(3.238.186.43) 您好!臺灣時間:2021/02/28 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:宋卓勳
研究生(外文):Sung, Cho-Hsun
論文名稱:飛行時間式二次離子質譜術與二次離子質譜術於感熱紙、矽元件、食用油中無機、有機表面與薄膜直接分析之研究
論文名稱(外文):Direct Analysis of Thermal Paper, Silicon Devices, and Edible oils by TOF-SIMS and SIMS for Inorganic and Organic Surfaces and Thin Films
指導教授:凌永健凌永健引用關係
指導教授(外文):Ling, Yong-Chien
口試委員:黃賢達麥富德張家耀黃郁棻
口試委員(外文):Huang, Shang-DaMai, Fu-DerChang, Jia-YawHuang, Yu-Fen
口試日期:2017-07-19
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:187
中文關鍵詞:二次離子質譜術酚甲烷矽元件食用油石墨烯
外文關鍵詞:Secondary ion mass spectrometryBisphenol ASilicon deviceEdible oilGraphen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
飛行時間式二次離子質譜術(TOF-SIMS)為一可分析固體或非揮發性液體表
面及近表面區域化學資訊之技術。其質量解析度可達 2000 以上,且靈敏度可達
ppma 至 ppba 等級。此外,可偵測相當多種類之二次離子碎片,包含單及多原子
離子、有機物與生物大分子等。本論文將採用飛行時間式二次離子質譜術及二次
離子質譜術與其他相關之分析技術,進行感熱紙中酚甲烷(BPA)定量及轉移、製
程用水中硼濃度對半導體元件影響、食品中食用油種判別之研究。
酚甲烷目前被廣泛用於各種商業產品,包括在感熱紙中作為顯影劑。由於先
前有關健康風之研究指出酚甲烷會經由手指接觸感熱紙後滲透進皮膚,因此建立
可直接偵測感熱紙表面之酚甲烷的分析方法有其必要性。表面分析技術如
TOF-SIMS 有助於此方面的分析需求。藉由定性離子,感熱紙表面的酚甲烷可輕
易的被 TOF-SIMS 所偵測。通過自行製備之酚甲烷/硬脂酰胺固體標準品,可得
到有效的酚甲烷離子碎片之強度對酚甲烷在標準品中濃度之檢量曲線並進行感
熱紙中之定量。高效液相層析-螢光偵測器之分析結果顯示, TOF-SIM 定量之表
面濃度與其定量之整體濃度是一致的。在感熱紙中酚甲烷轉移實驗中,發現約有
2.4 微克的酚甲烷經由持握感熱紙 30 秒後轉移至手指皮膚,且其轉移量與酚甲烷
之表面濃度高度正相關。此法具有所需之樣品前處理簡易、分析時間快速、無偽
陰性等優點,有望可被利用於感熱紙的快速篩選及其中酚甲烷暴露風險等研究。
近年來由於水資源日益短缺,海水淡化水逐漸成為一種可替代之工業用水,
但其中硼濃度是最為被半導體製造業所擔憂的,因水中硼的存在可能導致不良的
P-N 接面進而降低產品之良率。在本研究中,利用 SIMS、感應藕合電漿質譜儀
(ICP-MS)及半導體參數分析儀針對硼污染物在矽半導體元件中之分佈與濃度
以及相關電性進行評估。分析結果顯示,硼及其他可能會影響電性之金屬絕大部
分存在氧化層/基材之界面,且界面中硼濃度與製程用水中硼濃度呈正向線性相II
關(R2 > 0.95)。當製程水中的硼濃度為 125 ppt 以上時,明顯對矽半導體元件之電性,諸如平帶電壓、極限電壓及崩潰電壓產生降低之現象。分析的結果清楚地表明硼對半導體的顯著影響。因可以提供人體必需的營養素:脂質,食用油對於人體及日常生活是密不可分的。
近年有關食用油的安全問題不斷爆發,例如調和油的成分標示不實,或使用不可食用的劣質油加工成商品販賣等。這些事件不僅對我們的飲食產生影響,
更凸顯現有的食品檢測方法不能滿足當今的需求。因此,有必要提出更合適的分
析方法以建立更完整的油品資料庫。在本研究中,以簡單的前處理及取樣方法搭
配 TOF-SIMS 來檢測植物及動物油中三酸甘油脂及離子化過程產生之二酸甘油
脂的組成與含量。隨後利用主成分分析處理TOF-SIMS 所獲得之資訊,成功區分
及判別 14 種單一植物油以及食品中所含油脂之種類。再根據所選出之特性離子
之強度與調合之比例,可進一步以模擬調合油比例模型建立摻偽判別系統。
分子成像(Molecular imaging, MI)是近來新出現並迅速發展的一個生物醫學
領域,用以顯示和量測活體內生物反應過程中細胞和分子等級的特性,可有效的
揭露生理和病理機制,以及對疾病治療進行即時、動態、精準、低傷害、靶向性
的偵測和追蹤。因此近年來,在不同種類 MI 藥劑的開發上皆有相當程度的進步。
自 2004 年之後,與石墨烯相關的研究如雨後春筍般的出現,利用石墨烯輔以合
理及多功能所開發設計的奈米材料,如此使得石墨烯具有極大作為 MI 藥劑的可
能性。由於石墨烯的特殊物理及化學特性,極易於表面進行所需的修飾,而經由
這樣程序所製備的石墨稀奈米材料擁有穩定可調的放光、體積小、低毒性及高生
物相容性等優點,因此已經在很多研究中被用來觀察體內和體外的成像以替代傳
統藥劑。本章節為文獻評論及回顧之形式,首先概述石墨烯的特性與目前常見的
MI 型態,接著討論利用石墨烯開發同類別的 MI 藥劑之進展及其奈米材料之物
理與化學性質。最後提出此領域的未來將面臨的挑戰與展望。
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is an analytical technique
that can be used to characterize the surface and near surface region of solids and the surface
of some liquid sample without volatility. TOF-SIMS could be detected including single- and
multi-atomic ions, and organic fragments with different polarity. In this thesis, bisphenol A
(BPA) in thermal paper, the effect of boron concentration in process water for silicon device
and species of edible oil on foods were investigated by TOF-SIMS or SIMS couple with other
related analytical techniques.
BPA has widely been used in a variety of consumer products including thermal papers
(TPs) as a color developer. The health risk associated with dermal penetration of BPA as a
result of the finger contact with TPs warrants the need of a new analytical method for direct
analysis of BPA in TP surface. Techniques of surface analysis such as TOF-SIMS was helpful
to fulfill this need. Fragment ions of BPA on the TP surface were readily detected by
TOF-SIMS. Quantification of BPA was performed by establishing curves based on the
intensity of the BPA fragment ions versus the concentration of BPA in the prepared
BPA/stearamide solid sample which exhibits acceptable correlation coefficient. The content
of BPA in the surface of BPA-positive TPs agrees well to bulk BPA concentration by
high-performance liquid chromatography-fluorescence detector analysis. The amount of BPA
transferred from TP-positive TPs to the holding fingers (last for 30 seconds) was found to be
~2.4 g and highly related to the surface BPA concentration. Direct analysis of BPA in TPs
by TOF-SIMS is useful for screening purpose of TPs as well as for provides an opportunity
for estimating BPA exposure from TPs.
Recently, the boron concentration in desalination plants and fabrication process has
become most critical issue due to high cost and adverse effect on the performance of
semiconductor devices (SD) since the presence of boron might causes poor P-N junction and
lowers the production yield. In this study, SIMS and inductively coupled plasma-mass
spectrometer (ICP-MS) coupled with semiconductor parameter analyzer were used to
determining the effect of boron contaminants in SD. The main aim for the present study was
to identify boron spatial distribution and concentration in SD as well as an investigation of
relevant electrical properties. Spatial locality of boron and various metal species that may
affect electrical property was determined at the interface of silicon dioxide layer and Si wafer
in SD. The amount of boron was found in SDs is proportional to the boron concentration inIV
process water. When the boron concentration in process water was higher than 125 ng/L, the
related electrical properties were significantly decreased. The result of analyses clearly
indicates the pronounced effect of boron on a semiconductor.
Edible oils play an essential role for human body since they provide lipids. There have
been a lot of safety issues about edibles oils in recent years such as misbranding of blended
oils and the products that made from inedible oils. These scandals indicate that the existing
food examination methods are unable to meet the demand nowadays. Therefore, it is
necessary to come up with more suitable methods to figure out this problem. In this research,
a rapid method for classifying edible oils on foods was established by applying TOF-SIMS to
detect the acylglycerols with limit pretreatment. TOF-SIMS data were subsequently analyzed
by principal component analysis (PCA) to make a clear classification between various oils,
showing its potential in differentiating the fakes quickly. Further quantification of mixing
ratio was studied by estimating known and unknown compositions of blend oils according to
the curves of intensities of selected ions versus adulterant concentrations. This fast and
effective method is of great advantage to authenticate edible oils.
Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events
at the cellular and molecular level that can be advantageously applied in the areas of
diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale
reactions including enzymatic conversions and protein–protein interactions. Consequently,
over the years, great advancement has been made in the development of a variety of MI
agents such as peptides, aptamers, antibodies, and various nanomaterialsincluding
single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim &
Novoselov, has ignited considerable research efforts to rationally design and execute a wide
range of graphene-based NMs making them an attractive platform for developing highly
sensitive MI agents. Owing to their exceptional physicochemical and biological properties
combined with desirable surface engineering, graphene-based NMs offer stable and tunable
visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus
have been explored for in vitro and in vivo imaging applications as a promising alternative of
traditional imaging agents. This chapter is review form which begins by describing the
intrinsic properties of graphene and the key MI modalities. We provide an overview on the
recent advances in the design and development as well as physicochemical properties of the
different classes of graphene-based NMs being used as MI agents for potential applications.
Finally, the major challenges and future directions in the field will be discussed.
摘要 I
Abstract II
List of content V
List of Tables VIII
List of Figures IX
Abbreviations XII
Chapter 1 Introduction
1.1 Techniques of Surface Analysis 1
1.2 Time-of-flight secondary ion mass spectrometry 3
1.2.1 Basic principle 4
1.2.2 Ion source, dual beam sputtering and charging compensation 5
1.2.3 Mass analyzer and detector 6
1.2.4 Resolution 7
1.2.5 Operation modes 9
1.2.6 Data interpretation 11
1.2.7 Applications 13
1.3 Motives 16
1.4 References 19
1.5 Tables 26
1.6 Figures 29
Chapter 2 Direct Analysis of BPA in Thermal Papers by
Time-of-Flight Secondary Ion Mass Spectrometry: Content and
Transfer
2.1 Introduction 34
2.1 Experimental section 36
2.2.1 Materials and reagents 36
2.2.2 Apparatus 36
2.2.3 TOF-SIMS analysis 37
2.2.4 BPA content determination 38
2.2.5 BPA transfer to touched finger 38
2.3 Results and discussion 39
2.3.1 Identification of BPA in TPs by TOF-SIMS 39
2.3.2 Quantification of BPA in TPs by TOF-SIMS 41
2.3.3 BPA transfer from TPs to touched finger 42
2.4 Conclusions 43VI
2.5 References 45
2.6 Table 69
2.7 Figures 70
2.8 Supporting material 76
Chapter 3 Effect of Boron Concentrations in Ultrapure Water on
Electrical Properties of Silicon Device
3.1 Introduction 83
3.2 Experimental section 85
3.2.1 Chemicals and materials 85
3.2.2 Si wafer cleaning and treatment 85
3.2.3 SiO2 deposition and high voltage capacitor fabrication 86
3.2.4 Chemical analyses by SIMS and ICP-MS 86
3.2.5 Electrical measurements by electrical parameter analyzer 87
3.3 Results and discussion 88
3.3.1 Boron concentrations in BLUPW and BRUPW by ICP-MS 88
3.3.2 Boron profiles in CHEM wafers by SIMS 89
3.3.3 Boron amounts at SiO2/Si interface by ICP-MS and SIMS 90
3.3.4The thickness of SiO2 layer in HVCs 91
3.3.5 Electrical properties of HVCs 91
3.4 Conclusions 92
3.5 References 94
3.6 Tables 96
3.7 Figures 98
3.8 Supporting material 103
Chapter 4 Time of flight-secondary ion mass spectrometry
Combined with Principal Component Analysis for Rapid
Identification of Edible Oils on Foods
4.1 Introduction 104
4.2 Experimental section 106
4.2.1 Samples and preparation 106
4.2.2 TOF-SIMS spectrum analysis 107
4.2.3 Data preprocessing 108
4.2.4 Principle component analysis 108
4.3 Results and discussion 108
4.3.1 Validation of sample preparation and TOF-SIMS analysis 109
4.3.2 Profiling of TAGs and DAGs in edible oil samples 109
4.3.3 Principal component analysis of different kinds of edible oils s 110VII
4.3.4 Identification of oil species on food 113
4.3.5 Identification model for blended oils of four kinds common
plant oil
114
4.4 Conclusions 115
4.5 References 117
4.6 Tables 122
4.7 Figures 130
4.8 Supplementary Materials 137
Chapter 5 Graphene-based Composites as Molecular Imaging
Agents
5.1 Introduction 138
5.2 A brief description of graphene properties 139
5.3 Molecular imaging and key modalities 142
5.3.1 Computed Tomography 142
5.3.2 PET and Single Photon Emission Computed Tomography 143
5.3.3 Magnetic Resonance Imaging 144
5.3.4 Optical Imaging 145
5.3.5 Ultrasound 147
5.3.6 Photoacoustic Imaging 147
5.4 Graphene-based composites as molecular imaging agents 149
5.4.1 Graphene-Organic Dye Conjugates 150
5.4.2 Graphene-Antibody Conjugates 152
5.4.3 Graphene-Nanoparticle Composites 153
5.4.4 GQDs and graphene-QD composites 155
5.5 Theranostics 157
5.6 Conclusions, challenges, and future directions 160
5.7 References 163
5.8 Table 173
5.9 Figures 175
Chapter 6 Summary and Perspective
CH. 1
1. Ostrikov, K.; Levchenko, I.; Xu, S., Computational plasma nanoscience: Where plasma physics meets surface science. Computer Physics Communications 2007, 177 (1), 110-113.
2. Castner, D. G.; Ratner, B. D., Biomedical surface science: Foundations to frontiers. Surface Science 2002, 500 (1), 28-60.
3. Weldon, M. K.; Queeney, K.; Eng Jr, J.; Raghavachari, K.; Chabal, Y. J., The surface science of semiconductor processing: gate oxides in the ever-shrinking transistor. Surface Science 2002, 500 (1), 859-878.
4. Van Hove, M., From surface science to nanotechnology. Catalysis Today 2006, 113 (3), 133-140.
5. Kasemo, B., Biological surface science. Surface Science 2002, 500 (1), 656-677.
6. Bowker, M., The 2007 Nobel Prize in Chemistry for surface chemistry: Understanding nanoscale phenomena at surfaces. ACS nano 2007, 1 (4), 253-257.
7. Imbihl, R.; Ertl, G., Oscillatory kinetics in heterogeneous catalysis. Chemical Reviews 1995, 95 (3), 697-733.
8. O'Connor, J.; Sexton, B.; Smart, R. S., Surface Analysis Methods in Materials Science. Springer Science & Business Media: 2013; Vol. 23.
9. Duke, C., The birth and evolution of surface science: Child of the union of science and technology. Proceedings of the National Academy of Sciences 2003, 100 (7), 3858-3864.
10. Durrant, S. F., Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. Journal of Analytical Atomic Spectrometry 1999, 14 (9), 1385-1403.
11. Wilson, R. G.; Stevie, F. A.; Magee, C. W., Secondary Ion Mass Spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley-Interscience: 1989.
12. Adams, F.; Van Vaeck, L.; Barrett, R., Advanced analytical techniques: platform for nano materials science. Spectrochimica Acta Part B: Atomic Spectroscopy 2005, 60 (1), 13-26.
13. Stephan, T., TOF-SIMS in cosmochemistry. Planetary and Space Science 2001, 49 (9), 859-906.
14. Vickerman, J. C.; Briggs, D., ToF-SIMS: surface analysis by mass spectrometry. IM: 2001.
15. Winograd, N., The magic of cluster SIMS. Analytical Chemistry 2005, 77 (7), 142 A-149 A.
16. Mas, S.; Perez, R.; Martinez‐Pinna, R.; Egido, J.; Vivanco, F., Cluster TOF‐SIMS imaging: A new light for in situ metabolomics? Proteomics 2008, 8 (18), 3735-3745.
17. Plog, C.; Gerhard, W., Secondary ion production by latent energy of neutrally emitted particles. Surface Science 1985, 152, 127-134.
18. Delcorte, A. Static Secondary Ion Mass Spectrometry of Thin Organic Layers. Universite Catholique DE Louvain, 1999.
19. Shon, H. K.; Cho, Y. L.; Lim, C. S.; Choi, J. S.; Chung, S. J.; Lee, T. G., ToF‐SIMS analysis of diadenosine triphosphate and didadenosine tetraphosphate using bismuth and argon cluster ion beams. Surface and Interface Analysis 2014, 46 (S1), 189-192.
20. Jones, E. A.; Lockyer, N. P.; Vickerman, J. C., Depth profiling brain tissue sections with a 40 keV C60+ primary ion beam. Analytical Chemistry 2008, 80 (6), 2125-2132.
21. Ninomiya, S.; Ichiki, K.; Yamada, H.; Nakata, Y.; Seki, T.; Aoki, T.; Matsuo, J., Molecular depth profiling of multilayer structures of organic semiconductor materials by secondary ion mass spectrometry with large argon cluster ion beams. Rapid Communications in Mass Spectrometry 2009, 23 (20), 3264-3268.
22. Lee, J.; Ninomiya, S.; Matsuo, J.; Gilmore, I.; Seah, M.; Shard, A., Organic depth profiling of a nanostructured delta layer reference material using large argon cluster ions. Analytical Chemistry 2009, 82 (1), 98-105.
23. Gross, J. H., Mass Spectrometry: a textbook. Springer Science & Business Media: 2006.
24. McDonnell, L. A.; Heeren, R., Imaging mass spectrometry. Mass Spectrometry Reviews 2007, 26 (4), 606-643.
25. Niehuis, E.; Heller, T.; Feld, H.; Benninghoven, A., Design and performance of a reflectron based time‐of‐flight secondary ion mass spectrometer with electrodynamic primary ion mass separation. Journal of Vacuum Science & Technology A 1987, 5 (4), 1243-1246.
26. Senoner, M.; Unger, W., Lateral resolution of secondary ion mass spectrometry–results of an inter‐laboratory comparison. Surface and Interface Analysis 2007, 39 (1), 16-25.
27. Grignon, N.; Halpern, S.; Jeusset, J.; Briancon, C.; Fragu, P., Localization of chemical elements and isotopes in the leaf of soybean (Glycine max) by secondary ion mass spectrometry microscopy: critical choice of sample preparation procedure. Journal of Microscopy 1997, 186 (1), 51-66.
28. Fletcher, J. S.; Vickerman, J. C., A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Analytical and Bioanalytical Chemistry 2010, 396 (1), 85-104.
29. Magee, C.; Honig, R., Depth profiling by SIMS—depth resolution, dynamic range and sensitivity. Surface and Interface Analysis 1982, 4 (2), 35-41.
30. Lee, J. W.; Kim, K. J.; Kim, H. K.; Moon, D. W., Deconvolution of SIMS depth profiles of As multiple delta layers in silicon. Surface and Interface Analysis 2005, 37 (2), 176-180.
31. Lee, J. W.; Nagai, T.; Gotoh, N.; Fukusaki, E.; Bamba, T., Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. Journal of Chromatography B 2014, 966, 193-199.
32. Chen, C. Y.; Ghule, A. V.; Chen, W. Y.; Wang, C. C.; Chiang, Y. S.; Ling, Y. C., Rapid identification of phthalates in blood bags and food packaging using ToF-SIMS. Applied Surface Science 2004, 231, 447-451.
33. Ghule, K.; Ghule, A. V.; Chen, B.-J.; Ling, Y.-C., Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry 2006, 8 (12), 1034-1041.
34. Chen, B.-J.; Lee, P.-L.; Chen, W.-Y.; Mai, F.-D.; Ling, Y.-C., Hair dye distribution in human hair by ToF-SIMS. Applied Surface Science 2006, 252 (19), 6786-6788.
35. Seaman, C.; Flinders, B.; Eijkel, G.; Heeren, R. M.; Bricklebank, N.; Clench, M. R., “Afterlife Experiment”: Use of MALDI-MS and SIMS Imaging for the Study of the Nitrogen Cycle within Plants. Analytical Chemistry 2014, 86 (20), 10071-10077.
36. Belu, A. M.; Graham, D. J.; Castner, D. G., Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 2003, 24 (21), 3635-3653.
37. Chen, W.-Y.; Ling, Y.-C.; Chen, B.-J.; Shih, H.-H.; Cheng, C.-H., Diffusion study of multi-organic layers in OLEDs by ToF-SIMS. Applied Surface Science 2006, 252 (19), 6594-6596.
38. Yin, Y.-S.; Chen, B.-J.; Ling, Y.-C., ToF-SIMS study of official seals from Han Dynasty. Applied Surface Science 2008, 255 (4), 1534-1537.
39. Wagner, M., Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry. Analytical Chemistry 2005, 77 (3), 911-922.
40. Wang, Z.; Liu, B.; Zhao, E. W.; Jin, K.; Du, Y.; Neeway, J. J.; Ryan, J. V.; Hu, D.; Zhang, K. H.; Hong, M., Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information. Journal of The American Society for Mass Spectrometry 2015, 26 (8), 1283-1290.
41. Bich, C.; Havelund, R.; Moellers, R.; Touboul, D.; Kollmer, F.; Niehuis, E.; Gilmore, I. S.; Brunelle, A., Argon cluster ion source evaluation on lipid standards and rat brain tissue samples. Analytical Chemistry 2013, 85 (16), 7745-7752.
42. Chen, W.-Y.; Ling, Y.-C.; Chen, B.-J.; Wang, C.-C., Atomic distribution in quantum dots—A ToF-SIMS study. Applied Surface Science 2006, 252 (19), 7003-7005.
43. Nygren, H.; Hagenhoff, B.; Malmberg, P.; Nilsson, M.; Richter, K., Bioimaging TOF-SIMS: High resolution 3D Imaging of single cells. Microscopy Research and Technique 2007, 70 (11), 969-974.
44. Brison, J.; Robinson, M. A.; Benoit, D. S.; Muramoto, S.; Stayton, P. S.; Castner, D. G., TOF-SIMS 3D imaging of native and non-native species within HeLa cells. Analytical Chemistry 2013, 85 (22), 10869-10877.
45. Jungnickel, H.; Jones, E.; Lockyer, N.; Oliver, S.; Stephens, G.; Vickerman, J., Application of TOF-SIMS with Chemometrics To Discriminate between Four Different Yeast Strains from the Species Candida g labrata and Saccharomyces cerevisiae. Analytical Chemistry 2005, 77 (6), 1740-1745.
46. Henry, M.; Dupont-Gillain, C.; Bertrand, P., Conformation change of albumin adsorbed on polycarbonate membranes as revealed by ToF-SIMS. Langmuir 2003, 19 (15), 6271-6276.
47. Wagner, M.; Graham, D.; Ratner, B.; Castner, D. G., Maximizing information obtained from secondary ion mass spectra of organic thin films using multivariate analysis. Surface Science 2004, 570 (1), 78-97.
48. Tyler, B. J., Multivariate statistical image processing for molecular specific imaging in organic and bio-systems. Applied Surface Science 2006, 252 (19), 6875-6882.
49. Biesinger, M. C.; Paepegaey, P.-Y.; McIntyre, N. S.; Harbottle, R. R.; Petersen, N. O., Principal component analysis of TOF-SIMS images of organic monolayers. Analytical Chemistry 2002, 74 (22), 5711-5716.
50. Wickes, B. T.; Kim, Y.; Castner, D. G., Denoising and multivariate analysis of time‐of‐flight SIMS images. Surface and Interface Analysis 2003, 35 (8), 640-648.
51. Sjövall, P.; Lausmaa, J.; Johansson, B., Mass spectrometric imaging of lipids in brain tissue. Analytical Chemistry 2004, 76 (15), 4271-4278.
52. Lee, J. L. S.; Gilmore, I. S.; Seah, M. P., Quantification and methodology issues in multivariate analysis of ToF-SIMS data for mixed organic systems. Surface and Interface Analysis 2008, 40 (1), 1-14.
53. McCombie, G.; Staab, D.; Stoeckli, M.; Knochenmuss, R., Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Analytical Chemistry 2005, 77 (19), 6118-6124.
54. Ostrowski, S. G.; Van Bell, C. T.; Winograd, N.; Ewing, A. G., Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 2004, 305 (5680), 71-73.
55. Broersen, A.; van Liere, R. In Feature based registration of multispectral data-cubes, Proceedings IASTED International Conference on Visualization, Imaging, & Image Processing, 2006; pp 543-548.
56. Zhu, Y.-J.; Olson, N.; Beebe, T. P., Surface Chemical Characterization of 2.5-μm Particulates (PM2.5) from Air Pollution in Salt Lake City Using TOF-SIMS, XPS, and FTIR. Environmental Science & Technology 2001, 35 (15), 3113-3121.
57. Groenewold, G. S.; Gianotto, A. K.; Olson, J. E.; Appelhans, A. D.; Ingram, J. C.; Delmore, J. E.; Shaw, A. D., Static SIMS investigation of tetraethylammonium bromide on soil particles using ReO4− and Ga+ projectiles. International Journal of Mass Spectrometry and Ion Processes 1998, 174 (1–3), 129-142.
58. Tomiyasu, B.; Hoshi, T.; Owari, M.; Nihei, Y., TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles. Applied Surface Science 2003, 203–204, 775-778.
59. Peterson, R. E.; Tyler, B. J., Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Atmospheric Environment 2002, 36 (39), 6041-6049.
60. Peterson, R.; Tyler, B., Surface composition of atmospheric aerosol: individual particle characterization by TOF-SIMS. Applied Surface Science 2003, 203, 751-756.
61. Shen, F.; Chen, X.; Gao, P.; Chen, G., Electrochemical removal of fluoride ions from industrial wastewater. Chemical Engineering Science 2003, 58 (3), 987-993.
62. Boudewijn, P.; Janssen, K., Application of SIMS in semiconductor research. Fresenius' Zeitschrift für Analytische Chemie 1987, 329 (2-3), 215-219.
63. Gillen, G.; Batteas, J.; Michaels, C. A.; Chi, P.; Small, J.; Windsor, E.; Fahey, A.; Verkouteren, J.; Kim, K., Depth profiling using C 60+ SIMS—Deposition and topography development during bombardment of silicon. Applied Surface Science 2006, 252 (19), 6521-6525.
64. Gong, B.; Marjo, C. E., Quantitative ToF‐SIMS depth profiling of a multi‐phased III–V semiconductor matrix via the analysis of secondary cluster ions. Surface and Interface Analysis 2016, 48 (7), 422-427.
65. de Jong, J.; López, P.; Mol, H.; Baeten, V.; Pierna, J. A. F.; Vermeulen, P.; Vincent, U.; Boix, A.; von Holst, C.; Tomaniova, M., Analytical strategies for the early quality and safety assurance in the global feed chain: Approaches for nitrogen adulterants in soybean meal and mineral and transformer oils in vegetable oils. TrAC Trends in Analytical Chemistry 2016, 76, 203-215.
66. Sánchez-López, E.; Sánchez-Rodríguez, M.; Marinas, A.; Marinas, J.; Urbano, F.; Caridad, J.; Moalem, M., Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information. Talanta 2016, 156, 180-190.
67. Piras, F.; Dettori, M.; Magnani, A., ToF-SIMS PCA analysis of Myrtus communis L. Applied Surface Science 2009, 255 (17), 7805-7811.
68. Cliff, B.; Weibel, D.; Lockyer, N.; Jungnickel, H.; Stephens, G.; Vickerman, J., Detection of chlorinated pesticides on the surface of fungus using ToF-SIMS. Applied Surface Science 2003, 203, 710-713.
69. Focardi, S.; Ristori, S.; Mazzuoli, S.; Tognazzi, A.; Leach-Scampavia, D.; Castner, D. G.; Rossi, C., ToF-SIMS and PCA studies of Seggianese olives and olive oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 279 (1), 225-232.
70. Felicissimo, M. P.; Bittencourt, C.; Houssiau, L.; Pireaux, J.-J., Time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analyses of Bixa orellana seeds. Journal of Agricultural and Food Chemistry 2004, 52 (7), 1810-1814.
71. Bittencourt, C.; Felicissimo, M. P.; Pireaux, J.-J.; Houssiau, L., ToF-SIMS characterization of thermal modifications of bixin from Bixa orellana fruit. Journal of Agricultural and Food Chemistry 2005, 53 (16), 6195-6200.
72. Perkins, M. C.; Roberts, C. J.; Briggs, D.; Davies, M. C.; Friedmann, A.; Hart, C. A.; Bell, G. A., Surface morphology and chemistry of Prunus laurocerasus L. leaves: a study using X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry, atomic-force microscopy and scanning-electron microscopy. Planta 2005, 221 (1), 123-134.
73. Demierre, A.-L.; Peter, R.; Oberli, A.; Bourqui-Pittet, M., Dermal penetration of bisphenol A in human skin contributes marginally to total exposure. Toxicology Letters 2012, 213 (3), 305-308.
74. Taylor, J. A.; vom Saal, F. S.; Welshons, W. V.; Drury, B.; Rottinghaus, G.; Hunt, P. A.; Toutain, P.-L.; Laffont, C. M.; VandeVoort, C. A., Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: relevance for human exposure. Environmental Health Perspectives 2011, 119 (4), 422.
75. Yagi, Y.; Hayashi, F.; Uchitomi, Y. In Evaluation of Boron Behavior in Ultrapure Water Manufacturing System, Proceedings of the Semicon-ductor Pure Water and Chemical Conference, San Jose, CA, 1994; pp 54-62.
76. Zhang, H.; Wu, Y.; Li, Y.; Wang, B.; Han, J.; Ju, X.; Chen, Y., PCR-CE-SSCP used to authenticate edible oils. Food Control 2012, 27 (2), 322-329.
77. Aparicio, R.; Aparicio-Ruı́z, R., Authentication of vegetable oils by chromatographic techniques. Journal of Chromatography A 2000, 881 (1), 93-104.
78. Zeb, A., Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry. Chemistry and Physics of Lipids 2012, 165 (5), 608-614.
79. Zeb, A.; Murkovic, M., Analysis of triacylglycerols in refined edible oils by isocratic HPLC‐ESI‐MS. European Journal of Lipid Science and Technology 2010, 112 (8), 844-851.
80. Wei, F.; Ji, S.-X.; Hu, N.; Lv, X.; Dong, X.-Y.; Feng, Y.-Q.; Chen, H., Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 2013, 1312, 69-79.
81. Hidalgo, F. J.; Zamora, R., Edible oil analysis by high-resolution nuclear magnetic resonance spectroscopy: recent advances and future perspectives. Trends in Food Science & Technology 2003, 14 (12), 499-506.
82. Zhang, Q.; Liu, C.; Sun, Z.; Hu, X.; Shen, Q.; Wu, J., Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy. Food chemistry 2012, 132 (3), 1607-1613.

CH.2
1. Colborn, T.; vom Saal, F. S.; Soto, A. M., Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives 1993, 101 (5), 378.
2. GVR Global bisphenol A (BPA) market by application (appliances, automotive, consumer, construction, electrical and electronics) expected to reach USD 20.03 billion by 2020. http://link.springer.com/article/10.1007/s00128-015-1703-5#Bib1 (accessed 06/15).
3. Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.-P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.-M.; Pussemier, L.; Scippo, M.-L.; Van Loco, J.; Covaci, A., A review of dietary and non-dietary exposure to bisphenol-A. Food and Chemical Toxicology 2012, 50 (10), 3725-3740.
4. Rochester, J. R., Bisphenol A and human health: A review of the literature. Reproductive Toxicology 2013, 42, 132-155.
5. Mielke, H.; Gundert-Remy, U., Bisphenol A levels in blood depend on age and exposure. Toxicology Letters 2009, 190 (1), 32-40.
6. Vandenberg, L. N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W. V., Human exposure to bisphenol A (BPA). Reproductive Toxicology 2007, 24 (2), 139-177.
7. Spiegel, D. Umstrittene Chemikalie: EU-Behörde senkt Grenzwert für Bisphenol A. http://www.spiegel.de/wissenschaft/mensch/bisphenol-a-eu-lebensmittelamt-senkt-grenzwert-fuer-a-1014139.html (accessed 06/15).
8. Calafat, A. M.; Ye, X.; Wong, L.-Y.; Reidy, J. A.; Needham, L. L., Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environmental Health Perspectives 2008, 39-44.
9. Liao, C.; Kannan, K., Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography–tandem mass spectrometry. Environmental Science & Technology 2012, 46 (9), 5003-5009.
10. Gregory, P., High-technology applications of organic colorants. Springer Science & Business Media: 2012; pp 175-205.
11. Periyasamy, S.; Khanna, G., Thermochromic colors in textiles. Colourage 2008, 55 (2).
12. Mendum, T.; Stoler, E.; VanBenschoten, H.; Warner, J. C., Concentration of bisphenol A in thermal paper. Green Chemistry Letters and Reviews 2011, 4 (1), 81-86.
13. Braun, J. M.; Kalkbrenner, A. E.; Calafat, A. M.; Bernert, J. T.; Ye, X.; Silva, M. J.; Barr, D. B.; Sathyanarayana, S.; Lanphear, B. P., Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environmental Health Perspectives 2011, 119 (1), 131.
14. Biedermann, S.; Tschudin, P.; Grob, K., Transfer of bisphenol A from thermal printer paper to the skin. Analytical and Bioanalytical Chemistry 2010, 398 (1), 571-576.
15. Hormann, A. M.; vom Saal, F. S.; Nagel, S. C.; Stahlhut, R. W.; Moyer, C. L.; Ellersieck, M. R.; Welshons, W. V.; Toutain, P.-L.; Taylor, J. A., Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PloS One 2014, 9 (10), e110509.
16. Demierre, A.-L.; Peter, R.; Oberli, A.; Bourqui-Pittet, M., Dermal penetration of bisphenol A in human skin contributes marginally to total exposure. Toxicology Letters 2012, 213 (3), 305-308.
17. Zalko, D.; Jacques, C.; Duplan, H.; Bruel, S.; Perdu, E., Viable skin efficiently absorbs and metabolizes bisphenol A. Chemosphere 2011, 82 (3), 424-430.
18. Mielke, H.; Partosch, F.; Gundert-Remy, U., The contribution of dermal exposure to the internal exposure of bisphenol A in man. Toxicology Letters 2011, 204 (2), 190-198.
19. Schwartz, A. W.; Landrigan, P. J.; Taylor, J. A.; vom Saal, F. S.; Welshons, W. V.; Drury, B.; Rottinghaus, G.; Hunt, P. A.; Toutain, P.-L.; Laffont, C. M., Bisphenol A in Thermal Paper Receipts: An Opportunity for Evidence-Based Prevention/Bisphenol A in Thermal Paper Receipts: Taylor et al. Respond. Environmental Health Perspectives 2012, 120 (1), A14.
20. Liao, C.; Liu, F.; Kannan, K., Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environmental Science & Technology 2012, 46 (12), 6515-6522.
21. Geens, T.; Goeyens, L.; Kannan, K.; Neels, H.; Covaci, A., Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Science of the Total Environment 2012, 435, 30-33.
22. Goldinger, D. M.; Demierre, A.-L.; Zoller, O.; Rupp, H.; Reinhard, H.; Magnin, R.; Becker, T. W.; Bourqui-Pittet, M., Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regulatory Toxicology and Pharmacology 2015, 71 (3), 453-462.
23. Fan, R.; Zeng, B.; Liu, X.; Chen, C.; Zhuang, Q.; Wang, Y.; Hu, M.; Lv, Y.; Li, J.; Zhou, Y., Levels of bisphenol-A in different paper products in Guangzhou, China, and assessment of human exposure via dermal contact. Environmental Science: Processes & Impacts 2015, 17 (3), 667-673.
24. Liao, C.; Kannan, K., Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environmental Science & Technology 2011, 45 (21), 9372-9379.
25. Lassen, C.; Brandt, U. K., Migration of bisphenol A from cash register receipts and baby dummies. Environmental Protection Agency: 2011.
26. Östberg, T.; Noaksson, E., Bisfenol A in svenska kvitton. Analysresultat. Institutet för tillämoa grön kemi. Jämtlands läns Landsting 2010.
27. Sun, Y.; Irie, M.; Kishikawa, N.; Wada, M.; Kuroda, N.; Nakashima, K., Determination of bisphenol A in human breast milk by HPLC with column‐switching and fluorescence detection. Biomedical Chromatography 2004, 18 (8), 501-507.
28. Yazdinezhad, S. R.; Ballesteros-Gómez, A.; Lunar, L.; Rubio, S., Single-step extraction and cleanup of bisphenol A in soft drinks by hemimicellar magnetic solid phase extraction prior to liquid chromatography/tandem mass spectrometry. Analytica Chimica Acta 2013, 778, 31-37.
29. Kawaguchi, M.; Inoue, K.; Yoshimura, M.; Ito, R.; Sakui, N.; Okanouchi, N.; Nakazawa, H., Determination of bisphenol A in river water and body fluid samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography–mass spectrometry. Journal of Chromatography B 2004, 805 (1), 41-48.
30. Li, L.; Yu, B.; Zhang, X.; You, T., A novel electrochemiluminescence sensor based on carbon nanodots system for the detection of bisphenol A. Analytica Chimica Acta 2015, 895, 104-111.
31. De Bleye, C.; Dumont, E.; Hubert, C.; Sacré, P. Y.; Netchacovitch, L.; Chavez, P. F.; Hubert, P.; Ziemons, E., A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering. Analytica Chimica Acta 2015, 888, 118-125.
32. Pichon, V.; Chapuis-Hugon, F., Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Analytica Chimica Acta 2008, 622 (1), 48-61.
33. Ohkuma, H.; Abe, K.; Ito, M.; Kokado, A.; Kambegawa, A.; Maeda, M., Development of a highly sensitive enzyme-linked immunosorbent assay for bisphenol A in serum. Analyst 2002, 127 (1), 93-97.
34. Zhu, Y.; Zhou, C.; Yan, X.; Yan, Y.; Wang, Q., Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Analytica Chimica Acta 2015, 883, 81-89.
35. Vinggaard, A. M.; Körner, W.; Lund, K. H.; Bolz, U.; Petersen, J. H., Identification and quantification of estrogenic compounds in recycled and virgin paper for household use as determined by an in vitro yeast estrogen screen and chemical analysis. Chemical Research in Toxicology 2000, 13 (12), 1214-1222.
36. Ozaki, A.; Yamaguchi, Y.; Fujita, T.; Kuroda, K.; Endo, G., Chemical analysis and genotoxicological safety assessment of paper and paperboard used for food packaging. Food and Chemical Toxicology 2004, 42 (8), 1323-1337.
37. Gao, L.; Zou, J.; Liu, H.; Zeng, J.; Wang, Y.; Chen, X., Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single‐drop microextraction and HPLC. Journal of Separation Science 2013, 36 (7), 1298-1303.
38. Chabala, J.; Soni, K.; Li, J.; Gavrilov, K.; Levi-Setti, R., High-resolution chemical imaging with scanning ion probe SIMS. International Journal of Mass Spectrometry and Ion Processes 1995, 143, 191-212.
39. Chen, C. Y.; Ghule, A. V.; Chen, W. Y.; Wang, C. C.; Chiang, Y. S.; Ling, Y. C., Rapid identification of phthalates in blood bags and food packaging using ToF-SIMS. Applied Surface Science 2004, 231, 447-451.
40. Wagner, M., Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry. Analytical Chemistry 2005, 77 (3), 911-922.
41. Chen, B.-J.; Lee, P.-L.; Chen, W.-Y.; Mai, F.-D.; Ling, Y.-C., Hair dye distribution in human hair by ToF-SIMS. Applied Surface Science 2006, 252 (19), 6786-6788.
42. 15447-2011, Thermal paper. Chinese National Standards: Taiwan, ROC, 2011.
43. Mazel, V.; Richardin, P.; Touboul, D.; Brunelle, A.; Richard, C.; Laval, E.; Walter, P.; Laprévote, O., Animal urine as painting materials in African rock art revealed by cluster ToF‐SIMS mass spectrometry imaging. Journal of Mass Spectrometry 2010, 45 (8), 944-950.
44. Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E., Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chemistry 2015, 187, 416-423.
45. Pellin, M.; Calaway, W.; Veryovkin, I.; Vickerman, J.; Briggs, D., ToF-SIMS: Surface Analysis by Mass Spectrometry, Surface Spectra Ltd. and IM Publications: 2001.
46. Lee, J.; Ninomiya, S.; Matsuo, J.; Gilmore, I.; Seah, M.; Shard, A., Organic depth profiling of a nanostructured delta layer reference material using large argon cluster ions. Analytical Chemistry 2009, 82 (1), 98-105.

CH.3
1. Majumder, M., Impact of Urbanization on Water Shortage in Face of Climatic Aberrations. Springer: 2015.
2. Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P., Reverse osmosis desalination: water sources, technology, and today's challenges. Water Research 2009, 43 (9), 2317-2348.
3. Ghaffour, N.; Missimer, T. M.; Amy, G. L., Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 2013, 309, 197-207.
4. Lattemann, S.; Kennedy, M. D.; Schippers, J. C.; Amy, G., Global desalination situation. Sustainability Science and Engineering 2010, 2, 7-39.
5. Busch, M.; Mickols, W. E.; Jons, S.; Redondo, J.; De Witte, J., Boron removal in sea water desalination. International Desalination and Water Reuse Quarterly 2004, 13 (4), 25.
6. Saleh, R.; Nickel, N., The influence of boron concentrations on structural properties in disorder silicon films. Applied Surface Science 2007, 254 (2), 580-585.
7. Pal, D.; Hoag, D.; Barter, M., Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface. Semiconductor Science and Technology 2012, 27 (5), 055007.
8. Gu, C.; Stevie, F.; Bennett, J.; Garcia, R.; Griffis, D., Back side SIMS analysis of hafnium silicate. Applied Surface Science 2006, 252 (19), 7179-7181.
9. Sameshima, J.; Maeda, R.; Yamada, K.; Karen, A.; Yamada, S., Depth profiles of boron and nitrogen in SiON films by backside SIMS. Applied Surface Science 2004, 231, 614-617.
10. Dowsett, M.; Ormsby, T.; Gard, F.; Al-Harthi, S.; Guzman, B.; McConville, C.; Noakes, T.; Bailey, P., Determination of the variation in sputter yield in the SIMS transient region using MEIS. Applied Surface Science 2003, 203, 363-366.
11. Yeo, K.; Wee, A.; Liu, R.; Zhou, F.; See, A., Investigation of boron penetration through decoupled plasma nitrided gate oxide using backside secondary ion mass spectrometry depth profiling. Journal of Vacuum Science & Technology B 2003, 21 (1), 193-197.
12. Yagi, Y.; Hayashi, F.; Uchitomi, Y. In Evaluation of boron behavior in ultrapure water manufacturing system, Proceedings of the Semicon-ductor Pure Water and Chemical Conference, San Jose, CA, 1994; pp 54-62.
13. Jean-Luc, B.; Bruno, D., Contamination monitoring and analysis in semiconductor manufacturing. INTECH Open Access Publisher: 2010.
14. Wen, R.; Deng, S.; Zhang, Y., The removal of silicon and boron from ultra-pure water by electrodeionization. Desalination 2005, 181 (1), 153-159.
15. Stevie, F.; Martin Jr, E.; Kahora, P.; Cargo, J.; Nanda, A.; Harrus, A.; Muller, A.; Krautter, H., Boron contamination of surfaces in silicon microelectronics processing: characterization and causes. Journal of Vacuum Science & Technology A 1991, 9 (5), 2813-2816.
16. Lin, H.; Tsai, I.; Yang, A.-M.; Hsu, M.; Ling, Y., Chain diffusion and microstructure at a glassy-rubbery polymer interface by SIMS. Macromolecules 2003, 36 (7), 2464-2474.
17. Kushner, R. A.; McCaughan, D. V.; Murphy, V.; Heilig, J., Mobilization of sodium in Si O 2 films by ion bombardment. Physical Review B 1974, 10 (6), 2632.
18. Stevie, F.; Rana, V.; Harrus, A.; Briggs, T.; Skeath, P., High sputter rate secondary ion mass spectrometry analysis of insulators used in microelectronics and lightwave applications. Journal of Vacuum Science & Technology A 1988, 6 (3), 2082-2084.
19. Benninghoven, A.; Colton, R. J.; Simons, D. S.; Werner, H. W., Secondary Ion Mass Spectrometry SIMS V: Proceedings of the Fifth International Conference, Washington, DC, September 30–October 4, 1985. Springer Science & Business Media: 2012; Vol. 44.
20. Annesley, T. M., Ion suppression in mass spectrometry. Clinical chemistry 2003, 49 (7), 1041-1044.
21. Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H., Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE 2003, 91 (2), 305-327.
22. Monemar, B.; Sernelius, B., Defect related issues in the “current roll-off” in InGaN based light emitting diodes. Applied Physics Letters 2007, 91 (18), 181103.

CH.4
1. Aparicio, R.; Aparicio-Ruı́z, R., Authentication of vegetable oils by chromatographic techniques. Journal of Chromatography A 2000, 881 (1), 93-104.
2. Karupaiah, T.; Sundram, K., Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutrition & Metabolism 2007, 4 (1), 16.
3. Jiang, X.; Li, S.; Xiang, G.; Li, Q.; Fan, L.; He, L.; Gu, K., Determination of the acid values of edible oils via FTIR spectroscopy based on the OH stretching band. Food Chemistry 2016, 212, 585-589.
4. Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B., A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV–Vis spectrometry. Food Chemistry 2015, 185, 326-332.
5. Xu, L.; Yu, X.; Liu, L.; Zhang, R., A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chemistry 2016, 202, 229-235.
6. Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E., Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chemistry 2015, 187, 416-423.
7. Xu, L.; Zhu, X.; Chen, X.; Sun, D.; Yu, X., Direct FTIR analysis of isolated trans fatty acids in edible oils using disposable polyethylene film. Food Chemistry 2015, 185, 503-508.
8. Monteiro, T. O.; Tanaka, A. A.; Damos, F. S.; Luz, R. d. C. S., Photoelectrochemical determination of tert-butylhydroquinone in edible oil samples employing CdSe/ZnS quantum dots and LiTCNE. Food Chemistry 2017, 227, 16-21.
9. Park, J. R.; Lee, D.-S., Detection of adulteration in olive oils using triacylglycerols compositions by high temperature gas chromatography. BULLETIN-KOREAN CHEMICAL SOCIETY 2003, 24 (4), 527-530.
10. Brescia, M. A.; Alviti, G.; Liuzzi, V.; Sacco, A., Chemometric classification of olive cultivars based on compositional data of oils. Journal of the American Oil Chemists' Society 2003, 80 (10), 945-950.
11. Ruiz-Samblás, C.; Cuadros-Rodríguez, L.; González-Casado, A.; García, F. d. P. R.; de la Mata-Espinosa, P.; Bosque-Sendra, J. M., Multivariate analysis of HT/GC-(IT) MS chromatographic profiles of triacylglycerol for classification of olive oil varieties. Analytical and Bioanalytical Chemistry 2011, 399 (6), 2093-2103.
12. Ranalli, A.; Pollastri, L.; Contento, S.; Di Loreto, G.; Iannucci, E.; Lucera, L.; Russi, F., Acylglycerol and fatty acid components of pulp, seed, and whole olive fruit oils. Their use to characterize fruit variety by chemometrics. Journal of Agricultural and Food Chemistry 2002, 50 (13), 3775-3779.
13. Nagy, K.; Bongiorno, D.; Avellone, G.; Agozzino, P.; Ceraulo, L.; Vékey, K., High performance liquid chromatography–mass spectrometry based chemometric characterization of olive oils. Journal of Chromatography A 2005, 1078 (1), 90-97.
14. De la Mata-Espinosa, P.; Bosque-Sendra, J.; Bro, R.; Cuadros-Rodriguez, L., Discriminating olive and non-olive oils using HPLC-CAD and chemometrics. Analytical and Bioanalytical Chemistry 2011, 399 (6), 2083-2092.
15. LIsa, M.; Holčapek, M.; Boháč, M., Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography− atmospheric pressure chemical ionization mass spectrometry data. Journal of Agricultural and Food Chemistry 2009, 57 (15), 6888-6898.
16. Lee, J. W.; Uchikata, T.; Matsubara, A.; Nakamura, T.; Fukusaki, E.; Bamba, T., Application of supercritical fluid chromatography/mass spectrometry to lipid profiling of soybean. Journal of Bioscience and Bioengineering 2012, 113 (2), 262-268.
17. Lee, J. W.; Nagai, T.; Gotoh, N.; Fukusaki, E.; Bamba, T., Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. Journal of Chromatography B 2014, 966, 193-199.
18. Agiomyrgianaki, A.; Petrakis, P. V.; Dais, P., Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta 2010, 80 (5), 2165-2171.
19. Fang, G.; Goh, J. Y.; Tay, M.; Lau, H. F.; Li, S. F. Y., Characterization of oils and fats by 1 H NMR and GC/MS fingerprinting: classification, prediction and detection of adulteration. Food Chemistry 2013, 138 (2), 1461-1469.
20. Gouvinhas, I.; Machado, N.; Carvalho, T.; de Almeida, J. M.; Barros, A. I., Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta 2015, 132, 829-835.
21. de Souza, L. M.; de Santana, F. B.; Gontijo, L. C.; Mazivila, S. J.; Neto, W. B., Quantification of adulterations in extra virgin flaxseed oil using MIR and PLS. Food Chemistry 2015, 182, 35-40.
22. Gurdeniz, G.; Ozen, B., Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry 2009, 116 (2), 519-525.
23. Ng, T.-T.; So, P.-K.; Zheng, B.; Yao, Z.-P., Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta 2015, 884, 70-76.
24. Tan, J.; Li, R.; Jiang, Z.-T.; Tang, S.-H.; Wang, Y.; Shi, M.; Xiao, Y.-Q.; Jia, B.; Lu, T.-X.; Wang, H., Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil. Food Chemistry 2017, 217, 274-280.
25. Chabala, J.; Soni, K.; Li, J.; Gavrilov, K.; Levi-Setti, R., High-resolution chemical imaging with scanning ion probe SIMS. International Journal of Mass Spectrometry and Ion Processes 1995, 143, 191-212.
26. Chen, C. Y.; Ghule, A. V.; Chen, W. Y.; Wang, C. C.; Chiang, Y. S.; Ling, Y. C., Rapid identification of phthalates in blood bags and food packaging using ToF-SIMS. Applied Surface Science 2004, 231, 447-451.
27. Chen, B.-J.; Lee, P.-L.; Chen, W.-Y.; Mai, F.-D.; Ling, Y.-C., Hair dye distribution in human hair by ToF-SIMS. Applied Surface Science 2006, 252 (19), 6786-6788.
28. Gong, B.; Marjo, C. E., Quantitative ToF‐SIMS depth profiling of a multi‐phased III–V semiconductor matrix via the analysis of secondary cluster ions. Surface and Interface Analysis 2016.
29. Graham, D. J.; Wilson, J. T.; Lai, J. J.; Stayton, P. S.; Castner, D. G., Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases 2016, 11 (2), 02A304.
30. Carlred, L.; Vukojević, V.; Johansson, B.; Schalling, M.; Höök, F.; Sjövall, P., Imaging of amyloid-β in Alzheimer's disease transgenic mouse brains with ToF-SIMS using immunoliposomes. Biointerphases 2016, 11 (2), 02A312.
31. Huang, D.; Xiu, G.; Li, M.; Hua, X.; Long, Y., Surface components of PM2.5 during clear and hazy days in Shanghai by ToF-SIMS. Atmospheric Environment 2017, 148, 175-181.
32. Gonzálvez, A.; Armenta, S.; De la Guardia, M., Adulteration detection of argan oil by inductively coupled plasma optical emission spectrometry. Food Chemistry 2010, 121 (3), 878-886.
33. Horcada, A.; Fernández-Cabanás, V. M.; Polvillo, O.; Botella, B.; Cubiles, M. D.; Pino, R.; Narváez-Rivas, M.; León-Camacho, M.; Acuña, R. R., Feasibility of use of fatty acid and triacylglycerol profiles for the authentication of commercial labelling in Iberian dry-cured sausages. Talanta 2013, 117, 463-470.
34. Jabeur, H.; Zribi, A.; Makni, J.; Rebai, A.; Abdelhedi, R.; Bouaziz, M., Detection of Chemlali Extra-Virgin Olive Oil Adulteration Mixed with Soybean Oil, Corn Oil, and Sunflower Oil by Using GC and HPLC. Journal of Agricultural and Food Chemistry 2014, 62 (21), 4893-4904.
35. Bosque-Sendra, J. M.; Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; de la Mata, A. P., Combining chromatography and chemometrics for the characterization and authentication of fats and oils from triacylglycerol compositional data—A review. Analytica Chimica Acta 2012, 724, 1-11.
36. Park, J. W.; Min, H.; Kim, Y. P.; Kyong Shon, H.; Kim, J.; Moon, D. W.; Lee, T. G., Multivariate analysis of ToF‐SIMS data for biological applications. Surface and Interface Analysis 2009, 41 (8), 694-703.
37. Mazel, V.; Richardin, P.; Touboul, D.; Brunelle, A.; Richard, C.; Laval, E.; Walter, P.; Laprévote, O., Animal urine as painting materials in African rock art revealed by cluster ToF‐SIMS mass spectrometry imaging. Journal of Mass Spectrometry 2010, 45 (8), 944-950.
38. Tu, A.; Du, Z.; Qu, S., Rapid profiling of triacylglycerols for identifying authenticity of edible oils using supercritical fluid chromatography-quadruple time-of-flight mass spectrometry combined with chemometric tools. Analytical Methods 2016, 8 (21), 4226-4238.
39. Fauconnot, L.; Hau, J.; Aeschlimann, J. M.; Fay, L. B.; Dionisi, F., Quantitative analysis of triacylglycerol regioisomers in fats and oils using reversed‐phase high‐performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry 2004, 18 (2), 218-224.
40. Mottram, H. R.; Woodbury, S. E.; Evershed, R. P., Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry 1997, 11 (12), 1240-1252.
41. Leskinen, H.; Suomela, J. P.; Kallio, H., Quantification of triacylglycerol regioisomers in oils and fat using different mass spectrometric and liquid chromatographic methods. Rapid Communications in Mass Spectrometry 2007, 21 (14), 2361-2373.
42. Ollivier, D.; Artaud, J.; Pinatel, C.; Durbec, J.-P.; Guérere, M., Differentiation of French virgin olive oil RDOs by sensory characteristics, fatty acid and triacylglycerol compositions and chemometrics. Food Chemistry 2006, 97 (3), 382-393.
43. Herrera, L. C.; Potvin, M. A.; Melanson, J. E., Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts. Rapid Communications in Mass Spectrometry 2010, 24 (18), 2745-2752.
44. Holčapek, M.; Jandera, P.; Zderadička, P.; Hrubá, L., Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 2003, 1010 (2), 195-215.
45. Laakso, P.; Voutilainen, P., Analysis of triacylglycerols by silver-ion high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Lipids 1996, 31 (12), 1311-1322.
46. Graham, D. J.; Wagner, M. S.; Castner, D. G., Information from complexity: Challenges of TOF-SIMS data interpretation. Applied Surface Science 2006, 252 (19), 6860-6868.
47. Sodhi, R.; Sun, L.; Sain, M.; Farnood, R., Analysis of ink/coating penetration on paper surfaces by time-of-flight secondary ion mass spectrometry (ToF-SIMS) in conjunction with principal component analysis (PCA). The Journal of Adhesion 2008, 84 (3), 277-292.
48. Cumpson, P. J.; Sano, N.; Fletcher, I. W.; Portoles, J. F.; Bravo‐Sanchez, M.; Barlow, A. J., Multivariate analysis of extremely large ToFSIMS imaging datasets by a rapid PCA method. Surface and Interface Analysis 2015, 47 (10), 986-993.
49. Soldatov, K. In Chemical mutagenesis in sunflower breeding, Proc. 7th Int. Sunflower Conf., Krasnodar, USSR, 1976; pp 352-357.

CH.5
1. Weissleder, R., Molecular imaging in cancer. Science 2006, 312 (5777), 1168-1171.
2. Weissleder, R.; Pittet, M. J., Imaging in the era of molecular oncology. Nature 2008, 452 (7187), 580-589.
3. Nolting, D. D.; Nickels, M. L.; Guo, N.; Pham, W., Molecular imaging probe development: a chemistry perspective. American Journal of Nuclear Medicine and Molecular Imaging 2012, 2 (3), 273-306.
4. James, M. L.; Gambhir, S. S., A molecular imaging primer: modalities, imaging agents, and applications. Physiological Reviews 2012, 92 (2), 897-965.
5. Willmann, J. K.; Van Bruggen, N.; Dinkelborg, L. M.; Gambhir, S. S., Molecular imaging in drug development. Nature Reviews Drug Discovery 2008, 7 (7), 591-607.
6. Jokerst, J. V.; Gambhir, S. S., Molecular imaging with theranostic nanoparticles. Accounts of Chemical Research 2011, 44 (10), 1050-1060.
7. Srikar, R.; Upendran, A.; Kannan, R., Polymeric nanoparticles for molecular imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2014, 6 (3), 245-267.
8. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
9. Rao, C. e. N. e. R.; Sood, A. e. K.; Subrahmanyam, K. e. S.; Govindaraj, A., Graphene: the new two‐dimensional nanomaterial. Angewandte Chemie International Edition 2009, 48 (42), 7752-7777.
10. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb carbon: a review of graphene. Chemical Reviews 2009, 110 (1), 132-145.
11. Garg, B.; Ling, Y.-C., Versatilities of graphene-based catalysts in organic transformations. Green Materials 2013, 1 (1), 47-61.
12. Garg, B.; Bisht, T.; Ling, Y.-C., Graphene-based nanomaterials as heterogeneous acid catalysts: A comprehensive perspective. Molecules 2014, 19 (9), 14582-14614.
13. Garg, B.; Bisht, T.; Ling, Y.-C., Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers. RSC Advances 2014, 4 (100), 57297-57307.
14. Pumera, M., Graphene in biosensing. Materials Today 2011, 14 (7), 308-315.
15. Yang, M.; Yao, J.; Duan, Y., Graphene and its derivatives for cell biotechnology. Analyst 2013, 138 (1), 72-86.
16. Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y., Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology 2011, 29 (5), 205-212.
17. Wan, X.; Huang, Y.; Chen, Y., Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Accounts of Chemical Research 2012, 45 (4), 598-607.
18. Dai, L.; Chang, D. W.; Baek, J. B.; Lu, W., Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8 (8), 1130-1166.
19. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M., Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry 2010, 2 (12), 1015-1024.
20. Feng, L.; Liu, Z., Graphene in biomedicine: opportunities and challenges. Nanomedicine 2011, 6 (2), 317-324.
21. Feng, L.; Zhang, S.; Liu, Z., Graphene based gene transfection. Nanoscale 2011, 3 (3), 1252-1257.
22. Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H., Carbon materials for drug delivery & cancer therapy. Materials Today 2011, 14 (7), 316-323.
23. Huang, X.; Qi, X.; Boey, F.; Zhang, H., Graphene-based composites. Chemical Society Reviews 2012, 41 (2), 666-686.
24. Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X.; Kang, E.-T., Graphene and its derivatives: switching ON and OFF. Chemical Society Reviews 2012, 41 (13), 4688-4707.
25. Gollavelli, G.; Chang, C.-C.; Ling, Y.-C., Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustainable Chemistry & Engineering 2013, 1 (5), 462-472.
26. Zhang, Y.; Nayak, T. R.; Hong, H.; Cai, W., Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 2012, 4 (13), 3833-3842.
27. Shen, H.; Zhang, L.; Liu, M.; Zhang, Z., Biomedical applications of graphene. Theranostics 2012; 2, 283-294.
28. Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y., Graphene based materials for biomedical applications. Materials Today 2013, 16 (10), 365-373.
29. Feng, L.; Wu, L.; Qu, X., New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials 2013, 25 (2), 168-186.
30. Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z., Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature Protocols 2013, 8 (12), 2392-2403.
31. Hu, S. H.; Chen, Y. W.; Hung, W. T.; Chen, I. W.; Chen, S. Y., Quantum‐Dot‐Tagged Reduced Graphene Oxide Nanocomposites for Bright Fluorescence Bioimaging and Photothermal Therapy Monitored In Situ. Advanced Materials 2012, 24 (13), 1748-1754.
32. Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z., Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials 2012, 24 (14), 1868-1872.
33. Guo, S.; Dong, S., Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews 2011, 40 (5), 2644-2672.
34. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Advanced Materials 2010, 22 (6), 734-738.
35. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature Nanotechnology 2009, 4 (1), 25-29.
36. Zhang, Z.; Wang, J.; Chen, C., Near‐Infrared Light‐Mediated Nanoplatforms for Cancer Thermo‐Chemotherapy and Optical Imaging. Advanced Materials 2013, 25 (28), 3869-3880.
37. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 2008, 1 (3), 203-212.
38. Li, J. L.; Bao, H. C.; Hou, X. L.; Sun, L.; Wang, X. G.; Gu, M., Graphene Oxide Nanoparticles as a Nonbleaching Optical Probe for Two‐Photon Luminescence Imaging and Cell Therapy. Angewandte Chemie International Edition 2012, 51 (8), 1830-1834.
39. Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y.-P., Photoluminescence properties of graphene versus other carbon nanomaterials. Accounts of Chemical Research 2012, 46 (1), 171-180.
40. Kim, J.; Cote, L. J.; Kim, F.; Huang, J., Visualizing graphene based sheets by fluorescence quenching microscopy. Journal of the American Chemical Society 2009, 132 (1), 260-267.
41. Jang, H.; Kim, Y. K.; Kwon, H. M.; Yeo, W. S.; Kim, D. E.; Min, D. H., A Graphene‐Based Platform for the Assay of Duplex‐DNA Unwinding by Helicase. Angewandte Chemie 2010, 122 (33), 5839-5843.
42. Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society 2009, 131 (29), 9890-9891.
43. Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H., Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32 (33), 8555-8561.
44. Liu, X.; Tao, H.; Yang, K.; Zhang, S.; Lee, S.-T.; Liu, Z., Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2011, 32 (1), 144-151.
45. Li, J.; Chaudhary, A.; Chmura, S. J.; Pelizzari, C.; Rajh, T.; Wietholt, C.; Kurtoglu, M.; Aydogan, B., A novel functional CT contrast agent for molecular imaging of cancer. Physics in Medicine and Biology 2010, 55 (15), 4389.
46. Alauddin, M. M., Positron emission tomography (PET) imaging with 18F-based radiotracers. American Journal of Nuclear Medicine and Molecular Imaging 2012, 2 (1), 55-76.
47. Gambhir, S. S., Molecular imaging of cancer with positron emission tomography. Nature Reviews Cancer 2002, 2 (9), 683-693.
48. He, Y.; Guo, Q., Clinical applications and advances of positron emission tomography with fluorine-18-fluorodeoxyglucose (18F-FDG) in the diagnosis of liver neoplasms. Postgraduate Medical Journal 2008, 84 (991), 246-251.
49. Franc, B. L.; Acton, P. D.; Mari, C.; Hasegawa, B. H., Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. Journal of Nuclear Medicine 2008, 49 (10), 1651-1663.
50. Blamire, A., The technology of MRI—the next 10 years? The British Journal of Radiology 2014.
51. Bar-Shir, A.; Gilad, A. A.; Chan, K. W.; Liu, G.; Van Zijl, P. C.; Bulte, J. W.; McMahon, M. T., Metal ion sensing using ion chemical exchange saturation transfer 19F magnetic resonance imaging. Journal of the American Chemical Society 2013, 135 (33), 12164-12167.
52. Padhani, A. R.; Husband, J. E., Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clinical Radiology 2001, 56 (8), 607-620.
53. Zhou, Z.; Lu, Z. R., Gadolinium‐based contrast agents for magnetic resonance cancer imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013, 5 (1), 1-18.
54. Raymond, S. B.; Skoch, J.; Hills, I. D.; Nesterov, E. E.; Swager, T. M.; Bacskai, B. J., Smart optical probes for near-infrared fluorescence imaging of Alzheimer’s disease pathology. European Journal of Nuclear Medicine and Molecular Imaging 2008, 35 (1), 93-98.
55. Palmal, S.; Jana, N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2014, 6 (1), 102-110.
56. Piwnica-Worms, D.; Luker, K., Imaging protein-protein interactions in whole cells and living animals. In Molecular Imaging, Springer: 2005; pp 35-41.
57. Liang, H.; Blomley, M., The role of ultrasound in molecular imaging. The British Journal of Radiology 2014.
58. Kim, C.; Cho, E. C.; Chen, J.; Song, K. H.; Au, L.; Favazza, C.; Zhang, Q.; Cobley, C. M.; Gao, F.; Xia, Y., In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS nano 2010, 4 (8), 4559-4564.
59. Mallidi, S.; Larson, T.; Tam, J.; Joshi, P. P.; Karpiouk, A.; Sokolov, K.; Emelianov, S., Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Letters 2009, 9 (8), 2825-2831.
60. Pan, D.; Kim, B.; Wang, L. V.; Lanza, G. M., A brief account of nanoparticle contrast agents for photoacoustic imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013, 5 (6), 517-543.
61. Willets, K. A., Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Analytical and Bioanalytical Chemistry 2009, 394 (1), 85-94.
62. Boyer, D.; Tamarat, P.; Maali, A.; Lounis, B.; Orrit, M., Photothermal imaging of nanometer-sized metal particles among scatterers. Science 2002, 297 (5584), 1160-1163.
63. Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P.; Orrit, M., Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 2010, 330 (6002), 353-356.
64. Wong, C. L.; Chen, G. C.; Ng, B. K.; Agarwal, S.; Fanani, N.; Lin, Z.; Vasudevan, S.; Chen, P., Photothermal imaging of nanoparticles beyond the diffraction limit. Optical Engineering 2011, 50 (7), 073201-073201-5.
65. Kaiplavil, S.; Mandelis, A., Truncated-correlation photothermal coherence tomography for deep subsurface analysis. Nature Photonics 2014, 8 (8), 635-642.
66. Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society 2008, 130 (33), 10876-10877.
67. Kim, H.; Lee, D.; Kim, J.; Kim, T.-i.; Kim, W. J., Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS nano 2013, 7 (8), 6735-6746.
68. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters 2010, 10 (9), 3318-3323.
69. Gollavelli, G.; Ling, Y.-C., Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 2012, 33 (8), 2532-2545.
70. Zhang, S.; Yang, K.; Feng, L.; Liu, Z., In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 2011, 49 (12), 4040-4049.
71. Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z., Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Applied Materials & Interfaces 2011, 3 (10), 4085-4091.
72. Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q., Intracellular imaging with a graphene‐based fluorescent probe. Small 2010, 6 (15), 1686-1692.
73. Liu, K.; Zhang, J.-J.; Cheng, F.-F.; Zheng, T.-T.; Wang, C.; Zhu, J.-J., Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry 2011, 21 (32), 12034-12040.
74. Hong, H.; Yang, K.; Zhang, Y.; Engle, J. W.; Feng, L.; Yang, Y.; Nayak, T. R.; Goel, S.; Bean, J.; Theuer, C. P., In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS nano 2012, 6 (3), 2361-2370.
75. Hong, H.; Zhang, Y.; Engle, J. W.; Nayak, T. R.; Theuer, C. P.; Nickles, R. J.; Barnhart, T. E.; Cai, W., In vivo targeting and positron emission tomography imaging of tumor vasculature with 66 Ga-labeled nano-graphene. Biomaterials 2012, 33 (16), 4147-4156.
76. Shi, S.; Yang, K.; Hong, H.; Valdovinos, H. F.; Nayak, T. R.; Zhang, Y.; Theuer, C. P.; Barnhart, T. E.; Liu, Z.; Cai, W., Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 2013, 34 (12), 3002-3009.
77. Fu, X.; Bei, F.; Wang, X.; O'Brien, S.; Lombardi, J. R., Excitation profile of surface-enhanced Raman scattering in graphene–metal nanoparticle based derivatives. Nanoscale 2010, 2 (8), 1461-1466.
78. Xu, C.; Wang, X., Fabrication of Flexible Metal‐Nanoparticle Films Using Graphene Oxide Sheets as Substrates. Small 2009, 5 (19), 2212-2217.
79. Kim, Y.-K.; Na, H.-K.; Min, D.-H., Influence of surface functionalization on the growth of gold nanostructures on graphene thin films. Langmuir 2010, 26 (16), 13065-13070.
80. Ma, X.; Qu, Q.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K. W.; Zhao, Y., Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. Journal of Materials Chemistry B 2013, 1 (47), 6495-6500.
81. Liu, Z.; Guo, Z.; Zhong, H.; Qin, X.; Wan, M.; Yang, B., Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics 2013, 15 (8), 2961-2966.
82. Liu, Q.; Wei, L.; Wang, J.; Peng, F.; Luo, D.; Cui, R.; Niu, Y.; Qin, X.; Liu, Y.; Sun, H., Cell imaging by graphene oxide based on surface enhanced Raman scattering. Nanoscale 2012, 4 (22), 7084-7089.
83. Wang, C.; Li, J.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M., Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angewandte Chemie International Edition 2011, 50 (49), 11644-11648.
84. Sheng, Y.; Tang, X.; Peng, E.; Xue, J., Graphene oxide based fluorescent nanocomposites for cellular imaging. Journal of Materials Chemistry B 2013, 1 (4), 512-521.
85. Sreejith, S.; Ma, X.; Zhao, Y., Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. Journal of the American Chemical Society 2012, 134 (42), 17346-17349.
86. Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H., Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 2013, 34 (31), 7715-7724.
87. Wang, Y.; Zhen, S. J.; Zhang, Y.; Li, Y. F.; Huang, C. Z., Facile fabrication of metal nanoparticle/graphene oxide hybrids: a new strategy to directly illuminate graphene for optical imaging. The Journal of Physical Chemistry C 2011, 115 (26), 12815-12821.
88. Narayanan, T. N.; Gupta, B. K.; Vithayathil, S. A.; Aburto, R. R.; Mani, S. A.; Taha‐Tijerina, J.; Xie, B.; Kaipparettu, B. A.; Torti, S. V.; Ajayan, P. M., Hybrid 2D nanomaterials as dual‐mode contrast agents in cellular imaging. Advanced Materials 2012, 24 (22), 2992-2998.
89. Romero‐Aburto, R.; Narayanan, T.; Nagaoka, Y.; Hasumura, T.; Mitcham, T. M.; Fukuda, T.; Cox, P. J.; Bouchard, R. R.; Maekawa, T.; Kumar, D. S., Fluorinated graphene oxide; a new multimodal material for biological applications. Advanced Materials 2013, 25 (39), 5632-5637.
90. Hu, Y. H., The First Magnetic‐Nanoparticle‐Free Carbon‐Based Contrast Agent of Magnetic‐Resonance Imaging‐Fluorinated Graphene Oxide. Small 2014, 10 (8), 1451-1452.
91. Chen, Y.; Guo, F.; Qiu, Y.; Hu, H.; Kulaots, I.; Walsh, E.; Hurt, R. H., Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. ACS nano 2013, 7 (5), 3744-3753.
92. Peng, E.; Choo, E. S. G.; Chandrasekharan, P.; Yang, C. T.; Ding, J.; Chuang, K. H.; Xue, J. M., Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 2012, 8 (23), 3620-3630.
93. Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z., A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research 2012, 5 (3), 199-212.
94. Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L.; Liu, Z., Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 2013, 34 (20), 4786-4793.
95. Chen, M.-L.; Shen, L.-M.; Chen, S.; Wang, H.; Chen, X.-W.; Wang, J.-H., In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy. Journal of Materials Chemistry B 2013, 1 (20), 2582-2589.
96. Zhang, M.; Cao, Y.; Chong, Y.; Ma, Y.; Zhang, H.; Deng, Z.; Hu, C.; Zhang, Z., Graphene Oxide Based Theranostic Platform for T 1-Weighted Magnetic Resonance Imaging and Drug Delivery. ACS Applied Materials & Interfaces 2013, 5 (24), 13325-13332.
97. Gizzatov, A.; Keshishian, V.; Guven, A.; Dimiev, A. M.; Qu, F.; Muthupillai, R.; Decuzzi, P.; Bryant, R. G.; Tour, J. M.; Wilson, L. J., Enhanced MRI relaxivity of aquated Gd 3+ ions by carboxyphenylated water-dispersed graphene nanoribbons. Nanoscale 2014, 6 (6), 3059-3063.
98. Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 2013, 5 (10), 4015-4039.
99. Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications 2011, 47 (24), 6858-6860.
100. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G., Graphene quantum dots derived from carbon fibers. Nano Letters 2012, 12 (2), 844-849.
101. Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.; Sun, H.; Fan, L.; Han, M., Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry 2012, 22 (15), 7461-7467.
102. Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J., One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. Journal of Materials Chemistry B 2013, 1 (1), 39-42.
103. Nguyen, K. T.; Zhao, Y., Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 2014, 6 (12), 6245-6266.
104. Chen, M.-L.; Liu, J.-W.; Hu, B.; Chen, M.-L.; Wang, J.-H., Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst 2011, 136 (20), 4277-4283.
105. Chen, M.-L.; He, Y.-J.; Chen, X.-W.; Wang, J.-H., Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjugate Chemistry 2013, 24 (3), 387-397.
106. De Jong, M.; Breeman, W. A.; Kwekkeboom, D. J.; Valkema, R.; Krenning, E. P., Tumor imaging and therapy using radiolabeled somatostatin analogues. Accounts of Chemical Research 2009, 42 (7), 873-880.
107. Sirsi, S.; Borden, M., Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology 2009, 1 (1-2), 3-17.
108. Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K., The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews 2011, 40 (1), 340-362.
109. Janib, S. M.; Moses, A. S.; MacKay, J. A., Imaging and drug delivery using theranostic nanoparticles. Advanced Drug Delivery Reviews 2010, 62 (11), 1052-1063.
110. Ho, Y.-P.; Leong, K. W., Quantum dot-based theranostics. Nanoscale 2010, 2 (1), 60-68.
111. Shi, S.; Chen, F.; Ehlerding, E. B.; Cai, W., Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjugate Chemistry 2014, 25 (9), 1609-1619.
112. Li, J.-L.; Tang, B.; Yuan, B.; Sun, L.; Wang, X.-G., A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials 2013, 34 (37), 9519-9534.
113. Yang, K.; Feng, L.; Shi, X.; Liu, Z., Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews 2013, 42 (2), 530-547.
114. Jin, Y.; Wang, J.; Ke, H.; Wang, S.; Dai, Z., Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 2013, 34 (20), 4794-4802.
115. Sheng, Z.; Song, L.; Zheng, J.; Hu, D.; He, M.; Zheng, M.; Gao, G.; Gong, P.; Zhang, P.; Ma, Y., Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 2013, 34 (21), 5236-5243.
116. Sun, Z.; Huang, P.; Tong, G.; Lin, J.; Jin, A.; Rong, P.; Zhu, L.; Nie, L.; Niu, G.; Cao, F., VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale 2013, 5 (15), 6857-6866.
117. Nellore, B. P. V.; Pramanik, A.; Chavva, S. R.; Sinha, S. S.; Robinson, C.; Fan, Z.; Kanchanapally, R.; Grennell, J.; Weaver, I.; Hamme, A. T., Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discuss. 2015, 175, 257-271.
118. Chavva, S. R.; Pramanik, A.; Nellore, B. P. V.; Sinha, S. S.; Yust, B.; Kanchanapally, R.; Fan, Z.; Crouch, R. A.; Singh, A. K.; Neyland, B., Theranostic graphene oxide for prostate cancer detection and treatment. Particle & Particle Systems Characterization 2014, 31 (12), 1252-1259.
119. Rong, P.; Yang, K.; Srivastan, A.; Kiesewetter, D. O.; Yue, X.; Wang, F.; Nie, L.; Bhirde, A.; Wang, Z.; Liu, Z., Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 2014, 4 (3), 229-239.
120. Gollavelli, G.; Ling, Y.-C., Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 2014, 35 (15), 4499-4507.
121. Wang, Y.; Huang, R.; Liang, G.; Zhang, Z.; Zhang, P.; Yu, S.; Kong, J., MRI‐Visualized, Dual‐Targeting, Combined Tumor Therapy Using Magnetic Graphene‐Based Mesoporous Silica. Small 2014, 10 (1), 109-116.
122. Some, S.; Gwon, A.-R.; Hwang, E.; Bahn, G.-h.; Yoon, Y.; Kim, Y.; Kim, S.-H.; Bak, S.; Yang, J.; Jo, D.-G., Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Scientific Reports 2014, 4, 6314.
123. Bianco, A., Graphene: safe or toxic? The two faces of the medal. Angewandte Chemie International Edition 2013, 52 (19), 4986-4997.
電子全文 電子全文(網際網路公開日期:20220724)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔