跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴世達
研究生(外文):Mekonnen Abebayehu Desta
論文名稱:含有喹喔啉基團之染料設計及其於染敏太陽能電池之應用
論文名稱(外文):Molecular Engineering of Quinoxaline-based Sensitizers for Dye-sensitized Solar Cells
指導教授:孫世勝季昀季昀引用關係
指導教授(外文):Sun, Shih-ShengChi, Yun
口試委員:林建村衛子健洪政雄
口試日期:2017-01-19
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:186
中文關鍵詞:染料敏化太陽能電池電解質阻擋層光誘導聚合喹喔啉衍生物雜環共平面效應
外文關鍵詞:Dye-sensitized Solar CellsElectrolyte Blocking LayerPhotoinduced PolymerizationQuinoxaline DerivativesHeterocyclesCoplanarity Effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
將太陽能轉換成電能是最有趣和最吸引人的研究議題之一。將太陽能轉化為電能的分子光伏元件中,染料敏化太陽能電池(DSSC)被認為是有希望的下一代太陽能電池技術,因為它們在單一有機染料的情況下具有13%的良好性能,並且不需要大量的純化和製造步驟而使得價格相對便宜。敏化劑是DSSC的關鍵組成之一,其負責對太陽光的捕獲,通過電子轉移將能量轉移到合適的材料(如TiO2)以產生電能。 DSSC光電轉換效率(PCE)由在TiO2 /染料/氧化還原電解質/ Pt界面的複雜過程決定,狹窄的吸收光譜範圍導致的光收成不足、染料與氧化之染料或電解質間的電荷再結合是效率惡化的主要原因。因此,尋找具可見光全光譜吸收的材料與降低在界面的損失已經是DSSC領域中的關鍵研究方向之一。最終的目標是以有機染料之DSSC達到15%的高轉化效率,同時在標準條件下保持其穩定性。本論文的研究主題集中在設計和合成用於DSSC中的有機染料並提高其性能。特別關注分子結構和物理性質之間的關聯性,以及它們的效能。

在第三章中,使用聯乙炔單元官能基的雙極有機染料證明了經由光致交聯反應產生疏水性聚二乙炔層在DSSC中是有效抑制電荷再結合和增強光捕獲的獨特策略。聚二乙炔層不僅用作電解質阻擋層有效阻止氧化的電解質接近電極表面抑制暗電流,並且透過有效的能量轉移到雙極染料進而增強了光捕獲效率。元件效能從單體染料(JSC = 13.5 mA / cm 2,VOC = 0.728 V,FF = 0.73,= 7.17%)到交聯染料(JSC = 14.9,VOC = 0.750,FF = 0.74,= 8.27%)可有效提升15%。

在第四章中,系統性地研究了雜環π-連接體喹喔啉基團對D-A-π-A構型有機染料光電參數的影響。用於該研究的新敏化劑為使用EDOT,N-甲基吡咯和呋喃單元代替噻吩於π-體系中所得到的CR147衍生物:EE8,MA177和MA136。當用於DSSC中時,這些染料在光捕獲和聚集行為上表示出顯著的差異。在AM 1.5條件下通過EDOT基敏化劑EE8(JSC = 13.3 mA / cm2,VOC = 0.754 V,FF = 0.70,= 8.08%)可達到最佳性能;為在同樣條件下測量N719的98%。而CR147,MA177和MA136分別達到N719的86%,72%和22%。呋喃和二苯基喹喔啉似乎形成更平的幾何形狀有利於良好的電荷轉移。另一方面,N-甲基吡咯在二苯基喹喔啉和N-甲基吡咯之間產生高扭轉角,導致較低的染料覆蓋率,較弱的光捕獲和較嚴重的分子聚集。時間相關單光子計數(TCSPC)螢光研究顯示,電子注入步驟並非決定四種染料的JSC的主要因素。

在第五章中,合成了一系列在喹喔啉環取代不同雜環的喹喔啉衍生物染料。染料在喹喔啉環上有5-丁基噻吩(MA169),5-丁基呋喃(MA174),N-甲基吡咯(MA181),噻吩(MA190)和苯基(CR147)這些雜原子產生有效的π共軛形成更平面的D-A--A架構。 DSSC中的結構-效能關係被有系統地評估,發現強烈依賴於喹喔啉環上的取代基的性質。在AM 1.5陽光下測量,由染料MA169的元件達到8.33%(JSC = 16.1 mA/cm2,VOC = 0.770 V,FF = 0.672)的最高PCE(相較於CR147改善了13%,且達到N719的98%),其在0.25陽光照射下進一步超過11%的PCE。雖然CR147,MA190,MA174和MA181分別表現出7.36%,4.45%,3.29%和2.04%的效率。 MA169表現出更高的效能,出色的長期穩定性,更優異的光收集,I3-良好的阻擋效應以抑制暗電流。在MA181元件中,較低的染料覆蓋率,較低的電子注入驅動力和較低的電荷注入效率導致低光捕獲從而降低了整體PCE。因此,2,3-雙(5-丁基噻吩-2-)喹喔啉改善VOC是可被期望用於設計高效DSSC的輔助受體材料。

在第六章中,一系列包含2,3-雙(5-丁基噻吩-2)喹喔啉輔助受體的敏化劑(如; MA186,MA197,MA199,MA1102,MA1104和MA1111)不論是噻吩/噻吩並[2,3-b]噻吩的共軛三苯胺共阨作為予體或三苯胺作為予體,氰基乙酸作為受體,或是噻吩,聯噻吩,EDOT或二乙基環戊二噻吩部分作為-連接體從受體端被設計且成功地合成。藉由這些結構修改,基於MA-系列合成染料的DSSC的PCE的範圍為3.65-8.1%,僅有EDOT間隔的敏化劑,MA1102性能(7.97%)幾乎與MA169相當。與MA1102不同,敏化劑MA169顯示出面外扭轉構形,因此,MA169的3D扭曲結構有利於抑制染料聚集,電荷再結合和電子回傳。顯然,整個分子骨架的高共面性的影響不利於D-A-π-A / D--A-π-A推拉系統的分子內電荷分離,並造成染料聚集。這些MA系列染料可能是設計高效敏化劑的良好模型。最後,設計並系統合成引入了6,7-雙(5-丁基噻吩-2-)- [1,2,5]噻二唑並[3,4-g]喹喔啉輔助受體的新敏化劑(MA1107)。新材料可顯著的將吸收光譜紅移至800 nm近紅外光區。電化學能隙為1.52 eV,這表明NIR區域吸收可以經由將輔助受體引入敏化劑中而輕易地達成。然而,MA1107的LUMO能量位置非常接近TiO2導帶,缺乏足夠的電子注入驅動力。因此,調節LUMO能級的結構修飾,系統性分析以完全理解電池中的效率損失機制或使用不同的光電陽極材料是使用該發色團成功的最終途徑。
The conversion solar energy into electricity is one of the most interesting and fascinating topics of research. Of the different molecular photovoltaic devices used to convert solar energy into electricity, dye-sensitized solar cells (DSSCs) are commonly regarded as a promising next generation solar cell technology because they have good performance at 13% with single organic dye and can be made relatively inexpensively without intensive purification and fabrication steps. The sensitizer, one of the key components of DSSC, is responsible for the harvesting of solar light and transfers the energy via electron transfer to a suitable material (e.g. TiO2) to produce electricity. The overall efficiency of the DSSC is determined by the complex processes at the TiO2/Dye/redox electrolyte/Pt interface. Inefficient light harvesting due to narrow absorption spectral range, signified charge recombination with the dye as well as with the redox electrolyte are among main reasons for efficiency deterioration. Therefore, the search of a material with panchromatic absorption that cost a minimum loss at the interface has been one of the crucial research directions in the field of DSSC. The ultimate target is to reach a high conversion efficiency of 15% in DSSCs based on organic dyes, while retaining their stability under standard reporting conditions. The research topic of this thesis focuses on the intentionally design and synthesis of metal-free organic dyes for applications in DSSCs and boost the performances. Specific attention has been paid to the correlation between the molecular structures and physical properties, as well as their performances in DSSCs.
In chapter 3, a unique strategy for effectively suppressing charge recombination and enhancing light harvesting in dye-sensitized solar cells (DSSCs) is demonstrated by designing a new dipolar organic dye functionalized with a diacetylene unit, which is capable of undergoing photoinduced cross-linking reaction to generate a hydrophobic polydiacetylene layer. The polydiacetylene layer serves as not only an electrolyte-blocking layer to effectively block the approaching of the oxidized redox mediator and supress the dark current but also light-harvesting role by efficient energy transfer to the dipolar dyes. A 15% efficiency improvement is achieved from monomer dye (JSC = 13.5 mA/cm2, VOC = 0.728 V, FF = 0.73,  = 7.17%) to cross-linked dye (JSC = 14.9, VOC = 0.750, FF = 0.74,  = 8.27%) under AM1.5 condition.
In chapter 4, the influences of heterocyclic π-linkers on photovoltaic parameters of the dye-sensitized solar cells of quinoxaline-based organic dyes integrated in a D-A-π-A configurational framework is systematically investigated. The new sensitizers: EE8, MA177 and MA136 used for this investigation derived from the reported CR147 by replacing thiophene with EDOT, N-methyl pyrrole and furan unit into the π-system. When employed in DSSCs, these dyes displayed a significant difference in light harvesting and aggregation behavior. Best performance is achieved by the EDOT based sensitizer EE8 (JSC = 13.3 mA/cm2, VOC = 0.754 V, FF = 0.70, 8.08%) under AM1.5 condition; 98% of the intrinsic performance of N719 measured under similar condition. While, CR147, MA177 and MA136 resulting 86%, 72% and 22% of the reference N719, respectively. Furan in conjunction to diphenylquinoxaline appears to be more advantageous in forming a more planar geometry for a better charge transfer process. On the other hand, N-methyl pyrrole develop high torsional angle between diphenylquinoxalin and N-methyl pyrrole, triggering the low dye loading, weak light harvesting and high aggregation. Time-correlated single photon counting (TCSPC) fluorescence study indicates that the final outcome of the JSC of the four dyes is not determined by the electron injection step.
In Chapter 5, a series of quinoxaline derivative auxiliary acceptors containing dyes that differs only on the quinoxaline ring substituent has been synthesized, characterized, and applied as photosensitizers for DSSC. The dye contains 5-butylthiophene (MA169), 5-butylfuran (MA174), N-methylpyrrole (MA181), thiophene (MA190) and phenyl (CR147) substituent on quinoxaline ring. These heteroatoms generate effective -conjugation forming more planar D-A--A geometry. The structure-performance relationships in DSSCs has been systematically evaluated and found to be strongly dependent on the nature of substituent on the quinoxaline ring. Devices sensitized by the dye MA169 display highest power conversion efficiencies (PCEs) of 8.33% (JSC 16.1 mA/cm2, VOC = 0.770 V, FF = 0.672) (up to 13% improvement from the analogous CR147, and 98% of the intrinsic performance of N719) measured under simulated AM 1.5 sunlight in conjunction with the I- /I3- redox couple, which further achieve over 11% under 0.25 sunlight illuminations. While CR147, MA190, MA174 and MA181 displayed the best efficiency of 7.36%, 4.45%, 3.29% and 2.04% respectively. MA169 exhibits higher performance with outstanding long-term stability as a result of excellent light harvesting, good blocking effect of the triiodide to suppress the dark current. The lower dye loading, smaller driving force for electron ejection and lower charge injection efficiency in MA181 contributes the weak light harvesting and lowers the overall power conversion efficiencies. Hence, 2,3-bis(5-butylthiophene-2-yl)quinoxaline might be a promising auxiliary acceptors in the design of efficient DSSCs materials with improved VOC.
In chapter 6, a series of 2,3-bis(5-butylthiophen-2-yl)quinoxaline auxiliary acceptor based sensitizers (such as; MA186, MA197, MA199, MA1102, MA1104, and MA1111) comprising either a thiophene/thieno[3,2-b]thiophene conjugated triphenylamine donor or triphenylamine as the donor, cyanoacetic acid as the acceptor, and either thiophene, bithiophene, EDOT, or diethyl cyclopentadithiophene moiety as -linker from the acceptor side are designed and successfully synthesized. With these structural modifications, the PCE of the DSSC based on the resulting MA-series synthesized dye ranges from 3.65-8.1% and only the EDOT spaced sensitizer, MA1102 performance (7.97%) almost levels with MA169. Unlike MA1102, the sensitizer MA169 show out-of-plane twist conformation, thus, the 3D twisted structure of MA169 is favorable for suppressing dye aggregation, charge recombination, and back-electron transfer. Apparently, the effect of coplannarity of the whole molecular skeleton results unfavorable for the intramolecular charge separation of the D-A--A/D--A--A push-pull system and causes dye aggregation. These MA-series dyes could be a good model for designing efficient sensitizers. Finally, a new sensitizer (MA1107) incorporating 6,7-bis(5-butylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline auxiliary acceptor is designed and systematically synthesized. The new material displays a significant red shift of the absorption spectral coverage into the NIR region, onset about 800 nm. The electrochemical band gap is 1.52 eV. Which indicates that the NIR absorption could be easily achieved by incorporating such auxiliary acceptor into the sensitizer. However, the LUMO position for MA1107 is very close to the TiO2 ECB and lacks of sufficient driving force for electron ejection. Thus, structural modification targeting to tune the LUMO energy level, systematic analysis to fully understand efficiency loss mechanism in the cells or use of a different photoanode material is the ultimate route to success with this chromophore.
ACKNOWLEDGMENTS…………………....................................................................................I ABSTRACT...................................................................................................................................III
LIST OF FIGURES……………………….................................................................................XV
LIST OF TABLES.......................................................................................................................XX
LIST OF SCHEMES………...…...………................................................................................XXI
ABBREVIATIONS…………………………………………………………………………..XXII
Chapter 1 GENERAL INTRODUCTION……..........................................................................1
1. Introduction…………..........................................................................................................1
1.1. Solar Energy………............................................................................................................2
1.2. Brief History of Photovoltaics….........................................................................................4
1.3. The Solar Radiation………................................................................................................5
1.4. Generations of Photovoltaic Solar Cells ………................................................................8
1.4.1. First Generation Solar Cells ....................................................................................8
1.4.2. Second Generation PV Cell.....................................................................................9
1.4.3. Third Generation Photovoltaics Cells......................................................................9
1.5. Cell Efficiencies ...............................................................................................................10
1.6. Dye-Sensitized Solar Cells ...............................................................................................13
1.7. Dye-Sensitized Solar Cell Components............................................................................13
1.8. Dye-Sensitized Solar Cell Working Principles.................................................................14
1.9. Advantages of DSSCs.......................................................................................................16
1.10. Sensitizers..............................................................................................................17
1.11. Optimization of Dyes.............................................................................................22
1.12. Sensitizer Designs..................................................................................................22
1.12.1. Organic Sensitizers from D-π-A to D-D-π-A, D-π-π-A, or D-D-π-π-A Featured Configurations........................................................................................................24
1.12.2. Organic sensitizers from D-π-A to Curved A-π-D-π-A Featured Configuration…26
1.12.3. Organic sensitizers from D-π-A to Curved D-A-π-A Featured Configuration……27
1.13. Electron Transport, Slow Charge Recombination and Fast Dye Regeneration.......29
1.14. Dye Combinations (Co-photosensitization) ..........................................................33
1.15. Objectives of the Thesis.........................................................................................37
1.16. Organization of Thesis and General Overview.......................................................38
1.17. References..............................................................................................................40
Chapter 2 DSSC MATERIAL PREPARATION, PHYSICOCHEMICAL CHARACTERIZATION AND CELL CHARACTERIZATION MEASUREMENTS AND EQUIPMENT...............................................................................................................................50
2.1. DSSC Material Preparation and Characterizations ……………………………... 50
2.2. Optical Measurement ……………………………………………………………51
2.3. Electrochemical Measurement …………………………………………...…...…51
2.4. Device Fabrication……………………………………………………………….52
2.5. Cell Characterization-Measurements and Equipment …………………………...53
2.6. Experimental Conditions for Long-Term Stability Test………………………….53
Chapter 3 A GENERAL STRATEGY TO ENHANCE THE PERFORMANCE OF DYE-SENSITIZED SOLAR CELLS BY INCORPORATING LIGHT-HARVESTING DYE WITH HYDROPHOBIC POLYDIACETYLENE ELECTROLYTE-BLOCKING LAYER ……………………........................................................................................................54
3.1. Introduction..................................................................................................................54
3.2. Results and Discussion.................................................................................................56
3.2.1. Retrosynthetic Analysis of Sensitizer MA164…………………………...56
3.2.2. Synthesis of MA164………………………………………………….......57
3.2.3. Synthesis of the Model Compound (12) ………………………...….…....59
3.2.4. Synthesis of 5,8-Dibromo-2,3-diphenylquinoxaline (17) …………..……59
3.2.5. Synthesis of (5-Formylthiophen-2-yl)boronic acid (20).………….……...59
3.2.6. Optical and Electrochemical Properties……………………...…...….......61
3.2.7. Photovoltaic Performance………………………………......……............65
3.3. Conclusions..................................................................................................................73
3.4. Experimental Section...................................................................................................73
3.5. References....................................................................................................................82
Chapter 4 EFFECT OF π-LINKERS ON THE PHOTOVOLTAIC PERFORMANCE OF QUINOXALINE-BASED SENSITIZERS WITH A D-A-π-A FRAMEWORK………........85
4.1. Introduction..................................................................................................................85
4.2. Results and Discussion.................................................................................................87
4.2.1. Synthesis of the Dyes………………………………………………...........87
4.2.2. Synthesis of 5-Bromo-1-Methyl-1h-Pyrrole-2-Carbaldehyde (24) ...…......88
4.2.3. Optical Properties ………………………………………………...............89
4.2.4. Electrochemical Properties and Energy Levels ..…………………….........92
4.2.5. Molecular Orbital Calculations …………………………………………...93
4.2.6. Photovoltaic Performance …………………………………………...........97
4.2.7. Long-Term Stability Test …………………………………………..........103
4.3. Conclusions................................................................................................................104
4.4. Experimental Section.................................................................................................104
4.5. References..................................................................................................................110
Chapter 5 NEW QUINOXALINE-DERIVED AUXILIARY ACCEPTERS FOR DSSC APPLICATION IN A D-A--A FRAMEWORK AND THEIR EFFECTS ON THE PHOTOVOLTAIC PERFORMANCE……………………………………………………...114
5.1. Introduction…………………………………………………………………………114
5.2. Results and Discussion……………….…………………………………………….117
5.2.1. Synthesis of the -Diketone, Compound (46, 47, 49 and 50) ……...…...118
5.2.2. Synthesis of the Quinoxaline Derivative Auxiliary Acceptors (33, 34, 39, and 40) ………………………………………...………………………...119
5.2.3. Synthesis of The Four New Dyes (MA169, MA174, MA181, and MA190) ………….…….………………………...…………………………...…...120
5.2.4. Optical Properties……………………………...………………………...122
5.2.5. Electrochemical Properties……………………...…………………....…124
5.2.6. Theoretical Approach………….………………...……………………....127
5.2.7. Photovoltaic Properties…………………………...………………...…...129
5.3. Conclusions………….…………………………………...………………………...137
5.4. Experimental Section ………….………………………...………………………...138
5.5. References………….…………………………………...………………………….148
Chapter 6 COPLANARITY EFFECT OF THE SENSITIZERS CONTAINING 2,3-BIS(5-BUTYLTHIOPHEN-2-YL)QUINOXALINE AUXILIARY ACCEPTOR ON THE PERFORMANCE OF THE DSSCs………….………………………………………………152
6.1. Introduction………….…………………………………………………………......152
6.2. Results and Discussion………….…………………………………….....................155
6.2.1. Synthesis of MA186 ………….……………………………………......155
6.2.2. Synthesis of MA197 and MA199 ………….……………………...…...156
6.2.3. Synthesis of MA1102 and MA11104………….……………………….158
6.2.4. Synthesis of MA1111………….…………………………………….…159
6.2.5. Synthesis of MA1107 ………….………………………………………160
6.2.6. Optical Properties………….……………………………………………161
6.2.7. Electrochemical Properties………….……………………………….…164
6.2.8. Theoretical Conclusions………………………………………………...165
6.2.9. Photovoltaic Properties of DSSCs ………….………………………….168
6.3. Conclusions ………….……………………………………………….……………173
6.4. Experemental Part………….……………………………………………...……….174
6.5. References………….……………………………………………………………....180
Chapter 7 GENERAL CONCLUSIONS AND OUTLOOK………………………....……...182
Chapter 1.
[1] S. N. habisreutinger, L. Schmidt-mende, and J. K. Stolarczyk; Angew Chem. Int. Ed. 2013, 52, 7372-7408.
[2] S. Enthaler, J. v. Langermann and T. Schmidt, Energy Environ. Sci., 2010, 3, 1207-1217.
[3] J. G. Canadell, C. L. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, G. Marland. Proc. Natl. Acad. Sci. 2007, 104, 18866.
[4] P. Tans. Trends in atmospheric carbon dioxide, NOAA/ESRL. http://www. esrl.noaa.gov/gmd/ccgg/trends (2010).
[5] M. Bunn, O. Heinonen, Science 2011. 333, 1580.
[6] Z. Chen, F. Blaabjerg, Renewable and Sustainable Energy Reviews 2009, 13, 1288.
[7] K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, H. Fayaz, Renewable and Sustainable Energy Reviews 2011,15, 2149.
[8] R. Sternberg, Renewable and Sustainable Energy Reviews 2009, 14, 713.
[9] J. S. Yuan, K. H. Tiller, H. Al-Ahmad, N. R. Stewart, C. N. Stewart Jr, Trends in Plant Science 2008, 13, 421.
[10] D. R. Conn, Library Journal 2011, 136, 102.
[11] N. S. Lewis, G. Crabtree (Editors). Basic Research Needs for Solar Energy Utilization. Office of Science, U.S. Department of Energy, Washington, DC (2005).
[12] R. Banos, et al., Renewable and Sustainable Energy Reviews 2011, 15, 1753.
[13] M. Grätzel, Inorg. Chem., 2005, 44, (20), 6841–6851.
[14] Lewis, N. S. et al. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005. United States: N. p., 2005. Web. doi:10.2172/899136.
[15] M. D. Archer, R. Hill, Clean electricity from photovoltaics (Imperial College Press, 2001).
[16] A. Goetzberger, V. U. Hoffmann, Photovoltaic solar energy generation (Springer, 2005).
[17] M.I. Hoffert, Ken Caldeira, A.K. Jain, Erik F. Haites, L.D. Danny arvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Nature 1998, 395, 881.
[18] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, K.-C. Ho, Angew. Chem. Int. Ed. 2006, 45, 5822.
[19] P. Haueter, S. Moeller, R. Palumbo, A. Steinfeld, Sol. Energy 2000, 67 161.
[20] W. Hoffmann, Sol. Energy Mater. Sol. 2006, 90, 3285.
[21] J. Herion, E.A. NiekischG. Scharl, Sol. Energy Mater. 1980, 4, 101.
[22] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 1999, 285, 692.
[23] A. Goetzberger, C. Hebling, Sol. Energy Mater. Sol. Cells. 2000, 62, 1.
[24] A. Goetzberger, J. Luther, G. Willeke, Sol. Energy Mater. Sol. Cells 2002, 74, 1.
[25] K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovoltaics 2004, 12 69.
[26] E. Guillén Rodríguez, Photoelectrochemical characterization of dye solar cells based on nanostructured zinc oxide substrates, “PhD thesis” (2011).
[27] J. Nelson, “The Physics of Solar Cells”, (2003) Imperial College Press.
[28] M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley, New York (2008).
[29] M. A. Green. Third generation photovoltaics: advanced solar energy conversion. Birkhäuser (2006).
[30] W. Shockley, H. J. Queisser. J. Appl. Phys. 1961, 32, 510.
[31] National Renewable Energy Laboratory. Main page. Online, May 2015. URL www.nrel.gov.
[32] Sharp Corporation. Sharp develops concentrator solar cell with world’s highest conversion efficiency of 44.4%. Online, June 2013. URL www.sharp-world.com/corporate/news/130614.html.
[33] Fraunhofer ISE. New world record for solar cell efficiency at 46%. Online, April 2015. URL www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record- for-solar-cell-efficiency-at-46-percent.
[34] a) B. O’Regan, M. Grätzel, Nature. 1991, 353, 737; b) M. Grätzel, J. Photochem. Photobiol., C, 2003, 4, 145-153.
[35] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595-6663.
[36] J. Bisquert, ChemPhysChem, 2011, 12, 1633-1636.
[37] R. Tagliaferro, D. Colonna, T. M. Brown, A. Reale and A. Di Carlo, Opt. Express, 2013, 21, 3235-3242.
[38] N. Sridhar and D. Freeman, Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, hamburg, Germany, 2011.
[39] T. M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale and A. Di Carlo, J. Mater. Chem. A, 2014, 2, 10788-10817.
[40] Q. Wang, S. Ito, M. Gr ̈atzel, F. Fabregat-Santiago, I. Mora-Ser ́o, J. Bisquert, T. Bessho and H. Imai, J. Phys. Chem. B, 2006, 110, 25210–25221.
[41] J. Bisquert, Phys. Chem. Chem. Phys., 2008, 10, 49–72.
[42] J. Halme, P. Vahermaa, K. Miettunen and P. Lund, Adv. Mater., 2010, 22, E210-E234.
[43] B. C. O’Regan, J. Durrant, Acc. Chem. Res. 2009, 42, 1799.
[44] J. R. Durrant, S. A. Haque and E. Palomares, Coord. Chem. Rev. 2004, 248, 1247.
[45] W. R. Duncan and O. V. Prezhdo, Annu. Rev. Phys. Chem. 2007, 58, 143.
[46] O. V. Prezhdo, W. R. Duncan and V. V. Prezhdo, Acc. Chem. Res. 2008, 41, 339.
[47] A. Anthonysamy, Y. Lee, B. Karunagaran, V. Ganapathy, S.-W. Rhee, S. Karthikeyan, K.S. Kim, M.J. Ko, N.-G. Park, M.-J. Ju et al. J. Mater. Chem. 2011, 21, 12389-12397.
[48] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R.H. Baker, P. Wang, S.M. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2008, 130, 10720-10728.
[49] F. Gao, Y. Wang, J. Zang, D. Shi, M. Wang, R.H. Baker, P. Wang, S.M. Nazeeruddin, M. Gratzel, Chem. Commun. 2008, 23, 2635-2637.
[50] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, J. Phys. Chem. C 2009, 113, 6290-6297.
[51] Q. Yu, S. Liu, M. Zang, N. Cai, Y. Wang, P. Wang, J. Phys. Chem. C 2009, 113, 14559-14566.
[52] J.F. Guillemoles, V. Barone, L. Joubert, C. Adamo, J. Phys. Chem. A 2002, 106, 11354-11360.
[53] X. Zhang, J.J. Zhang, Y.Y. Xia, J. Photochem. Photobiol. A 2007, 185, 283-288.
[54] O. Kitao, H. Sugihara, Inorg. Chim. Acta 2008, 361, 712-728.
[55] Y. Xu, W.K. Chen, M.J. Cao, S.H. Liu, J.Q. Li, A.I. Philippopoulos, P. Falaras, Chem. Phys. 2006, 330, 204-211.
[56] G.J. Wilson, G.D. Will, Inorg. Chim. Acta 2010, 363, 1627-1638.
[57] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663.
[58] P. Senthil Kumar, K. Vasudevan, A. Prakasam, M. Geetha, P.M. Anbarasan, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 77, 45-50.
[59] B. Peng, S.Q. Yang, L.L. Li, F.Y. Cheng, J. Chen, J. Chem. Phys. 2010, 132, 304-305.
[60] M. Pastore, E. Mosconi, F.D. Angelis, M. Grätzel, J. Phys. Chem. C 2010, 114, 7205-7212.
[61] H.W. Ham, Y.S. Kim, Thin Solid Films. 2010, 518, 6558-6563.
[62] C.M. Lan, H.P. Wu, T.Y. Pan, C.W. Chang, W.S. Chao, C.T. Chen, C.L. Wang, C.Y. Lin, E.W.G. Diau, Energy Environ. Sci. 2012, 5, 6460-6464.
[63] X.F. Wang, H. Tamiaki, Energy Environ. Sci. 2010, 3, 94-106.
[64] M.G. Walter, A.B. Rudine, C.C. Wamser, J. Porphyrins Phthalocyanines C 2010, 14, 759-792.
[65] H. Dong, X. Zhou, C. Jiang, Theor. Chem. Acc. 2012, 131, 1102.
[66] A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.Y. Yeh, S.M. Nazeeruddin, Science 2011, 334, 629-634.
[67] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-Le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103-3109.
[68] A. Mishra, M. K. R. Fischer, & P. Bauerele, Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
[69] S.-L. Li, K.-J. Jiang, K.-F. Shao, & L.-M. Yang, Chem. Commun. 2006, 26, 2792-2794.
[70] J. Park, C. Barolo, F. Sauvage, N. Barbero, C. Benzi, P. Quagliotto, S. Coluccia, D. Di Censo, M. Gr tzel, M. K. Nazeeruddin, and G. Viscardi, Chem. Commun. 2012, 48, 2782.
[71] J. Park, G. Viscardi, C. Barolo, and N. Barbero, Chimia 2013, 67, 129.
[72] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192.
[73] Z. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao, P. Wang, Angew. Chem. Int. Ed. 2015, 54, 5994.
[74] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 2015, 137, 3799.
[75] A. Yella, C.-L. Mai, S. M. Zakeeruddin, S.-N. Chang, C.-H. Hsieh, C.-Y. Yeh, M. Grätzel, Angew. Chem. 2014, 126, 3017.
[76] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242-247.
[77] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.-H. Zhu, J. Am. Chem. Soc. 2015, 137, 14055.
[78] Kakiage, K. et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 15, 15894-15897.
[79] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, T. Kyomen, M. Hanaya, Chem. Commun. 2015, 51, 6315.
[80] Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu and H. Tian, J. Org. Chem., 2008, 73, 3791–3797.
[81] L.-L. Tan, J.-F. Huang, Yong Shen, L.-M. Xiao, J.-M. Liu, D.-B. Kuanga and C.-Y. Su, J. Mater. Chem. A, 2014, 2, 8988-8994
[82] Z. Ning, Y. Fu and H. Tian, Energy Environ. Sci., 2010, 3, 1170-1181.
[83] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, Chem. Mater., 2010, 22, 1915-1925.
[84] M. Liang and J. Chen, Chem. Soc. Rev., 2013, 42, 3453-3488
[85] Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu and H. Tian, J. Org. Chem., 2008, 73, 3791-3797
[86] J. Tang, J. Hua, W. Wu, J. Li, Z. Jin, Y. Long and H. Tian, Energy Environ. Sci., 2010, 3, 1736-1745
[87] Z. Ning, Q. Zhang, H. Pei, J. Luan, C. Lu, Y. Cui and H. Tian, J. Phys. Chem. C, 2009, 113, 10307–10313
[88] J. Tang, W. Wu, J. Hua, J. Li, X. Li and H. Tian, Energy Environ. Sci., 2009, 2, 982–990
[89] Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gr¨azel and W. Zhu, Energy Environ. Sci., 2012, 5, 8261–8272
[90] D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Gr¨atzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 2008, 130, 6259-6266
[91] K. R. J. Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-H. Lai, Y.-M. Cheng and P.-T. Chou, Chem. Mater., 2008, 20, 1830-1840
[92] W.-I. Hung, Y.-Y. Liao, T.-H. Lee, Y.-C. Ting, J.-S. Ni, W.-S. Kao, J.-T. Lin, T.-C. Wei and Y.-S. Yen, Chem. Commun., 2015,51, 2152-2155.
[93] W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigm. 2013, 98, 125-135.
[94] Y. Wu and W. Zhu, Chem. Soc. Rev., 2013, 42, 2039-2058
[95] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev., 1998,177, 347.
[96] M. Gratzel, Inorg. Chem., 2005, 44, 6841.
[97] E. M. Barea, J. Bisquert, Langmuir 2013, 29, 8773.
[98] J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, G. Cao, J. Phys. Chem. C 2012, 116, 25727.
[99] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Graẗzel, Chem. Commun. 2005, 4351.
[100] C. Shi, S. Dai, K. Wang, X. Pan, F. Kong, Hu, L. Vib. Spectrosc. 2005, 39, 99.
[101] G. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 1997, 101, 8141.
[102] K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Langmuir 2004, 20, 4205.
[103] Y. Liu, H. Lin, J. T. Dy, K. Tamaki, J. Nakazaki, C. Nishiyama, S. Uchida, H. Segawa, J. Li, J. Phys. Chem. C 2014, 118, 1426.
[104] Z. Sun, R.-K. Zhang, H.-H. Xie, H. Wang, M. Liang, S. Xue, J. Phys. Chem. C 2013, 117, 4364.
[105] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, J. Phys. Chem. C 2009, 113, 21779.
[106] N. Kopidakis, N. R. Neale, A. J. Frank, J. Phys. Chem. B 2006, 110, 12485.
[107] M.-J. Kim, C.-R. Lee, W.-S. Jeong, J.-H. Im, T.I. Ryu, N.-G. Park, J. Phys. Chem. C 2010, 114, 19849.
[108] N.R. Neale, N. Kopidakis, J. vande Lagemaat, M. Graẗzel, A. J. Frank, J. Phys. Chem. B 2005, 109, 23183.
[109] K.-M. Lee, V. Suryanarayanan, K.-C. Ho, K. R. Justin Thomas, J. T. Lin, Sol. Energy Mater. Sol. Cells 2007, 91, 1426.
Chapter 3
B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
[2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242.
[3] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192.
[4] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103.
[5] a) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595; b) C.-P. Lee, Ryan Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J.-T. Lin and K.-C. Ho, RSC Adv., 2015, 5, 23810.
[6] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, Chem. Commun., 2015, 51, 15894.
[7] a) B. C. O’Regan, S. Scully, A. C. Mayer, E. Palomares and J. Durrant, J. Phys. Chem. B, 2005, 109, 4616; b) Z. Zhang, S. M. Zakeeruddin, B. C. O’Regan, R. Humphry-Baker and M. Grätzel, J. Phys. Chem. B, 2005, 109, 21818.
[8] a) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Chem. Commun., 2002, 1464; b) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, J. Am. Chem. Soc., 2003, 125, 475.
[9] a) S. Handa, S. A. Haque and J. R. Durrant, Adv. Funct. Mater., 2007, 17, 2878; b) H. Choi, S. Kang, J. Ko, G. Gao, H. Kang, M.-S. Kang, Md. K. Nazeeruddin and M. Grätzel, Angew. Chem. Int. Ed., 2009, 48, 5938.
[10] a) N. Satoh, T. Nakashima and K. Yamamoto, J. Am. Chem. Soc., 2005, 127, 13030; b) T. Nakashima, N. Satoh, K. Albrecht and K. Yamamoto, Chem. Mater., 2008, 20, 2538.
[11] a) J. Xu, H. Wu, X. Jia and D. Zou, Chem. Commun., 2012, 48, 7793; b) Z. Ning, Y. Fu and H. Tian, Energy Environ. Sci., 2010, 3, 1170; c) S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy and M. Grätzel, Chem. Commun., 2008, 41, 5194; d) C. Lan, H. Wu, T. Pan, C. Chang, W. Chao, C. Chen, C. Wang, C. Lin and E. W. Diau, Energy Environ. Sci., 2012, 5, 6460; e) S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian and L. Han, Chem. Commun., 2012, 48, 6972; f) Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara, Chem. Mater., 2008, 20, 3993; g) N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc., 2006, 128, 14256; h) R. Agosta, R. Grisorio, L. De Marco, G. Romanazzi, G. P. Suranna, G. Gigli and M. Manca, Chem. Commun., 2014, 50, 9451; i) X. Sun, Y.-Q. Wang, X. Li, H. Ågren, W.-H. Zhu, H. Tian and Y.-S. Xie, Chem. Commun., 2014, 50, 15609.
[12] J.-Y. Su, C.-H. Tsai, S.-A. Wang, T.-W. Huang, C.-C. Wu and K.-T. Wong, RSC Adv., 2012, 2, 3722.
[13] a) T. Kim, R. M. Crooks, M. Tsen and L. Sun, J. Am. Chem. Soc., 1995, 117, 3963; b) H. Menzel, M. D. Mowery, M. Cai and C. E. Evans, Adv. Mater., 1999, 11, 131; c) D. H. Charych, J. O. Nagy, W. Spevak and M. D. Bednarski, Science, 1993, 261, 585; d) J. Tsibouklis, Adv. Mater. 1995, 7, 407; e) N. Fujita, Y. Sakamoto, M. Shirakawa, M. Ojima, A. Fujii, M. Ozaki and S. Shinkai, J. Am. Chem. Soc., 2007, 129, 4134.
[14] M. I. Mangione and R. A. Spanevello, Macromolecules, 2013, 46, 4754.
[15] J. A. Bergman, K. Hahne, J. Song, C. A. Hrycyna, and R. A. Gibbs, ACS Med. Chem. Lett., 2012, 3, 15.
[16] a) B. Tieke, G. Wegner, D. Naegele and H. Ringsdorf, Angew. Chem., Int. Ed., 1976, 15, 764; b) B. Tieke, H.-J. Graf, G. Wegner, B. Naegele, H. Ringsdorf, A. Banerjie, D. Day and J. B. Lando, Colloid Polym. Sci., 1977, 255, 521.
[17] a) D. J. Ahn and J.-M. Kim, Acc. Chem. Res., 2008, 41, 805; b) C. Zhu, L. Liu, Q. Yang, F. Lv and S. Wang, Chem. Rev., 2012, 112, 4687; c) B. Yoon, S. Lee and J.-M. Kim, Chem. Soc. Rev., 2009, 38, 1958; d) X. Sun, T. Chen, S. Huang, L. Li and H. Peng, Chem. Soc. Rev., 2010, 39, 4244.
[18] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
[19] a) S.-R. Li, C.-P. Lee, H.-T. Kuo, K.-C. Ho and S.-S. Sun, Chem. Eur. J., 2012, 18, 12085; b) S.-R. Li, C.-P. Lee, P.-F. Yang, C.-W. Liao, M. M. Lee, W.-L. Su, C.-T. Li, H.-W. Lin, K.-C. Ho and S.-S. Sun Chem. Eur. J., 2014, 20, 10052; c) S.-R. Li, C.-P. Lee, C.-W. Liao, W.-L. Su, C.-T. Li, K.-C. Ho and S.-S. Sun, Tetrahedron, 2014, 70, 6276.
[20] M. Xu, M. Zhang, M. Pastore, R. Li, F. D. Angelis and P. Wang, Chem. Sci., 2012, 3, 9
Chapter 4
[1] B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
[2] a) M.I. Hoffert, Ken Caldeira, A.K. Jain, Erik F. Haites, L.D. Danny arvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Nature 1998, 395, 881; b) S. E. Koops, B. C. O’Regan, P. R. F. Barnes, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 4808-4818.
[3] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242–247.
[4] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-Le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103-3109.
[5] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192.
[6] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510-2536; Chem. Int. Ed. 2009, 48, 2474–2499.
[7] a) W. H. Zhu, Y. Z. Wu, Z. S. Wang, W. Q. Li, X. Li, J. Chen, Z. S. Wang, H. Tian, Adv. Funct. Mater. 2011, 21, 756-763; b) W. Q. Li, Y. Z. Wu, Q. Zhang, H. Tian, W. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 1822-1830; c) W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigm. 2013, 98, 125-135.
[8] a) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, W. Zhu, ACS Appl. Mater. Interfaces 2013, 5, 4986-4995; b) J. B. Yang, P. Ganesan, J. Teuscher, T. Moehl, Y. J. Kim, C. Y. Yi, P. Comte, K. Pei, T. W. Holcombe, M. K. Nazeeruddin, J. L. Hua, S. M. Zakeeruddin, H. Tian and M. Grätzel, J. Am. Chem. Soc., 2014, 136, 5722-5730; c) X. Lu, Q. Feng, T. Lan, G. Zhou, Z.-S. Wang, Chem. Mater., 2012, 24, 3179-3187.
[9] a) Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gratzel, W. Zhu, Energy Environ. Sci. 2012, 5, 8261-8272; b) H.-H. Chou, Y.-C. Chen, H.-J. Huang, T.-H. Lee, J. T. Lin, C. Tsai, K. Chen, J. Mater. Chem. 2012, 22, 10929-10938
[10] Y. Cui, Y. Z. Wu, X. F. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. H. Zhu, Z. S. Wang, Chem. Mater. 2011, 23, 4394-4401.
[11] W. Q. Li, Y. Z. Wu, Q. Zhang, H. Tian and W. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 1822.
[12] S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M. K. Nazeeruddin, J. Ko, Chem. Commun. 2011, 2874-2876
[13] T. W. Holcombe, J.-H. Yum, J. Yoon, P. Gao, M. Marszalek, D. D. Censo, K. Rakstys, M. K. Nazeeruddin and M. Grätzel, Chem. Commun., 2012, 48, 10724-10726.
[14] a) Y. Wu, W. Zhu, Chem. Soc. Rev. 2013, 42, 2039-2058; b) Y.Z. Wu, W.H. Zhu, S.M. Zakeeruddin, M. Grätzel, ACS Appl. Mater. Interfaces 2015, 7, 9307-9318.
[15] P. Gao, H. N. Tsao, C. Yi, M. Grätzel, M. K. Nazeeruddin, Adv. Energy Mater., 2014, 4, 1301485.
[16] a) E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli, F. D. Angelis, Energy Environ. Sci. 2013, 6, 183-193; b) M. Lu, M. Liang, H.-Y. Han, Z. Sun, S. Xue, J. Phys. Chem. C, 2011, 115, 274-281.
[17] a) S.-R. Li, C.-P. Lee, H.-T. Kuo, K.-C. Ho, and S.-S. Sun, Chem. Eur. J. 2012, 18, 12085-12095; b) C.-P. Lee, P.-F. Yang, C.-W. Liao, Mandy M. Lee, W.-L. Su, C.-T. Li, H.-W. Lin, K.-C. Ho, and S.-S. Sun. Chem. Eur. J. 2014, 20, 10052-10064.
[18] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
[19] T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach and L. Spiccia, J. Am. Chem. Soc., 2012, 134, 16925-16928.
[20] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men- nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko- bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen- gar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio- slowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[21] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
[22] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.
[23] Q. Feng, W. Zhang, G. Zhou, Z.-S. Wang, Chem. Asian J. 2013, 8, 168-177.
[24] a) G. Schlichthorl, S. Y. Huang, J. Sprague, A. Frank, J. J. Phys. Chem. B, 1997, 101, 8141-8155; b) N. W. Duffy, L. M. Peter, R. M. G. Rajapakse and K. G. U. Wijayantha, Electrochem. Commun., 2000, 2, 658-662; c) M. Bailes, P. J. Cameron, K. Lobato and L. M. Peter, J. Phys. Chem. B, 2005, 109, 15429–15435; d) T. Oekermann, D. Zhang, T. Yoshida and H. Minoura, J. Phys. Chem. B, 2004, 108, 2227–2235.
[25] M. J. Edelmann, J.-M. Raimundo, N. F. Utesch, F. Diederich, C. Boudon, J.-P. Gisselbrecht, M. Gross, Helv. Chim. Acta., 2002, 85, 2195-2213.
[26] X. Ma, R. Liang, F. Yang, Z. Zhao, A. Zhang, N. Song, Q. Zhou, J. Zhang, J. Mater. Chem., 2008, 18, 1756–1764.
[27] M. Jessing, M. Brandt, K. J. Jensen, J. B. Christensen, and U. Boas, J. Org. Chem. 2006, 71, 6734-6741.
Chapter 5
[1] B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
[2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242.
[3] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103.
[4] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192.
[5] a) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595; b) C.-P. Lee, Ryan Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J.-T. Lin and K.-C. Ho, RSC Adv., 2015, 5, 23810.
[6] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, Chem. Commun., 2015, 51, 15894.
[7] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510-2536; Chem. Int. Ed. 2009, 48, 2474-2499; b) Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903.
[8] a) W. H. Zhu, Y. Z. Wu, Z. S. Wang, W. Q. Li, X. Li, J. Chen, Z. S. Wang, H. Tian, Adv. Funct. Mater. 2011, 21, 756-763; b) W. Q. Li, Y. Z. Wu, Q. Tian, H. Zhang, W. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 1822-1830; c) W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigm. 2013, 98, 125-135.
[9] a) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, W. Zhu, ACS Appl. Mater. Interfaces 2013, 5, 4986-4995; b) J. B. Yang, P. Ganesan, J. Teuscher, T. Moehl, Y. J. Kim, C. Y. Yi, P. Comte, K. Pei, T. W. Holcombe, M. K. Nazeeruddin, J. L. Hua, S. M. Zakeeruddin, H. Tian and M. Grätzel J. Am. Chem. Soc., 2014, 136, 5722-5730; c) X. Lu, Q. Feng, T. Lan, G. Zhou, Z.-S. Wang, Chem. Mater. 2012, 24, 3179-3187.
[10] a) Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gratzel, W. Zhu, Energy Environ. Sci. 2012, 5, 8261-8272; b) H.-H. Chou, Y.-C. Chen, H.-J. Huang, T.-H.; Lee, J.-T. Lin, C. Tsai, K. Chen, J. Mater. Chem. 2012, 22, 10929-10938
[11] Y. Cui, Y. Z. Wu, X. F. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. H. Zhu, Z. S. Wang, Chem. Mater. 2011, 23, 4394-4401.
[12] W. Q. Li, Y. Z. Wu, Q. Zhang, H. Tian and W. H. Zhu, ACS Appl. Mater. Interfaces, 2012, 4, 1822
[13] S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M. K. Nazeeruddin, J. Ko, Chem. Commun. 2011, 2874-2876
[14] T. W. Holcombe, J.-H. Yum, J. Yoon, P. Gao, M. Marszalek, D. D. Censo, K. Rakstys, M. K. Nazeeruddin and M. Grätzel, Chem. Commun., 2012, 48, 10724-10726.
[15] a) Y. Wu, W. Zhu, Chem. Soc. Rev. 2013, 42, 2039-2058; b) Y.Z. Wu, W.H. Zhu, S.M. Zakeeruddin, M. Grätzel, ACS Appl. Mater.
[16] a) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, and W. Zhu, ACS Appl. Mater. Interfaces, 2013, 5 (11),4986-4995; b) S.-R. Li, C.-P. Lee, C.-W. Liao, W.-L. Su, C.-T. Li, K.-C. Ho, S.-S. Sun, TETRAHEDRON 2014-07, 70, 6276-6284; c) S.-R. Li, C.-P. Lee, H.-T. Kuo, K.-C. Ho, S.-S. Sun, CHEMISTRY-A EUROPEAN JOURNAL 2012-09, 18, 12085.
[17] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
[18] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men- nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko- bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen- gar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio- slowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
[20] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.
[21] B. J. Lynch, P. L. Fast, M. Harris, D. G. Truhlar, J. Phys. Chem. A 2000, 104, 4811-4815.
[22] M. Xu, M. Zhang, M. Pastore, R. Li, F. D. Angelis and P. Wang, Chem. Sci., 2012, 3, 976.
Chapter 6
[1] H. Tributsch, M. Calvin, Electrochemistry of excited molecules: photo- electrochemical reactions of chlorophylls. Photochemistry and Photobiology 1971, 14, 95-112.
[2] B. O’Regan, M. Graẗzel, Nature 1991, 353, 737-740.
[3] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663.
(4) M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Graẗzel, J. Am. Chem. Soc. 2005, 127, 16835-16847.
(5) A. El-Shafei, M. Hussain, A. Atiq, A. Islam, L. Y. Han, J. Mater. Chem. 2012, 22, 24048-24056.
(6) M. Hussain, A. El-Shafei, A. Islam, L. Han, Phys. Chem. Chem. Phys. 2013, 15, 8401-8408.
(7) F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R. A. Caruso, M. Graetzel, ACS Nano 2010, 4, 4420-4425.
(8) C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Graẗzel, C.-G. Wu, ACS Nano 2009, 3, 3103-3109.
[9] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242-247.
[10] Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Energy Environ. Sci., 2015, 8, 3192.
[11] Kakiage, K. et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 15, 15894-15897.
[12] A. Sutter, R. Ziessel, Synlett 2014, 25, 1466-1472
[13] A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top