跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊翔宇
研究生(外文):Chuang, Hsiang-Yu
論文名稱:Solanoeclepin A 之合成研究
論文名稱(外文):Synthetic Studies Towards Solanoeclepin A
指導教授:汪炳鈞磯部稔
指導教授(外文):Uang, Biing-JiunIsobe, Minoru
口試委員:林俊成李瑜章陳貴通廖俊臣
口試委員(外文):Lin, Chun-ChengLi, Yu-JangTan, Kui-ThongLiao, Chun-Chen
口試日期:2017-06-19
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:371
中文關鍵詞:天然物合成環化反應二錪化釤環丁烷
外文關鍵詞:cyclobutanesamarium diiodidecyclizationnatural producttotal synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
本論文描述天然物solanoeclepin A之合成研究,包括設計並合成solanoeclepin A右邊D, E, F三個環之架構。本論文敘述數個關鍵之碳碳鍵合成反應以合成天然物solanoeclepin A中的四圓環架構中間體 其中關鍵反應包括(1) [2,3]-Wittig 重排反應 (2) 1,4-加成反應 (3) 三氟乙酸汞參與之水合/環化反應 (4) 以二錪化釤的進行含環丁烷架構之合成的研究
Solanoelcepin A, a triterpenoid hatching stimulant for potato cyst nematode (PCN; Globodera rostochiensis and G. pallida), was first isolated from potato root by Mulder in 1986, and its structure was later determined by Schenk in 1999. As natural hatching stimulus for potato cyst nematode, solaoneclepin A have emerged to be a potential solution for yield loss of potato production over the world. The important
biological activity and its complexity of structure have intrigued the interest of synthetic chemists to challenge the total synthesis.

This thesis describes the synthesis of an cyclobutane intermediate, which was prepared from ent-Hajos-Parris ketone . The synthesis consists of four key C-C bond formation reactions, including (i)a [2,3]-Wittig
rearrangement, (ii) a Michael addition, (iii) a Hg(OTFA)2-mediated oxymercuration/aldol reaction, (iii) the synthesis of cyclobutane intermediate was achieved through a SmI2-mediated radical cyclization, and was carried out in 20 linear synthetic steps with 2.2% yield.
Table of Contents

1 Introduction 1

1.1 Introduction 1

1.2 Total Synthesis of Solanoeclepin A 3

1.3 Syntheses of Rings ABC of Solanoeclepin A 8

1.4 Syntheses of Rings DEF of Solanoeclepin A 15

1.5 Heteroatom-Directed Conjugation Addition 19

2 Synthetic Plan 22

3 Results and Discussion 24

3.1 Model Study for Rings DEF of Solanoeclepin A Synthesis 24

3.1.1 SmI2-Mediated Ketyl Radical Cyclization 24

3.1.2 Mechanism 25

3.1.3 Additives 26

3.1.4 Model Study of Tricyclo[5.2.1.01,6]decene System 27

3.1.5 Olefination at Easily Enolizable Ketone 29

3.1.6 Hg(OTFA)2-Mediated Oxymercuration/Adol Reaction 32

3.1.7 SmI2-Mediated Cyclobutane Formation Reaction 34

3.1.8 Conclusion 36

3.2 Synthesis of Rings DEF of Solanoeclepin A 37

3.2.1 Synthesis of Tricyclo[5.2.1.01,6]decene Skeleton 37

3.2.2 Au+-Catalyzed Cyclization 46

3.2.3 SmI2-Additive-Mediated Cyclobutane Formation 47

3.2.4 Introduction of Oxygen at C4 of Ring D 51

3.2.5 Conclusion 55

4 Experimental Section 57

4.1 General Information 57

4.2 Experimental Procedure 58

4.2.1 Synthesis of Compound 165 58

4.2.2 Synthesis of Compound 166 59

4.2.3 Synthesis of Compound 167 60

4.2.4 Synthesis of Compound 168 60

4.2.5 Synthesis of Compound 169 61

4.2.6 Synthesis of Compound 170 62

4.2.7 Synthesis of Compound 171 63

4.2.8 Synthesis of Compound 172 64

4.2.9 Synthesis of Compound 183, 185 and 186 64

4.2.10 Synthesis of Compound 190 66

4.2.11 Synthesis of Compound 190 and 191 67

4.2.12 Synthesis of Compound 192 68

4.2.13 Synthesis of Compound 193 68

4.2.14 Synthesis of Compound 195 69

4.2.15 Synthesis of Compound 197 70

4.2.16 Synthesis of Compound 206 71

4.2.17 Synthesis of Compound 207 72

4.2.18 Synthesis of Compound 208 73

4.2.19 Synthesis of Compound 209 73

4.2.20 Synthesis of Compound 210 and 211 74

4.2.21 Synthesis of Compound 212 and 213 75

4.2.22 Synthesis of Compound 211, 215 and 216 76

4.2.23 Synthesis of Compound 217 78

4.2.24 Synthesis of Compound 218 79

4.2.25 Synthesis of Compound 219 80

4.2.26 Synthesis of Compound 220 80

4.2.27 Synthesis of Compound 224 81

4.2.28 Synthesis of Compound 225 and 225a 82

4.2.29 Synthesis of Compound 230 83

4.2.30 Synthesis of Compound 231 84

4.2.31 Synthesis of Compound 232, 233 and 234 85

4.2.32 Synthesis of Compound 221 and 235 87

4.2.33 Synthesis of Compound 239 89

4.2.34 Synthesis of Compound 240 89

4.2.35 Synthesis of Compound 241 90

4.2.36 Synthesis of Compound 229 91

4.2.37 Synthesis of Compound 236 92

4.2.38 Synthesis of Compound 202 93

4.2.39 Synthesis of Compound 248 94

4.2.40 Synthesis of Compound 253 96

4.2.41 Synthesis of Compound 254 97

4.2.42 Synthesis of Compound 255 98

4.2.43 Synthesis of Compound 256 98

4.2.44 Synthesis of Compound 257 99

4.2.45 Synthesis of Compound 249 100

4.2.46 Synthesis of Compound 250 101

4.2.47 Synthesis of Compound 258 102

4.2.48 Synthesis of Compound 259 103

4.2.49 Synthesis of Compound 260 104

4.2.50 Synthesis of Compound 251 105

4.2.51 Synthesis of Compound 252 106

4.2.52 Synthesis of Compound 264 107

4.2.53 Synthesis of Compound 265 108

4.2.54 Synthesis of Compound 268 109

4.2.55 Synthesis of Compound 270 110

4.2.56 Synthesis of Compound 255 111

4.2.57 Synthesis of Compound 271 111

4.2.58 Synthesis of Compound 272 112


5 References 114

6 Supporting Information (I): NMR Spectra 119

1H NMR of Compound 165 120

13C NMR of Compound 165 121

1H NMR of Compound 166 122

13C NMR of Compound 166 123

1H NMR of Compound 167 124

13C NMR of Compound 167 125

1H NMR of Compound 168 126

13C NMR of Compound 168 127

1H NMR of Compound 169 128

13C NMR of Compound 169 129

1H NMR of Compound 170 130

13C NMR of Compound 170 131

1H NMR of Compound 171 132

13C NMR of Compound 171 133

1H NMR of Compound 172 134

13C NMR of Compound 172 135

1H NMR of Compound 186 136

13C NMR of Compound 186 137

1H NMR of Compound 190 138

13C NMR of Compound 190 139

1H NMR of Compound 191 140

13C NMR of Compound 191 141

1H NMR of Compound 192 142

13C NMR of Compound 192 143

1H NMR of Compound 193 144

13C NMR of Compound 193 145

1H NMR of Compound 195 146

13C NMR of Compound 195 147

1H NMR of Compound 197 148

13C NMR of Compound 197 149

1H NMR of Compound 206 150

13C NMR of Compound 206 151

1H NMR of Compound 207 152

13C NMR of Compound 207 153

1H NMR of Compound 208 154

13C NMR of Compound 208 155

1H NMR of Compound 209 156

13C NMR of Compound 209 157

1H NMR of Compound 210 158

13C NMR of Compound 210 159

1H NMR of Compound 211 160

13C NMR of Compound 211 161

1H NMR of Compound 213 162

13C NMR of Compound 213 163

1H NMR of Compound 216 164

13C NMR of Compound 216 165

1H NMR of Compound 217 166

13C NMR of Compound 217 167

1H NMR of Compound 218 168

13C NMR of Compound 218 169

1H NMR of Compound 219 170

13C NMR of Compound 219 171

1H NMR of Compound 220 172

13C NMR of Compound 220 173

1H NMR of Compound 224 174

13C NMR of Compound 224 175

1H NMR of Compound 225 176

13C NMR of Compound 225 177

1H NMR of Compound 225a 178

13C NMR of Compound 225a 179

1H NMR of Compound 230 180

13C NMR of Compound 230 181

1H NMR of Compound 231 182

13C NMR of Compound 231 183

1H NMR of Compound 232 184

13C NMR of Compound 232 185

1H NMR of Compound 233 186

13C NMR of Compound 233 187

1H NMR of Compound 234 188

13C NMR of Compound 234 189

1H NMR of Compound 221 190

13C NMR of Compound 221 191

1H NMR of Compound 235 192

13C NMR of Compound 235 193

1H NMR of Compound 239 194

13C NMR of Compound 239 195

1H NMR of Compound 240 196

13C NMR of Compound 240 197

1H NMR of Compound 241 198

13C NMR of Compound 241 199

1H NMR of Compound 229 200

13C NMR of Compound 229 201

1H NMR of Compound 236 202

13C NMR of Compound 236 203

1H NMR of Compound 202 204

13C NMR of Compound 202 205

1H NMR of Compound 248 206

13C NMR of Compound 248 207

1H NMR of Compound 253 208

13C NMR of Compound 253 209

1H NMR of Compound 254 210

13C NMR of Compound 254 211

1H NMR of Compound 255 212

13C NMR of Compound 255 213

1H NMR of Compound 256 214

13C NMR of Compound 256 215

1H NMR of Compound 257 216

13C NMR of Compound 257 217

1H NMR of Compound 249 218

13C NMR of Compound 249 219

1H NMR of Compound 250 220

13C NMR of Compound 250 221

1H NMR of Compound 258 222

13C NMR of Compound 258 223

1H NMR of Compound 259 224

13C NMR of Compound 259 225

1H NMR of Compound 260 226

13C NMR of Compound 260 227

1H NMR of Compound 251 228

13C NMR of Compound 251 229

1H NMR of Compound 252 230

13C NMR of Compound 252 231

1H NMR of Compound 264 232

13C NMR of Compound 264 233

1H NMR of Compound 265 234

13C NMR of Compound 265 235

1H NMR of Compound 268 236

13C NMR of Compound 268 237

1H NMR of Compound 270 238

13C NMR of Compound 270 239

1H NMR of Compound 271 240

13C NMR of Compound 271 241

1H NMR of Compound 272 242

13C NMR of Compound 272 243

NOESY Spectrum of Compound 197 244

HMBC Spectrum of Compound 197 245

NOESY Spectrum of Compound 210 246

NOESY Spectrum of Compound 230 247

NOESY Spectrum of Compound 234 248

HMBC Spectrum of Compound 234 249

NOESY Spectrum of Compound 248 250

HMBC Spectrum of Compound 248 251

NOESY Spectrum of Compound 250 252

HMBC Spectrum of Compound 250 253

NOESY Spectrum of Compound 252 254

HMBC Spectrum of Compound 252 255

1D NOESY Spectrum of Compound 219 256

1D NOESY Spectrum of Compound 224 257

NOESY Spectrum of Compound 272 258

6 Supporting Information (II):
X-Ray Crystallographic Analysis 259

Crystal data of compound 190 260

Crystal data of compound 191 269

Crystal data of compound 194 284

Crystal data of compound 213 292

Crystal data of compound 230 300

Crystal data of compound 241 315
(1) Hori, S. Byotyugai-Zasshi 2:927–930.
(2) Masamune, T.; Anetai, M.; Takasugi, M.; Katsui, N. Nature. 1982, 297, 495–496.
(3) (a) Mulder, J. G.; Diepenhorst, P.; Bruggemann-Rotgans, I. E. M. CT Int. Appl. WO 93/02, 083; (b) Mulder, J. G.; Diepenhorst, P.;Bruggemann–Rotgans, I. E. M. Chem. Abstr. 1993, 118, 185844z.
(4) Schenk, H.; Driessen, R. A. J.; de Gelder, R.; Goubitz, K.; Nieboer, H.; Bruggemann-Rotgans, I. E. M.; Diepenhorst, P. Croat. Chem. Acta 1999, 72, 593–606.
(5) Fukuzawa, A.; Furusaki, A.; Ikura, M.; Masamunu, T. J. Chem. Soc. Chem. Commun. 1985, 4, 222–224.
(6) (a) Murai, A.; Tanimoto, N.; Sakamoto, N.; Masamune, T. J. Am. Chem. Soc. 1988, 110, 1985–1986. (b) Corey, E. J.; Houpis, I. N. J. Am. Chem. Soc. 1990, 112, 8997–8998. (c) Watanabe, H. and Mori, K. J. Chem. Soc. Perkin Trans. 1991, 1, 2919–2934. (d) Shiina, Y.; Tomata, Y.; Miyashita, M.; Tanino, K. Chem. Lett. 2010, 39, 835–837.
(7) Tanino, K.; Takahashi, M.; Tomata, Y.; Tokura, H.; Uehara, T.; Narabu, T.; Miyashita, M. Nat. Chem. 2011, 3, 484–488.
(8) (a) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Rutjes, F. P. J. T.; Fraanje, J.; Goubitz, K.; Schenk, H.; Hiemstra, H. Chem. Commun. 2000, 1465–1466. (b) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1693–1700. (c) Benningshof, J. C. J.; Ijsselstiijn, M.; Walner, S. R.; Koster, A. L.; Blaauw, R. H.; van Ginkel, A. E.; Briere, J.-F.; van Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1, 1701–1713. (d) Kleinnijenhuis, R. A.; Timmer, B. J. J.; Lutteke, G.; Smits, J. M. M.; de Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. Chem. Eur. J. 2016, 22, 1266–1269.
(9) (a) Komada, T.; Adachi, M.; Nishikawa, T. Chem. Lett. 2012, 41, 287–289. (b) Adachi, M.; Torii, M.; Nishikawa, T. Synlett 2015, 7, 965–969.
(10) (a) Tsao, K.-W.; Cheng, C.-Y.; Isobe, M. Org. Lett. 2012, 14, 5274–5277. (b) Chuang, H.-Y.; Isobe, M. Org. Lett. 2014, 16, 4166–4169. (c) Lin, Y.-T.; Lin, F.-Y.; Isobe, M. Org. Lett. 2014, 16, 5948–5951. (d) Chuang, H.-Y.; Isobe, M. J. Org. Chem. 2017, 82, 2045–2058.
(11) For HeteroAtom Directed Conjugate Addition (HADCA), see (a) Adachi, M.; Yamauchi, E.; Komada, T.; Isobe, M. Synlett 2009, 7, 1157–1161. (b) Tsao, K.-W.; Isobe, M. Org. Lett. 2010, 12, 5338–5341. (c) Isobe, M.; Niyomchon, S.; Cheng, C.-Y.; Hasakunpaisarn, A. Tetrahedron Lett. 2011, 52, 1847–1850.
(12) Stork, G.; Cohen, J. F. J. Am. Chem. Soc. 1974, 96, 5270–5272.
(13) Tanino, K.; Tomata, Y.; Shiina, Y.; Miyashita, M. Eur. J. Org. Chem. 2006, 2, 328–334.
(14) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 1, 29–32.
(15) (a) Blaauw, R. H.; Brière, J.-F.; de Jong, R.; Benningshof, J. C. J.; van Ginkel, A. E.; Fraanje, J.; Goubitz, K.; Schenk, H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Org. Chem. 2001, 66, 233–242. (b) Brière, J.-F.; Blaauw, R. H.; Benningshof, J. C. J.; van Ginkel, A. E.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2001, 12, 2371–2377; (c) Hue, B. T. B.; Dijkink, J.; Kuiper, S.; van Schaik, S.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2006, 1, 127–137. (d) Lutteke, G.; Kleinnijenhuis, R. A.; Jacobs, I.; Wrigstedt, P. J.; Correia, A. C. A.; Nieuwenhuizen, R.; Buu, H. B. T.; Goubitz, K.; Peschar, R.; van Maareseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2011, 17, 3146–3155.
(16) Aubert, C.; Begue, J. P. Chem. Lett. 1989, 10, 1835–1838.
(17) Rouse, M. B.; Winkler, J.-D. J. Am. Chem. Soc. 2002, 124, 9726–9728.
(18) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763–1765.
(19) (a) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652–3653; (b) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2011, 50, 3760–3763.
(20) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc. 1998,
120, 11943–11952.
(21) Shiina, I.; Shibata, J.; Ibuka, R.; Imai, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2001, 74, 113–122.
(22) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766–8773.
(23) Ciamician, G.; Silber, P. Ber. Dtsch. Chem. Ges. 1908, 41, 1928–1935.
(24) For recent reviews on [2+2] photocycloaddition, see: (a) Demuth, M.; Mikhail, G. Synthesis 1989, 145–162. (b) Bach, T. Synthesis 1998, 683–703.
(25) Krohn, K.; Börner, G. J. Org. Chem. 1994, 59, 6063–6068.
(26) For synthesis of cyclobutane by SmI2, see: (a) Corey, E. J.; Wu, Y. J. J. Am. Chem. Soc. 1993, 115, 8871–8872. (b) Harb, H. Y.; Collins, K. D.; Garcia Altur, J. V.; Bowker, S.; Campbell, L.; Procter, D. J. Org. Lett. 2010, 12, 5449–5449. (c) Chen, J.-P.; He, Wei.; Yang, Zhen,-Yu.; Yao, Z.-J. Org. Lett. 2015, 17, 3379–3381.
(27) For the preparation of ent-Hajos-Parrish ketone we used D-proline as the catalyst; see: (a) Hajos, Z. G.; Parrish, D. R. Organic Synthesis; Wiley: New York, 1990; Collect. Vol. VII, pp 363–368. (b) Davies, S. G.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. Chem. Commun. 2005, 30, 3802–3804. (c) Davies, S. G.; Russell, A. J.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 3190–3200.
(28) (a) Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1, 5–7. (b) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698.
(29) For selected reviews of SmI2-mediated reactions, see (a) G. A. Molander, Chem. Rev. 1992, 92, 29–68. (b) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114, 5959–6039.
(30) For cyclobutane formation reactions through SmI2-mediated ketyl radical cyclization reactions, see (a) Hutton, T. K.; Muir, K.; Procter, D. J. Org. Lett. 2002, 4, 2345–2347. (b) Edmonds, D. J.; Muir, K. W.; Procter, D. J. J. Org. Chem. 2003, 68, 3190–3198. (c) Harb, H. Y.; Collins, K. D.; Altur, J. V. G.; Bowker, S.; Campbell, L.; Procter, D. J. Org. Lett. 2010, 12, 5446–5449.
(31) For cyclobutane formation reactions through SmI2-mediated Barbier-type reactions, see (a) Molander, G. A.; McKie, J. A. J. Org. Chem. 1991, 56, 4112–4120. (b) Corey, E. J.; Wu, Y. J.; J. Am. Chem. Soc. 1993, 115, 8871–8872.
(32) For cyclobutane formation reactions through SmI2-mediated pinacol coupling, see (a) Hoffmann, H. M. R.; Munnich, I.; Nowitzki, O.; Stuke, H.; Williams, D. J. Tetrahedron. 1996, 52, 11783–11798. (b) Krygowski, E. S.; Murphy–Benenato, K.; Shair, M. D. Angew. Chem. Int. Ed. 2008, 47, 1680–1684.
(33) For selected reviews of HMPA in SmI2-mediated reactions, see (a) Inanaga, J.; Ishikawa, M.; Yamaguchi, M. Chem. Lett. 1987, 1485–1486. (b) Shabangi, M. Flowers, R. A., II. Tetrahedron Lett. 1997, 38, 1137–1140. (c) Shabangi, M.; Kuhlman, M. L.; Flowers, R. A., II. Org. Lett. 1999, 1, 2133–2135. (d) Enemærke, R.; Hertz, T.; Skrydstrup, T.; Daasbjberg, K. Chem.-Eur. J. 2000, 3747–3754.
(34) (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem. Int. Ed. 2006, 45, 7086–7090. (b) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905–16918.
(35) Sono, M.; Hanaoaka, M.; Hashimoto, T.; Asakawa, Y.; Tori, M. Synlett 2009, 3, 469–471.
(36) Sono, M.; Sugimoto, Y.; Tatara, H.; Ise, N.; Takaoka, S.; Tori, M. Tetrahedron 2008, 64, 11096–11104.
(37) For selected reviews of SmBr2-and SmCl2-mediated reactions, see (a) Lebrun, A.; Namy, J. L.; Kagan, H. B. Tetrahedron Lett. 1993, 34, 2311–2314. (b) Fuchs, J. R.; Mitchell, M. L.; Shanbangi, M.; Flowers II, R. A., II. Tetrahedron Lett. 1997, 38, 8157–8158. (c) Hélion, F.; Lannou, M. I.; Namy, L. Tetrahedron Lett. 2003, 44, 5007–5510. (d) Miller, R. S.; Sealy, J. M.; Shabangi, M.; Kuhlman, M. L.; Fuchs, J. R.; Flowers, R. A., II. J. Am. Chem. Soc. 2000, 122, 7718–7722.
(38) For addition of nucleophile to easily enolizable ketone, see: (a) Stéphan, E.; Affergan, T.; Weber, P.; Jaouen, G. Tetrahedron Lett. 1998, 39, 9427–9430. (b) Stéphan, E.; Olaru, A.; Jauen, G. Tetrahedron Lett. 1999, 40, 8571–8574. (c) Trost, B. M.; Mikhail, G. K. J. Am. Chem. Soc. 1987, 109, 4124–4127.
(39) For examples of gold-catalyzed hydration, see: (a) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271–2296. (b) Nun, P.; Ramón, R. S.; Gaillard, S.; Nolan, S. P. J. Organomet. Chem. 2011, 696, 7–11. (c) Ghosh, N.; Nayak, S.; Sahoo, A. K. J. Org. Chem. 2011, 76, 500-511. (d) Wang, W.; Xu, B.; Hammond, G. B. J.
Org. Chem. 2008, 74, 1640–1643.
(40) (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395−403. (b) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028–9072. (c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 667–698. (d) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809–2811.
(41) Kumar, R. R.; Haveli, S. D.; Kagan, H. Synthesis 2011, 12, 1709-1712.
(42) Evans, W. J.; Gummersheimer, T. S.; Ziller, J. W. J. Am. Chem. Soc. 1995, 117, 8999–9002.
(43) (a) Sugahara, T.; Fukuda, H.; Iwabuchi, Y. J. Org. Chem. 2004, 69, 1144–1177. (b) Fleck, M.; Bach, T. Angew. Chem. Int. Ed. 2008, 47, 6189–6191. (c) Ibrahim-Ouali, M.; Romero, E. Steroids 2012, 77, 157–167.
(44) (a) Borah, J. M.; Chowdhury, P. Steroids 2011, 76, 1341–1345. (b) Li, C.; Budge, L. P.; Driscoll, C. D.; Willardson, B. M.; Allman, G. W.; Savage, P. B. J. Am. Chem. Soc. 1999, 121, 931–940. (c) Ghosh, A. K.; Xi, Kai. Org. Lett. 2007, 9, 4013–4016. (d) Kozikowski, A. P.; Park, P, U. J. Org. Chem. 1990, 55, 4668–4682.
(45) Berliner, M.; Belecki, K. Org. Synth. 2007, 84, 102–110.
(46) For the preparation of Dess-Martin periodinane, see: (a) Frigerio, M.; Santagostino, M.; Spurore, S. J. Org. Chem. 1999, 64, 4537–4538. (b) Ireland, R. E.; Liu, Longbin. J. Org. Chem. 1993, 58, 2899–2899.
(47) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013.
(48) Ryu, I.; Murai, S.; Hatayama, Y.; Sonoda, N. Tetrahedron Lett. 1978, 37, 3455–3458.
(49) (a) Nicolaou, K. C.; Montagnon, T.; Baran, P.S. Angew. Chem. Int. Ed. 2002, 41, 993–996. (b) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem. Int. Ed. 2002, 41, 996–1000.
(50) Fuji, K.; Kawabata, T.; Fujita, E. Chem. Pharm. Bull. 1980, 28, 3662–3664.
(51) For the preparation of organocerium reagents, see: (a) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49, 3904–3912. (b) Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233–4236.
(52) For selected reviews of FeCl3 in SmI2-mediated reactions, see (a) Hasegawa, E.; Tsuchida, H.; Tamura, M. Chem. Lett. 2005, 34, 1688–1689. (b) Tsuchida, H.; Tamura, M.; Hasegawa, E. J. Org. Chem. 2009, 74, 2467–2475. (c) Zhou, X.; Liu, W. J.; Ye, J. L.; Huang, P. Q. Tetrahedron 2007, 63, 6346–6357.
(53) For selected reviews of NiI2 in SmI2-mediated reactions, see (a) Sono, M.; Ise, N.; Shoji, T.; Tori, M. Molecules 2012, 17, 11079–11088. (b) Choquette, K. A.; Sadasivam, D. V.; Flowers, R. A., II J. Am. Chem. Soc. 2011, 133, 10655–10661. (c) Heumann, L. V.; Keck, G. E. Org. Lett. 2007, 9, 1951-1954. (d) Molander, G. A.; Harris, C. R. J. Org. Chem. 1997, 62, 7418–7429.
(54) Brown, H. C.; Rei, M.-H. J. Am. Chem. Soc. 1969, 91, 5646–5647.
(55) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968–972.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊