跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卡力亞納
研究生(外文):ponnapalli, kalyana kumar
論文名稱:合成新穎芳香碳醣苷衍生物並評估其生物活性
論文名稱(外文):synthesis of novel c-aryl glycoside analogues and evaluation of their bioactivities
指導教授:林俊成林俊成引用關係
指導教授(外文):Lin, Chun-Cheng
口試委員:陳建添汪炳鈞梁健夫蒙國光
口試委員(外文):Chen, Chien-TienUang, Biing-JiunLiang, Chien-FuMong, Kowk-Kong Tony
口試日期:2017-06-29
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:426
中文關鍵詞:芳香碳醣苷衍生物
外文關鍵詞:C-aryl glycoside
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
氧鍵結之醣苷類化合物廣泛存在於天然物中。然而,這些醣體於生物體中容易被醣水解酶或酸性條件下所降解,因此利用硫、氮或碳原子取代醣苷鍵的氧原子已被報導可增加醣苷鍵的穩定性,且與天然物的生物活性相似,具發展為治療藥物的潛力,其中,碳鍵結之醣苷分子具穩定性佳、分佈於自然界中细菌、昆蟲和植物體内等特性,引起科學家廣泛的興趣。文獻中常將多酚類化合物與一個以上的醣基結合,藉此增加二苯乙烯部分的水溶性,然而從自然界純化分離之碳鍵結醣苷分子含量稀少,且目前尚未發展出簡易效率高的合成策略,故其生理作用機制仍有待釐清。
第一部分利用微波輔助之Heck反應合成碳鍵結的二苯乙烯單醣及雙醣,此方法提供高選擇性與高產率的碳鍵結反式二苯乙烯醣苷合成方法,並應用於不同官能基修飾的碘化芳烴基醣體與不同位置取代的二苯乙烯之排列組合,同時完成C2對稱的碳鍵結反式二苯乙烯雙醣,而針對建構好的化合物進行人類SGLT2抑制活性測試,結果顯示其中三個類似物在 12 至 33 µM的濃度範圍中,對hSGLT2有明顯抑制效果。
第二部分發展4-(苯基-C-醣苷基)-1,2,3三唑之改進與多樣化合成策略,其中關鍵合成步驟為利用銅催化炔-疊氮環化加成反應 (copper(I)-catalyzed azide alkyne cycloaddition, CuAAC) 結合疊氮基醣苷化合物與不同取代之碳鍵結苯乙炔醣苷,而使用鄰苯二胺為CuAAC之配體可有效縮短反應時間並簡化純化過程,此方法適用於多種官能基且產率良好。透過交叉反應後得到一個小分子庫,對於β-galactosidase 及β-Galectin的抑制活性測試正在進行中。
O-Glycosides are integral part several natural products. However, the O-glycosidic bond is prone to cleavage under acidic condition and enzymatic in vivo conditions. Therefore several O-glycoside mimics were prepared to address this problem which includes S, N and C-Glycosides. These mimics generally will show similar biological activity compared to the natural compounds and thus can be considered as potential therapeutic targets. Among these glycomimetics C-Glycosides are particularly gained much interest because of their presence in number of natural products and stability under physiological conditions. Structural modification by glycosylation offers an attractive approach to increase the water solubility of polyhydroxy stilbenes. Even though C-glycosides are part of several natural products, the biological activity of C-glycoside stilbenes is not explored particularly due to rare occurrence and lack of straight forward synthetic methods.
In Chapter-1 we have developed microwave assisted Heck-coupling for the synthesis of mono- and bis-C-glycoside stilbenes using C-aryl glycosides and styrenes. This method provides exclusively C-glycoside trans-stilbenes with good yields. The developed Pd-catalyzed Heck-coupling method is successfully applied to various functionalized C-glycosyl aryl iodides and differentially substituted styrenes to deliver several C-glycoside trans-stilbenes with high selectivity. Synthesis of C-2 symmetric bis-C-glycoside-trans-stilbene is also accomplished. The obtained C-glycosyl trans-stilbenes were examined for human SGLT-2 inhibitory activity. Three of the analogues have shown hSGLT-2 inhibition in micro molar range (12 to 33 µM).
In Chapter-2, an improved and diversified synthesis for 4-(Phenyl-C-glycosyl)-1,2,3-triazoles was developed. The key step in the synthesis involves the copper catalyzed azide alkyne click chemistry between glycosyl azide and various substituted C-glycosylated phenyl acetylenes. Use of o-Phenylene diamine as a ligand in Copper catalyzed azide-alkyne click chemistry considerably shorten the reaction the time and allows simple purification. We have generated a small library to triazoles with broad substrate scope in terms of sugars. Interestingly each triazole analogue is having two free sugar units, one attached to the triazole nitrogen and other attached to the phenyl ring at C-4. The synthesized C-glycosylated triazole analogues were assayed for β-galactosidase and β-Galectin inhibition.
Title i
Acknowledgements ii
Abstract iv
Table of contents viii
List of figures xi
List of schemes xii
List of tables xiii
Abbreviation xv
Chapter 1: Trans-Stilbene C-Glycosides: Synthesis by a Microwave-Assisted
Heck Reaction and Evaluation of the SGLT-2 Inhibitory Activity 1
1 Introduction 2
1.1 C-glycosides 2
1.2 General synthetic strategies for C-aryl glycosides 4
1.2.1 Friedel-Craft’s reaction using trichloroacetimidate donor 4
1.2.2 Friedel-Craft’s reaction using trifluoro acetate donor 5
1.2.3 Friedel-Craft’s reaction using anomeric acetate donors 6
1.2.4 Fries type O→C rearrangement 8
1.2.4.1 Controlling the ratio of O- and C-glycosides 9
1.2.5 C-glycosylation using organometallic reagents 12
1.2.5.1 C-glycosylation using organolithium reagents 12
1.2.5.2 C-glycosylation using Negishi coupling 13
1.2.5.3 Substrate controlled C-glycosylation using organozinc reagents 14
1.2.5.4 C-glycosylation using anomeric stannanes 17
viii

1.3 Objectives 20
1.4 Diabetes-SGLT-2 inhibitors 21
1.4.1 Phlorizin and analogues as non selective SGLT-2 inhibitors 21
1.4.2 C-aryl glycoside analogues as potential SGLT-2 inhibitors 23
1.4.3 C-aryl glycoside analogues as potential SGLT-1 inhibitors 24
1.5 Polyhydroxy stilbenes and their O-and C-glycosides 25
1.5.1 Synthesis of polyhydroxy stilbenes and their O-and C-glycosides 26
1.6 Results and Discussion 30
1.7 Synthesis of bis C-glycoside stilbenes using microwave assisted heck coupling 42
1.8 SGLT-2 inhibition of Stilbene C-glycosides 43
1.9 Conclusion 44
1.10 Experimental section 45
1.10.1 General information 45
1.10.2 Characterization of compounds 45
1.10.3 General Pd/C mediated debenzylation 49
1.10.4 general peracetylation procedure 52
1.10.5 Standard iodination procedure 60
1.10.6 General procedure for Heck coupling 63
1.10.7 General experimental procedure for deacetylation 73
1.11 Establishment of SGLT-2 stable cell line 85
1.12 Radioactive SGLT-2 assay 86
1.13 References 87

ix
Chapter 2: Improved synthesis of 4-(Phenyl-C-glycosyl)-1,2,3-triazole derivatives 100
2.1 Introduction 101
2.1.1 Click chemistry : Overview 101
2.1.2 Copper catalyzed azide alkyne click chemistry (CuAAC) 102
2.1.3 Mechanism of CuAAC 104
2.1.4 1,2,3-triazoles as isosters of amide 107
2.2 Applications of Click chemistry in carbohydrate research 108
2.2.1 Applications of Click chemistry in Drug discovery 109
2.2.2 Protein tyrosine phosphate inhibitors 110
2.2.3 Protein kinase inhibitors 111
2.2.4 Glycogen Phosphorylase inhibitors 111
2.2.5 Glycosidase inhibitors 112
2.2.6 Neuraminidase inhibitors 113
2.2.7 Triazole analogues for lectin binding 114
2.2.7.1 Triazole analogues for galectin (S-lectin) inhibitory activity 114
2.3 Objective 116
2.4 Design and synthesis of triazole analogues 117
2.4.1 Results and discussion 118
2.4.2 Galactosidase and Galectin inhibition assay 124
2.5 Conclusion 126
2.6 Experimental section 127
2.7 References 148

x

Chapter 3: Total synthesis of trans-resveratrol 4-C-β-glucopyranoside and 158
trans-resveratrol 2-C-β-glucopyranoside
3.1 Introduction 159
3.2 Results and discussion 161
3.3 Prospective 163
3.4 References 164

List of Figures
Chapter-1
Figure 1.1 Structures of biologically active C-glycoside natural products 3
Figure 1.2 The O→C rearrangement mechanism 8
Figure 1.3 Substrate controlled transition metal free C-glycosylation 16
Figure 1.4 Structures of Phlorizin (42), its O-glycoside (43-45) and C-glycoside 22
analogues (46)
Figure 1.5 Structures of approved SGLT-2 inhibitors in the market (2016) 23
Figure 1.6 Structures of SGLT-1 inhibitors 24
Figure 1.7 Structures of polyhydroxy stilbenes and their O- and C-glycoside analogues 26
Figure 1.8 Outline of the synthetic approach for the construction of C-glyccoside 30
trans-Stilbenes
Figure 1.9 H-H cosy spectrum of 65 31
Figure 1.10 H-H cosy spectrum of 82a 38
Chapter-2
Figure 2.1 click reaction types 102
Figure 2.2 Structures of some useful ligands in click chemistry 104
xi
Figure 2.3 Proposed catalytic cycle of stepwise CuAAC 106
Figure 2.4 Isosteric similarities between amide and triazoles 108
Figure 2.5 Structures of PTP inhibitors 110
Fugure 2.6 Structures of protein kinase inhibitors 111
Figure 2.7 Structures of glycogen phosphorylase inhibitors 112
Figure 2.8 Structures of glycosidase inhibitors 112
Figure 2.9 Structures of Neuraminidase inhibitors and their triazole analogues 114
Figure 2.10 Structures of Lectin inhibitors 115
Figure 2.11 Comparision of synthetic approaches 118
Figure 2.12 Galactosidase inhibition assay 124
Chapter-3
Figure 3.1 Structures of resveratrol C-glycoside analogues 159
List of Schemes
Chapter-1
Scheme 1.1 C-glycosylation of phenolic ethers using trichloroacetimidate donor 5
Scheme 1.2 C-glycosylation of phenolic ethers using trifluoroacetate donor 6
Scheme 1.3 C-glycosylation of 1,4-dimethoxy benzene using AgOTfa/SnCl4 8
Scheme 1.4 The O→C rearrangement using Sc(OTf)3 10
Scheme 1.5 Mono and bis C-glycosylation of resorcinol derivatives using Sc(OTf)3 11
Scheme 1.6 C-aryl glycosylation using aryl lithium reagent 12
Scheme 1.7 C-glycosylation using Negishi coupling 14
Scheme 1.8 Substrate controlled transition metal free C-glycosylation 15
Scheme 1.9 Synthesis of SGLT-2 inhibitors using substrate controlled transition metal 17
free C-glycosylation
xii
Scheme 1.10 Stereospecific synthesis of C-aryl glycosides using anomeric stannanes 18
Scheme 1.11 Stereospecific synthesis of C-aryl glycosides using anomeric stannanes 19
Scheme 1.12 Chemical synthesis of resveratrol O-glycosides 27
Scheme 1.13 Chemical synthesis of resveratrol O-glycosides 28
Scheme 1.14 Enzymatic synthesis of resveratrol O-glycosides 28
Scheme 1.15 Synthesis of fully protected C-glucosyl trans-stilbene 32
Scheme 1.16 Debenzylation of aryl C-glycosides 33
Scheme 1.17 MW-assisted synthesis of non natural bis C-glucosyl stilbenes derivative 42
Chapter 2.
Scheme 2.1 Synthesis of alkyne derivative (39a) 119
Scheme 2.2 Synthesis of azide derivatives (42a-d) 121
Scheme 2.3 Synthesis of galactose based highly water soluble triazole derivatives (40q-r) 125
Chapter 3.
Scheme 3.1 Stille coupling approach for synthesis of resveratrol C-glycoside analogues 160
(1 and 2a)
Scheme 3.2 Synthesis of 4-iodo resveratrol (3) 161
Scheme 3.3 Synthesis of stannane (5) 162
Scheme 3.4 Stille coupling of 4-iodo resveratrol (3) using anomeric stannane (5) 162
Scheme 3.5 Synthesis of resveratrol 4-C-β-glucopyranoside using Heck coupling 163
List of tables
Chapter-1
Table 1.1 C-glycosylation of p-Methoxy toluene using AgOTfa/SnCl4 7
Table 1.2 Halogenation conditions screening 34
Table 1.3 MW-mediated Pd (II) catalyzed heck reaction: Optimization of reaction 36
xiii
-conditions
Table 1.4 MW-mediated synthesis of trans-stilbene C-glucosides:variation of styrene 37
Table 1.5 Stereoselective C-glycosylation: Synthesis of glycosyl C-aryl iodides (85-88) 40
Table 1.6 MW-assisted formation of Stilbene C-glycosides: variation of the sugar and 41
aromatic ring
Table 1.7 SGLT-2 inhibitory activity of trans-stilbene C-glycosides 44
Chapter-2:
Table 2.1 Synthesis of alkyne derivativs (39b-d) 120
Table 2.2 Synthesis of triazole derivatives (40a-p) 123














xiv
Abberiviation
AlCl3 Aluminium trichloride
Ac2O Acetic anhydride
ACN Acetonitrile
AIEC Adherent invasive E-coli
AgOTFA Silver trifluoroacetate
AgClO4 Silver perchlorate
BF3.Et2O Borontrifluoride diethyletherate
Bn Benzyl
tBu tert-Butyl
BBr3 Borontribromide
tBuOH tert-Butanol
n-BuLi n-Butyl lithium
s-BuLi Secondary butyl lithium
CCl3CN Trichloro acetonitrile
Cp2HfCl2 Dichlorobis(cyclopentadienyl)hafnium
CAN Ceric ammonium nitrate
CuCl Copper (I) chloride
CuBr Copper (I) bromide
CuI Copper (I) iodide
CuSO4 .5H2O Copper (II) sulpahte pentahydrate
Cu (OAc)2 Copper (II) acetate
CaCl2 Calcium (II) chloride
CHCl3 Chloroform
xv
Cs2CO3 Cesium carbonate
CD Crohn’s disease
CRD Carbohydrate recognition domain
CuNP Copper nanoparticle
DBU 1,8-Diaza bicyclo [5.4.0] undec 7-ene
DCM Dichloromethane
DBE Dibutyl ether
DMI N, N'- dimethyl imidazolidinone
DM Diabetes mellitus
DMF N, N-dimethyl formamide
DMAP 4-dimethyl amino pyridine
DMSO Dimethyl sulphoxide
Dave-Phos 2-Dicyclohexylphosphino 2'-(N,N-dimethyl amino)
biphenyl
DIPEA N, N-diisopropyl ethyl amine
EtOAc Ethylacetate
Et3SiH Triethylsilane
EMA European medical association
Et3N Triethyl amine
EtSNa Sodium thioethoxide
Et3(PhCH2)N+Br - Benzyl triethyl ammonium bromide
FeCl3 Ferric chloride
GaCl3 Gallium (III) chloride
GPs Glycogen phosphorylase
xvi
H2 Hydrogen
HCl Hydrochloric acid
H2O Water
Hg(OAc)2 Mercuric acetate
Hg (OTfa)2 Mercuric trifluoroacetate
IDF International diabetic federation
IBD Inflammatory bowel disease
Jackie Phos 2-{Bis[3,5-bis(trifluoromethyl)phenyl] phosphino}-3,6-dimethoxy-2′,4′,6′-triisopropyl-1,1′-biphenyl, Bis(3,5-bis(trifluoromethyl)phenyl)(2′,4′,6′- triisopropyl-3,6-dimethoxybiphenyl-2-yl)phosphine
KF Potassium fluoride
KCl Potassium chloride
LG leaving group
MeOH Methanol
MS 4Å Molecular sieves
MgCl2 Magnessium (II) chloride
MW Microwave
NaBH4 Sodium borohydride
NiCl2 Nickel (II) chloride
NMR Nuclear magnetic resonance
NBS N-Bromo succinimide
NIS N-iodo succinimide
Na Sodium
NH3 Ammonia
NaOH Sodium hydroxide
xvii
NaOMe Sodium methoxide
NaHCO3 Sodium bicarbonate
Pd/C Palladium on charcoal
Pd(PPh3)4 Tetrakis(triphenyl phosphine) palladium (0)
Pd(dba)2 Bis dibenzylidineacetone palladium (0)
Pd2(dba)3 Tris dibenzylidineacetone di palladium (0)
P(n-Bu)3 Tri n-butyl phosphine
P(t-Bu)3 Tri t-butyl phosphine
Pd(OAc)2 Palladium (II) acetate
Py Pyridine
PTP Protein tyrosine phosphate
PK Protein kinase
PyBOX Pyridine bis(oxazoline)
S-Phos 2-Dicyclohexylphosphino-2'-6'-dimethoxy biphenyl
SGLT Sodium dependent glucose co transporter protein
Sc(OTf)3 Scandium Triflate
SnCl4 Tin tetrachloride
TFA Trifluoro acetic acid
TFAA Trifluoro acetic anhydride
TMSOTf Trimethylsilyl trifluoro methane sulphonate
TMDMSCl t-Butyl dimethyl chloro silane
TBAF tetra-n-butyl ammonium fluoride
THF Tetrahydro furan
TLC Thin layer chromatography
xviii
TMS Trimethyl silyl
TMSN3 Azido trimethyl silane
TMEDA N, N, N', N'- tetramethyl ethylene diamine
TBTA Tris [(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
THPTA Tris (3-hydroxypropyltriazolylmethyl) amine
TBAE Tetra-n-Butyl ammonium acetate
TCEP Tris 2-(carboxy ethyl) phosphine
USFDA United States foods and drug administration
ZnBr2 Zinc bromide
ZnCl2 Zinc chloride
ZnCl2.Et2O Zinc chloride diethyl etherate
ZnBr2.LiBr Zinc bromide lithum bromide complex












xix
1. Werz, D. B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C.-W.; Seeberger, P. H. Exploring the Structural diversity of mammalian carbohydrates (″Glycospace″) by statistical databank analysis. ACS Chem. Biol. 2007, 2, 685−691.
2. Laine, R. A. Invited Commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: The isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 1994, 4, 759−767.
3. Nicotra, F.; Airoldi,C.; Cardona, F. Synthesis of C- and S- glycosides. Comprehensive Glycoscience. 2007, 1, 647-683.
4. a) Ernst, B.; Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev.Drug. Discovery 2009, 8, 661−677. b) Wu, C.-Y.; Wong, C.-H. Chemistry and glycobiology. Chem.Commun. 2011, 47, 6201− 6207.
5. Du, Y.; Linhardt, R. J.; Vlahov, I. R. Recent advances in stereo selective C-glycoside synthesis. Tetrahedron 1998, 54, 9913−9959.
6. Levy, D. E. Strategies towards C-glycosides. In the organic chemistry of sugars; Levy, D. E., Fügedi, P., Eds.; CRC Taylor & Francis: Boca Raton, FL, 2006; pp. 269−348.
7. Levy, D. E.; Tang, C. The chemistry of C-glycosides; Pergamon Press: Oxford, 1995.
8. Postema, M. H. D. C-Glycoside synthesis; CRC Press: Boca Raton, FL, 1995.
9. Bertozzi, C. R.; Bednarski, M. D. Synthesis of C-glycosides; stable mimics of O- glycosidic linkages. In modern methods in carbohydrate synthesis; Khan, S. H., O’Neill, R. A., Eds.; Harwood academic publishers: UK, 1996; pp. 316−351.
10. Nishikawa, T.; Adachi, M.; Isobe, M. C-Glycosylation. In glycoscience-chemistry and chemical biology; Fraser-Reid, B. O.,Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2008; pp. 755−811.
11. Vauzeilles, B.; Urban, D.; Doisneau, G.; Beau, J.-M. C-Glycosyl analogs of oligosaccharides. In Glycoscience-chemistry and chemical biology; Fraser-Reid, B. O.,Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2008; pp. 2023−2077.
12. Beau, J.-M.; Gallagher, T. Nucleophilic C-glycosyl donors for C-glycoside synthesis. Top. Curr. Chem. 1997, 187, 1−54.
13. Togo, H.; He, W.; Waki, Y.; Yokoyama, M. C-Glycosidation technology with free radical reactions. Synlett 1998, 700−717.
14. Zou, W. C-glycosides and Aza-C- glycosides as potential glycosidase and glycosyl transferase inhibitors. Curr. Top. Med. Chem. 2005, 5, 1363−1391.
15. Dos Santos, R. G.; Jesus, A. R.; Caio, J. M.; Rauter, A. P. Fries-type reactions for the C-glycosylation of phenols. Curr. Org. Chem. 2011, 15, 128−148.
16. Merino, P.; Tejero, T.; Marca, E.; Gomollón-Bel, F.; Delso, I.; Matutec, R. Cross-coupling reactions for the synthesis of C-glycosides and related compounds. Heterocycles 2012, 86, 791−820.
17. Yue, S.; Tang, Y.; Li, S.; Duan, J.-A. Chemical and biological properties of Quinochalcone C-glycosides from the florets of Carthamus Tinctorius. Molecules 2013, 18, 15220−15254.
18. Leclerc, E.; Pannecoucke, X.; Etheve-Quelquejeu, M.; Sollogoub, M. Fluoro-C-glycosides and fluoro-carbasugars, hydrolytically stable and synthetically challenging glycomimetics. Chem. Soc. Rev. 2013, 42, 4270−4283.
19. Lalitha, K.; Muthusamy, K.; Prasad, Y. S.; Vemula, P. K.; Nagarajan, S. Recent Developments in β-C-Glycosides: Synthesis and applications. Carbohydr. Res. 2015, 402, 158−171.
20. Brazier-Hicks, M.; Evans, K. M.; Gershater, M. C.; Puschmann, H.; Steel, P. G.; Edwards, R. The C-Glycosylation of flavonoids in cereals. J. Biol. Chem. 2009, 284, 17926-17934.
21. Furata, T,: Kimura, T.; Kondo, S.; Mihara, H.; Wakimoto, T.; Nukaya, H.; Tsuji, K.; Tanaka, K. Concise total synthesis of flavones C-glycosides having potential anti-Inflammatory activity. Tetrahedron. 2004, 60, 9375-9379.
22. Gaspar, A.; Matos, M.-J.; Garrido.; J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960-4992.
23. Malik.; E.-M.; Muller, C.-E. Anthraquinones as pharmacological tools and drugs. Medicinal Research Reviews. 2016, 36, 705-748.
24. Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Synthesis of the Pluramycins 1: Two designed anthrones as enabling platforms for flexible Bis-C- glycosylation, Angew. Chem. Int. Ed. 2014, 53, 1258-1261.
25. Schmidt, R.-R.; Effenberger, G. C-glucosylarenes from O-α-D-glucosyl trichloro acetimidates: Structure of Berginin derivatives. Carbohydr. Res. 1987, 171, 59-79.
26. a) Omura, S.; Tanaka, H.; Oiwa, R.; Awaya, J.; Masuma, R.; Tanak, K. J. Antibiot. 1977, 30, 908-916. b) Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Omura, S. J. Antibiot. 1981, 34, 1517-1518. c) Kusumi, S.; Tomono, S.; Okuzawa, S.; Kaneko, E.; Ueda, T.; Sasaki, K.; Takahashi, D.; Toshima, K. Total synthesis of Vineomycin B 2 . J. Am. Chem. Soc. 2013, 135, 15909-15912.
27. Denmark, S.-E.; Regens, C.-S.; Kobayashi, T. Total synthesis of Papulacandin D. J. Am. Chem. Soc. 2007, 129, 2774-2776.
28. Lee, D. Y. W.; He, M. Recent advances in aryl C-glycoside synthesis. Curr. Top. Med. Chem. 2005, 5, 1333−1350.
29. a) Schmidt, R.-R.; Hoffmann, M. C-glycosides from O-glycosyl trichloro acetimidates. Tetrahedron Lett. 1982, 23, 409-412; b) Schmidt, R.-R.; Frick, W.; Haag-Zeino, B.; Apparao, S. C-Aryl glycosides and 3-deoxy- 2-glyculosonates via inverse type hetero Diels-Alder reaction. Tetrahedron Lett. 1987, 28, 4045-4048.
30. Cai, M.-S.; Qiu, D.-X. Stereoselective and mild method for the synthesis of C-D-glucosylarenes in high yield. Carbohydr. Res. 1989, 191, 125-129.
31. Kuribayashi, T.; Ohkawa, N.; Satoh, S. AgOTfa/SnCl4:A powerful new promoter combination in the aryl C-glycosidation of a diverse range of sugars acetates and aromatic substrates. Tetrahedron. Lett. 1998, 39, 4537-4540.
32. Praly, J.-P.; He, L.; Qin, B.-B.; Tanoh, M.; Chen, G.-R. C-glycopyranosyl- 1,4-benzoquinones and hydroquinones opening access to C-glycosylated analogs of vitamin E. Tetrahedron Lett. 2005, 46, 7081–7085; b) He, L.; Zhang, Y.-Z.; Tanoh, M.; Chen, G.-R.; Praly, J.-P.; Chrysina, E.-D.; Tiraidis, C.; Kosmopoulou, M.; Leonidas, D.-D.; Oikonomakos, N.-G. In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of C-D-Glycopyranosylbenzo (hydro)quinones –Inhibition of and Binding to Glycogen Phosphorylase in the Crystal. Eur. J. Org. Chem. 2007, 4, 596–606.
33. a) Ben, A.; Yamauchi, T.; Matsumoto, T.; Suzuki, K. Sc(OTf)3 as efficient catalyst for Aryl C-glycoside synthesis. Synlett. 2004, 225-230; b) Yamauchi, T.; Watanabe, Y.; Suzuki, K.; Matsumoto, T. Bis-C-glycosylation of resorcinol derivatives by an O→C-glycoside rearrangement. Synlett. 2006, 399-402; c) Ho, T.-C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Total synthesis of (+)-Vicenin- 2. Org. Lett. 2016, 18, 4488-4490.
34. Matsumoto, T., Katsuki, M., Suzuki, K. New approach to C-aryl glycosides starting from phenol and glycosyl fluoride. Lewis acid-catalyzed rearrangement of O-glycoside to C-glycoside. Tetrahedron Lett. 1988, 29, 6935-6938.
35. El Telbani, E.; El Desoly, S.; Hammad, M.; Rahman, A.; Schmidt, R.-R. C-Glycosides of visnagin analogues. Eur. J. Org. Chem. 1998, 11, 2317-2322.
36. Sato, S.; Koide, T. Synthesis of vicenin-1 and 3, 6,8- and 8,6-di-C-β-D-(glucopyranosyl-xylopyranosyl)-4’,5,7- trihydroxyflavones using two direct C-glycosylations of naringenin and phloroacetophenone with unprotected D-glucose and D-xylose in aqueous solution as the key reactions. Carbohydr. Res. 2010, 345, 1825-1830.
37. a) Czernecki, S.; Ville, G. Stereospecific C-Glycosylation of Aromatic and Heterocyclic Rings, J. Org. Chem. 1989, 54, 610-612; b) Ellsworth, B.-A.; Doyle, A.-G.; Patel, M.; Caceres-cortes, J.; Meng, W.; Deshpande, P.-P.; Pullockran, A.; Washburn, W.-N. C-Arylglucoside synthesis: Triisopropylsilane as a selective reagent for the reduction of an anomeric C-phenyl ketal. Tetrahedron: Assymmetry 2003, 14, 3243-3247.
38. Gong, H.; Gagne, M.-R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated fully oxygenated C-Alkyl and C-Arylglycosides. J. Am. Chem. Soc. 2008, 130, 12177-12183.
39. Lemaire, S.; Houpis, I.-N.; Xiao, T.; Li, J.; Digard, E.; Gozlan, C.; Liu, R.; Gavryushin, A.; Diene, C.; Wang, Y.; Farina, V.; Knochel, P. Stereoselective C-glycosylation reactions with arylzinc reagents. Org. Lett. 2012, 14, 1480-1483.
40. Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-Aryl glycosides. J. Am. Chem. Soc. 2016, 138, 12049-12052.
41. IDF Diabetes atlas, 7th edition, for latest information please see website at http://www.idf.org/diabetesatlas.
42. Facchini, F. S.; Hua, N.; Abbasi, F.; Reaven, G. M. Insulin resistance as a predictor of age-related diseases. J. Clin. Endocrinol. Metab. 2001, 86, 3574−3578.
43. a) Stumvoll, M.; Goldstein, B. J.; Van Haeften, T. W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333−1346. b) Edelman, S. V. Type II diabetes Mellitus. Adv. Intern. Med. 1998, 43, 449-500.
44. Henry, R. R. Glucose control and insulin resistance in noninsulin-dependent diabetes mellitus. Ann. Intern. Med. 1996, 124, 97-103.
45. Anderson, S. L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242−254.
46. Rossetti, L.; Smith, D.; Shulman, G. I.; Papachristou, D.; DeFronzo, R. A. Correction of Hyperglycemia with Phlorizin Normalizes Tissue Sensitivity to Insulin in Diabetic Rats. J. Clin. Invest. 1987, 79, 1510−1515.
47. Oku, A.; Ueta, K.; Arakawa, K.; Ishihara, T.; Nawano, M.; Kuronuma, Y.; Matsumoto, M.; Saito, A.; Tsujihara, K.; Anai, M.; Asano, T.; Kanai, Y.; Endou, H. T-1095, an Inhibitor of Renal Na+ Glucose Cotransporters, May Provide a Novel Approach to Treating Diabetes. Diabetes 1999, 48, 1794−1800.
48. Kamakura, R.; Son, M. J.; de Beer, D.; Joubert, E.; Miura, Y.; Yagasaki, K. Antidiabetic Effect of Green Rooibos (Aspalathus linearis) Extract in Cultured Cells and Type 2 Diabetic Model KK-Ay Mice. Cytotechnology 2015, 67, 699−710.
49. a) Ku, S.-K.; Kwak, S.; Kim, Y.; Bae, J.-S. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) Inhibits High Glucose-Induced Inflammation In Vitro and In Vivo. Inflammation 2015, 38,445−455. b) Jesus, A. R.; Vila-vicosa, D.; machuqueiro, M.; Marques, A. P. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones asSelective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation. J. Med. Chem. 2017, 60, 568-579.
50. a) Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.; Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.; Pullockaran, A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.; Humphreys, W. G.; Khanna, A.; Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.; Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; Whaley, J. M.; Washburn, W. N. Discovery of Dapagliflozin: a Potent, Selective Renal Sodium-dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2008, 51, 1145−1149. (b) List, J. F.; Woo, V.; Morales, E.; Tang, W.; Fiedorek, F. T. Sodium-glucose cotransport Inhibition with Dapagliflozin in Type 2 Diabetes. Diabetes Care 2009, 32, 650−657.
51. a) Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. J. Med. Chem. 2010, 53, 6355−6360. b) Meininger, G.; Canovatchel, W.; Polidori, D.; Rosenthal, N. Canagliflozin for the Treatment of Adults with Type 2 Diabetes. Diabetes Manage. 2015, 5, 183−201.
52. a) Karla, S. Sodium Glucose Co-Transporter- 2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014, 5, 355-366. b) Fujita, Y.; Inagaki, N. Renal Sodium Glucose Cotransporter 2 Inhibitors as a Novel Therapeutic Approach to Treatment of Type 2 Diabetes: Clinical Data and Mechanism of Action. J. Diabetes Invest. 2014, 5, 265−275.
53. Anderson, S. L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242−254.
54. Goodwin, N. C.; Ding, Z.-M.; Harrison, B. A.; Strobel, E. D.; Harris, A. L.; Smith, M.; Thompson, A. Y.; Xiong, W.; Mseeh, F.; Bruce, D. J.; Diaz, D.; Gopinathan, S.; Li, L.; O’Neill, F.; Thiel, M.; Wilson, A. G. E.; Carson, K. G.; Powell, D. R.; Rawling, D. B. Discovery of LX2761, a Sodium-Dependent Glucose Cotransporter 1 (SGLT1) Inhibitor Restricted to the Intestinal Lumen, for the Treatment of Diabetes. J. Med. Chem. 2017, 60, 710-721.
55. Ahuja, I.; Kissen, R.; Bones, A. M. Phytoalexins in defense against pathogens. Trends in Plant. Sci. 2012, 17, 73-90.
56. Romero-Perez, A. I.; Lamuela-Raventos, R. M.; Andres-Lacueva, C.; De la Torre-Boronat, M. C. Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content. J. Agr. Food Chem. 2001, 49, 210-215.
57. Baur, J. A.; Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. 2006, 5, 493-506.
58. a) Xu, L.; Liu, C.; Xiang, W.; Chen, H., Qin, X.; Huang, X. Advances in the study of Oxyresveratrol. Int. J. Pharmacol., 2014, 10, 44-54; b) Hung, L. M.; Chen, J. K.; Lee, R. S.; Liang, H. C.; Su, M. J. Benificial effects of Astringin, a resveratrol analogue, on the ischemia and reperfusion damage in rat heart. Freeradical Biology and Medicine. 2001, 30, 877-883.
59. Xiao, J.; Hogger, P. Stability of dietary polyphenols under the cell culture conditions: Avoiding erroneous conclusions. J. Agr. Food Chem. 2015, 63, 1547-1557.
60. a) K. Iguchi, T. Toyoma, T. Ito, T. Shakui, S. Usui, M. Oyama, M. Iinuma, K. Hirano, Anti androgentic activity of resveratrol analogues in prostate cancer LNCaP cells. J. Androl. 2012, 33, 1208-1215; b) Kapetanovic, I. M.; Muzzio, M.; Huang, Z.; Thompson, T. N.; McCormick, D. L.Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its Dimethylether analog, pterostilbene, in rats. Cancer. Chemother. Pharmacol. 2011, 68, 593-601; c) Paul, S.; Mizuno, C. S.; Lee, H. J.; Zheng, X.; Chajkowisk, S.; Rimoldi, J. M.; Conney, A.; Suh, N.; Rimando, A. M. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. Eur. J. Med. Chem. 2010, 45, 3702-3708.
61. Cardullo, N.; Spatafora, C.; Musso, N.; Barresi, V.; Condorelli, D.; Tringali, C. Resveratrol related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition. J. Nat. Prod. 2015, 78, 2675-2683.
62. a) Larosa, M.; Carneiro, J. T.; Yanez-Gascon, M. J.; Alcantara, D.; Selma, M. V.; Beltran, D.; Garcia-Conesa, M. T.; Urban, C.; Lucas, R.; Tomas-Barberan, F.; Morales, J. C.; Espin, J. C. Preventive oral treatment with resveratrol pro-prodrugs drastically reduce colon Inflammation in rodents. J. Med. Chem. 2010, 53,7365-7376.
63. a) Orsini, F.; Pelizzoni, L.; Verotta, T.; Aburjai, Isolation, synthesis, and antiplatelet aggregation activity of Resveratrol 3-O-β-D glucopyranoside and related compounds. J. Nat. Prod. 1997, 60, 1082-1087; b) Ngoc, T. M.; Minh, P. T. H.; Hung, T. M.; Thuong, P. T.; Lee, I.; Min, B. S.; Bae, K. H. Lipoxygenase inhibitory constituents from Rhubarb. Arch. Pharma. Res. 2008, 31, 598-605.
64. Choi, R. J.; Chun, J.; Khan, S.; Kim, Y. S. Desoxyrhapontigenin, a potent anti-inflammatory phytochemical,inhibits LPS-induced inflammatory responses via suppressing NF-κB and MAPK pathways in RAW 264.7 cells. Int. Immun. Pharmacology 2014, 18, 182-190.
65. Li, P.; Tian, W.; Wang, X.; Ma, X. Inhibitory effect of desoxyrhaponticin and rhaponticin, two natural stilbene glycosides from the Tibetan nutritional food Rheum tanguticum Maxim. Ex Balf., on fatty acid synthase and human breast cancer cells. Food Function. 2014, 5, 251-256.
66. a) Ito, T.; Tanaka, T.; Ido, Y.; Nakaya, K. I.; Iinuma, M.; Riswan, S. Stilbenoids isolated from stem bark of Shorea Hemsleyana. Chem. Pharma. Bull. 2000, 48, 1001-1005; b) Baderschneider, B.; Winterhalter, P. Isolation and Characterization of Novel Stilbene Derivatives from Riesling Wine. J. Agric. Food Chem. 2000, 48, 2681-2686; c) Wang, Y. H.; Zhang, Z. K.; He, H. P.; Wang, J. S.; Zhou, H.; Ding, M.; Hao, X. J. Stilbene C-glucosides from Cissus repens. J. Asian Nat. Prod. Res. 2007, 9, 631-636.
67. Morikawa, T.; Chaipech, S.; Matsuda, H.; Hamao, M.; Umeda, Y.; Sato, H.; Tamura, H.; Koni, H.; Ninomiya, K.; Yoshikawa, M.; Pongpiriyadacha, Y.; Hayakawa, T.; Muraoko, O. Antidiabetogenic oligostilbenoids and 3-ethyl- 4-phenyl- 3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg. Med. Chem. 2012, 20, 832-840.
68. a) Torres, P.; Poveda, A.; Barbero, V.; Parra, J. L.; Comelles, F.; Ballesteros, A. O.; Plou, F. J. Enzymatic Synthesis of α-Glucosides of Resveratrol with surfactant activity. Adv. Synth. Catal. 2011, 353, 1077-1086; b) Zhou, M.; Hamza, A.; Zhan, C. G.; Thorson, J. S. Assessing The Regioselectivity of OleD-Catalyzed glycosylation with a Diverse Set of Acceptors. J. Nat. Prod. 2013, 76, 279-286.
69. Bokor, E.; Kun, S.; Goyard, D.; Toth, M.; Praly, J. P.; Vidal, S.; Somsak, L.-C. Glycopyranosyl Arenes and Hetarenes: Synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 2017, 117, 1687-1764.
70. a) Santos, R. G. D.; Jesus, A. R.; Caio, J. M.; Rauter, A. P. Fries-type Reactions for the C-Glycosylation of Phenols. Curr. Org. Chem. 2011, 15, 128-148; b) Sinay P, Pure and Appl Chem. 1997, 69, 459-463.
71. a) Mavlan, M.; Ng, K.; Panesar, H.; Yepremyan, A.; Minehan, T. G. Synthesis of 3,3'-di-O-methyl Ardimerin and Exploration of Its DNA Binding Properties. Org. Lett. 2014, 16, 2212-2215; b) Palmacci, E. R.; Seeberger, P. H. Synthesis of C-Aryl and C-AlkylGlycosides Using Glycosyl Phosphates. Org. Lett. 2001, 3, 1547-1550.
72. a) Cheprakov, A. V.; Beletskaya, I. P. The Heck reaction as a sharpening stone of Palladium catalysis. Chem. Rev. 2000, 100, 3009-3066; b) Phan, N. T. S.; Van Der Sluys, M.; Jones, C.W. On the nature of the active species in Palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings homogeneous or heterogeneous Catalysis, a critical review. Adv. Synth. Catal. 2006, 348, 609-679.
73. Rodebaugh,R.; Debenham, J. S.; Fraser-Reid, B. Debenzylation of complex oligosaccharides using ferric chloride. Tetrahedron Lett. 1996, 37, 5477-5478.
74. Ward, D. E.; Gai, Y.; Kaller, B. F. [3+3] Annulation Based on 6-Endo- Trig Radical Cyclization: Regioselectivity and Diastereo-selectivity. J. Org. Chem. 1995, 60, 7830-7836.
75. Konishi, H.; Aritomi, K.; Okano, T.; Kiji, J. A mild selective mono bromination reagent system for alkoxy benzenes: N-Bromosuccinimide- silica gel. Bull. Chem. Soc. Jpn. 1989, 62, 591-593.
76. Castanet, A. S.; Colobert, F. O.; Broutin, P. E. Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroacetic acid. Tetrahedron Lett. 2002, 43, 5047-5048.
77. Kappe, C. O. Controlled Microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250-6284.
78. Corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Microwave-assisted Chemistry of Carbohydrates. Curr. Org. Chem. 2004, 8, 511-538.
79. a) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005, 127, 4685-4696; b) Xu, H. J.; Zhao, Y. Q.; Zhou, X. F. Palladium catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. J. Org. Chem. 2011, 76, 8036-8041.
80. Motawia, M. S.; Olsen, C. E.; Denyer, K.; Smith, A. M.; Moller, B. L. Synthesis of 4’-O-acetyl-maltose and α-D-galactopyranosyl-(1→4)-D-glucopyranose for biochemical studies of amylose biosynthesis. Carbohydr. Res. 2001, 330, 309-318.
81. Nishi, Y.; Tanimoto, T. Preparation and characterization of branched β-cyclodextrins having α–L-fucopyranose and a study of their functions. Biosci. Biotechnol. Biochem. 2009, 73, 562-569.
82. Schuler, P.; Fischer, S. N.; Marsch, M.; Oberthur, M. fEfficient α-Mannosylation of Phenols: The role of carbamates as scavengers for activated glycosyl donors. Synthesis 2013, 45, 27-39.
83. Gao, Q.; Gallop, M. A.; Xiang, J. Platinum containing compounds exhibiting cytostatic activity, synthesis and methods of use. (Xenoport Inc) WO Patent WO091790 A1, 2006.
84. Ramtohul, Y. K.; Das, S. K.; Cadilhac, C.; Reddy, T. J.; Gallant, M.; Liu, B.; Dietrich, E.; Vallee, F.; Martel, J.; Poisson, C. Mannose derivatives for treating bacterial infections. (Vertex Pharmaceuticals Incorporation) WO Patent WO100158 A1, 2014.
85. Castaneda, F.; Kinne, R. K. A. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Mol. Cell. Biochem. 2005, 280, 91-98.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top