Censo, K. Rakstys, M. K. Nazeeruddin and M. Grätzel, Chem. Commun., 2012, 48, 10724-10726. [14] a) Y. Wu, W. Zhu, Chem. Soc. Rev. 2013, 42, 2039-2058; b) Y.Z. Wu, W.H. Zhu, S.M. Zakeeruddin, M. Grätzel, ACS Appl. Mater. Interfaces 2015, 7, 9307-9318. [15] P. Gao, H. N. Tsao, C. Yi, M. Grätzel, M. K. Nazeeruddin, Adv. Energy Mater., 2014, 4, 1301485. [16] a) E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli, F. D. Angelis, Energy Environ. Sci. 2013, 6, 183-193; b) M. Lu, M. Liang, H.-Y. Han, Z. Sun, S. Xue, J. Phys. Chem. C, 2011, 115, 274-281. [17] a) S.-R. Li, C.-P. Lee, H.-T. Kuo, K.-C. Ho, and S.-S. Sun, Chem. Eur. J. 2012, 18, 12085-12095; b) C.-P. Lee, P.-F. Yang, C.-W. Liao, Mandy M. Lee, W.-L. Su, C.-T. Li, H.-W. Lin, K.-C. Ho, and S.-S. Sun. Chem. Eur. J. 2014, 20, 10052-10064. [18] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49. [19] T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach and L. Spiccia, J. Am. Chem. Soc., 2012, 134, 16925-16928. [20] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men- nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko- bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen- gar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio- slowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. [21] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396. [22] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728. [23] Q. Feng, W. Zhang, G. Zhou, Z.-S. Wang, Chem. Asian J. 2013, 8, 168-177. [24] a) G. Schlichthorl, S. Y. Huang, J. Sprague, A. Frank, J. J. Phys. Chem. B, 1997, 101, 8141-8155; b) N. W. Duffy, L. M. Peter, R. M. G. Rajapakse and K. G. U. Wijayantha, Electrochem. Commun., 2000, 2, 658-662; c) M. Bailes, P. J. Cameron, K. Lobato and L. M. Peter, J. Phys. Chem. B, 2005, 109, 15429–15435; d) T. Oekermann, D. Zhang, T. Yoshida and H. Minoura, J. Phys. Chem. B, 2004, 108, 2227–2235. [25] M. J. Edelmann, J.-M. Raimundo, N. F. Utesch, F. Diederich, C. Boudon, J.-P. Gisselbrecht, M. Gross, Helv. Chim. Acta., 2002, 85, 2195-2213. [26] X. Ma, R. Liang, F. Yang, Z. Zhao, A. Zhang, N. Song, Q. Zhou, J. Zhang, J. Mater. Chem., 2008, 18, 1756–1764. [27] M. Jessing, M. Brandt, K. J. Jensen, J. B. Christensen, and U. Boas, J. Org. Chem. 2006, 71, 6734-6741. Chapter 5 [1] B. O’Regan and M. Grätzel, Nature, 1991, 353, 737. [2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242. [3] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103. [4] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192. [5] a) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595; b) C.-P. Lee, Ryan Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J.-T. Lin and K.-C. Ho, RSC Adv., 2015, 5, 23810. [6] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, Chem. Commun., 2015, 51, 15894. [7] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510-2536; Chem. Int. Ed. 2009, 48, 2474-2499; b) Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903. [8] a) W. H. Zhu, Y. Z. Wu, Z. S. Wang, W. Q. Li, X. Li, J. Chen, Z. S. Wang, H. Tian, Adv. Funct. Mater. 2011, 21, 756-763; b) W. Q. Li, Y. Z. Wu, Q. Tian, H. Zhang, W. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 1822-1830; c) W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigm. 2013, 98, 125-135. [9] a) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, W. Zhu, ACS Appl. Mater. Interfaces 2013, 5, 4986-4995; b) J. B. Yang, P. Ganesan, J. Teuscher, T. Moehl, Y. J. Kim, C. Y. Yi, P. Comte, K. Pei, T. W. Holcombe, M. K. Nazeeruddin, J. L. Hua, S. M. Zakeeruddin, H. Tian and M. Grätzel J. Am. Chem. Soc., 2014, 136, 5722-5730; c) X. Lu, Q. Feng, T. Lan, G. Zhou, Z.-S. Wang, Chem. Mater. 2012, 24, 3179-3187. [10] a) Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gratzel, W. Zhu, Energy Environ. Sci. 2012, 5, 8261-8272; b) H.-H. Chou, Y.-C. Chen, H.-J. Huang, T.-H.; Lee, J.-T. Lin, C. Tsai, K. Chen, J. Mater. Chem. 2012, 22, 10929-10938 [11] Y. Cui, Y. Z. Wu, X. F. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. H. Zhu, Z. S. Wang, Chem. Mater. 2011, 23, 4394-4401. [12] W. Q. Li, Y. Z. Wu, Q. Zhang, H. Tian and W. H. Zhu, ACS Appl. Mater. Interfaces, 2012, 4, 1822 [13] S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M. K. Nazeeruddin, J. Ko, Chem. Commun. 2011, 2874-2876 [14] T. W. Holcombe, J.-H. Yum, J. Yoon, P. Gao, M. Marszalek, D. D. Censo, K. Rakstys, M. K. Nazeeruddin and M. Grätzel, Chem. Commun., 2012, 48, 10724-10726. [15] a) Y. Wu, W. Zhu, Chem. Soc. Rev. 2013, 42, 2039-2058; b) Y.Z. Wu, W.H. Zhu, S.M. Zakeeruddin, M. Grätzel, ACS Appl. Mater. [16] a) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, and W. Zhu, ACS Appl. Mater. Interfaces, 2013, 5 (11),4986-4995; b) S.-R. Li, C.-P. Lee, C.-W. Liao, W.-L. Su, C.-T. Li, K.-C. Ho, S.-S. Sun, TETRAHEDRON 2014-07, 70, 6276-6284; c) S.-R. Li, C.-P. Lee, H.-T. Kuo, K.-C. Ho, S.-S. Sun, CHEMISTRY-A EUROPEAN JOURNAL 2012-09, 18, 12085. [17] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49. [18] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men- nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko- bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen- gar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio- slowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. [19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396. [20] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728. [21] B. J. Lynch, P. L. Fast, M. Harris, D. G. Truhlar, J. Phys. Chem. A 2000, 104, 4811-4815. [22] M. Xu, M. Zhang, M. Pastore, R. Li, F. D. Angelis and P. Wang, Chem. Sci., 2012, 3, 976. Chapter 6 [1] H. Tributsch, M. Calvin, Electrochemistry of excited molecules: photo- electrochemical reactions of chlorophylls. Photochemistry and Photobiology 1971, 14, 95-112. [2] B. O’Regan, M. Graẗzel, Nature 1991, 353, 737-740. [3] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663. (4) M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Graẗzel, J. Am. Chem. Soc. 2005, 127, 16835-16847. (5) A. El-Shafei, M. Hussain, A. Atiq, A. Islam, L. Y. Han, J. Mater. Chem. 2012, 22, 24048-24056. (6) M. Hussain, A. El-Shafei, A. Islam, L. Han, Phys. Chem. Chem. Phys. 2013, 15, 8401-8408. (7) F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R. A. Caruso, M. Graetzel, ACS Nano 2010, 4, 4420-4425. (8) C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Graẗzel, C.-G. Wu, ACS Nano 2009, 3, 3103-3109. [9] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242-247. [10] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192. [11] Kakiage, K. et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 15, 15894-15897. [12] A. Sutter, R. Ziessel, Synlett 2014, 25, 1466-1472 [13] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
|