1. Traub, W.; Shmueli, U., Structure of poly-L-proline I. Nature 1963, 198, 1165-1166.
2. Cowan, P. M.; McGavin, S., Structure of poly-L-proline. Nature 1955, 176, 501-503.
3. Kakinoki, S., et al., On the stability of polyproline-I and II structures of proline oligopeptides. Polym. Bull. 2004, 53, 109-115.
4. Fischer, G., Chemical aspects of peptide bond isomerisation. Chem. Soc. Rev. 2000, 29, 119-127.
5. Dugave, C.; Demange, L., Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 2003, 103, 2475-2532.
6. Rath, A., et al., The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers 2005, 80, 179-185.
7. Bochicchio, B.; Tamburro, A. M., Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 2002, 14, 782-792.
8. Lam, S. L.; Hsu, V. L., NMR identification of left-handed polyproline type II helices. Biopolymers 2003, 69, 270-281.
9. Horng, J. C.; Raines, R. T., Stereoelectronic effects on polyproline conformation. Protein Sci. 2006, 15, 74-83.
10. Chiang, Y. C., et al., Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Sci. 2009, 18, 1967-1977.
11. Ungar-Waron, H., et al., Role of a rigid polyproline spacer inserted between hapten and carrier in the induction of anti-hapten antibodies and delayed hypersensitivity. Eur. J. Immunol. 1973, 3, 201-205.
12. Arora, P. S., et al., Design of artificial transcriptional activators with rigid poly-L-proline linkers. J. Am. Chem. Soc. 2002, 124, 13067-13071.
13. Bonger, K. M., et al., Oligoproline helices as structurally defined scaffolds for oligomeric G protein-coupled receptor ligands. Org. Biomol. Chem. 2010, 8, 1881-1884.
14. Lai, Y.-C., et al., Distance-dependent excited-state electron transfer from tryptophan to gold nanoparticles through polyproline helices. J. Phys. Chem. C 2017, 121, 4882-4890.
15. Wilhelm, P., et al., A crystal structure of an oligoproline PPII-helix, at last. J. Am. Chem. Soc. 2014, 136, 15829-15832.
16. Oliveira, S. M., et al., An improved collagen scaffold for skeletal regeneration. J. Biomed. Mater. Res. A 2010, 94, 371-379.
17. Singh, O., et al., Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study. J. Cutan. Aesthet. Surg. 2011, 4, 12-16.
18. Cowan, P. M., et al., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062-1064.
19. McKenzie, L. Cytoskeletal structural proteins. Retrived June 18, 2017, from http://slideplayer.com/slide/6117668/
20. Privalov, P., Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 1982, 35, 1-104.
21. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
22. Sakakibara, S., et al., Synthesis of (Pro-Hyp-Gly)n of defined molecular weights Evidence for the stabilization of collagen triple helix by hydroxypyroline. Biochim. Biophys. Acta 1973, 303, 198-202.
23. Persikov, A. V., et al., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
24. Bruice, P. Y., Organic Chemistry. 6th ed.; Prentice Hall International, Inc.: 2010.
25. Bruice, T. C.; Schmir, G. L., Imidazole catalysis. I. The catalysis of the hydrolysis of phenyl acetates by imidazole. J. Am. Chem. Soc. 1957, 79, 1663-1667.
26. Kirsch, J. F.; Jencks, W. P., Base catalysis of imidazole catalysis of ester hydrolysis. J. Am. Chem. Soc. 1964, 86, 833-837.
27. Pandit, N. K.; Connors, K. A., Kinetics and mechanism of hydroxy group acetylations catalyzed by N-methylimidazole. J. Pharm. Sci. 1982, 71, 485-491.
28. Gold, D. H.; Gregor, H. P., Metal—polyelectrolyte complexes. Vii. The poly-N-vinylimidazole silver(I) complex and the imidazole—silver(I) complex. J. Phys. Chem. 1960, 64, 1461-1463.
29. Okhapkin, I. M., et al., Thermosensitive imidazole-containing polymers as catalysts in hydrolytic decomposition of p-nitrophenyl acetate. Macromolecules 2004, 37, 7879-7883.
30. Bezer, S., et al., Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging. Org. Biomol. Chem. 2014, 12, 1488-1494.
31. Gutfreund, H.; Sturtevant, J. M., The mechanism of the reaction of chymotrypsin withp-nitrophenyl acetate. Biochem. J. 1956, 63, 656-661.
32. Godzhaev, N., Study of trypsin-substrate and trypsin-inhibitor complexes. 1. Conformation of Asp-102, His-57 and Ser-195 residues in the trypsin active center. Mol. Biol. 1983, 18, 1432-1435.
33. Massiah, M. A., et al., Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies. Biochemistry 2001, 40, 5682-5690.
34. Clark, J. D., et al., Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 1995, 12, 83-117.
35. Mignatti, P.; Rifkin, D. B., Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 1996, 49, 117-137.
36. DeClerck, Y. A., et al., Proteases and protease inhibitors in tumor progression. Adv. Exp. Med. Biol. 1997, 425, 89-97.
37. Gorrell, M. D., Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin. Sci. 2005, 108, 277-292.
38. De Munter, S., et al., Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem. Biol. 2013, 8, 36-45.
39. Head, M. B., et al., Nucleophilic and enzymic catalysis of p-nitrophenylacetate hydrolysis. J. Chem. Educ. 1995, 72, 184-186.
40. Ohkubo, K., et al., Stereoselective esterolysis of dipeptide-type amino acid esters with Di-and Tri-peptide-type L-histidine derivatives in the solution of a chiral cationic surfactant. J. Mol. Catal. 1984, 26, 1-5.
41. Barton, J. S., A comprehensive enzyme kinetic exercise for biochemistry. J. Chem. Educ. 2011, 88, 1336-1339.
42. Hiscock, J. R., et al., Tripodal molecules for the promotion of phosphoester hydrolysis. Chem. Commun. 2014, 50, 6217-6220.
43. Li, Y., et al., Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorg. Med. Chem. 2000, 8, 2675-2680.
44. Blow, D. M., et al., Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 1969, 221, 337-340.
45. Khersonsky, O.; Tawfik, D. S., The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. J. Biol. Chem. 2006, 281, 7649-7656.
46. Quirk, D. J.; Raines, R. T., His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes. Biophys. J. 1999, 76, 1571-1579.
47. Drenth, J., et al., The structure of papain. Adv. Protein Chem. 1971, 25, 79-115.
48. MacBeath, G.; Hilvert, D., Hydrolytic antibodies: variations on a theme. Chem. Biol. 1996, 3, 433-445.
49. Simon, L.; Goodman, J. M., Enzyme catalysis by hydrogen bonds: the balance between transition state binding and substrate binding in oxyanion holes. J. Org. Chem. 2010, 75, 1831-1840.
50. Kamerlin, S. C., et al., On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. J. Org. Chem. 2010, 75, 6391-6401.
51. MÉNard, R.; Storer, A. C., Oxyanion hole interactions in serine and cysteine proteases. Biol. Chem. Hoppe-Seyler 1992, 373, 393-400.
52. Steitz, T. A., et al., Structure of crystalline α-chymotrypsin. J. Mol. Biol. 1969, 46, 337-348.
53. Gráf, L., et al., Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4961-4965.
54. Navia, M. A., et al., Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7-11.
55. Lippard, S. J.; Berg, J. M., Principles of bioinorganic chemistry. University Science Books: 1994.
56. Richter, F., et al., Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 2012, 134, 16197-16206.
57. Moroz, Y. S., et al., New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 2015, 137, 14905-14911.
58. Maeda, Y., et al., Discovery of catalytic phages by biocatalytic self-assembly. J. Am. Chem. Soc. 2014, 136, 15893-15896.
59. Duncan, K. L.; Ulijn, R. V., Short peptides in minimalistic biocatalyst design. Biocatalysis 2015, 1, 67-81.
60. Matsumoto, M., et al., Cross-strand histidine-aromatic interactions enhance acyl-transfer rates in beta-hairpin peptide catalysts. Org. Biomol. Chem. 2014, 12, 8711-8718.
61. Matsumoto, M., et al., A catalyst selection protocol that identifies biomimetic motifs from beta-hairpin libraries. J. Am. Chem. Soc. 2014, 136, 15817-15820.
62. Burton, A. J., et al., Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 2016, 8, 837-844.
63. Zastrow, M. L.; Pecoraro, V. L., Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J. Am. Chem. Soc. 2013, 135, 5895-5903.
64. Zastrow, M. L., et al., Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 2011, 4, 118-123.
65. Wang, P. S., et al., Design and high-resolution structure of a beta(3)-peptide bundle catalyst. J. Am. Chem. Soc. 2014, 136, 6810-6813.
66. Zhang, Q., et al., Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 2016, 8, 16851-16856.
67. Zaramella, D., et al., Self-assembly of a catalytic multivalent peptide-nanoparticle complex. J. Am. Chem. Soc. 2012, 134, 8396-8399.
68. Poznik, M.; Konig, B., Cooperative hydrolysis of aryl esters on functionalized membrane surfaces and in micellar solutions. Org. Biomol. Chem. 2014, 12, 3175-3180.
69. Rufo, C. M., et al., Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303-309.
70. Zhang, C., et al., Self-assembled Peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano 2014, 8, 11715-11723.
71. Wang, M., et al., Enhancing the activity of peptide-based artificial hydrolase with catalytic Ser/His/Asp triad and molecular imprinting. ACS Appl. Mater. Interfaces 2016, 8, 14133-14141.
72. Wong, Y. M., et al., Enzyme-mimic peptide assembly to achieve amidolytic activity. Biomacromolecules 2016, 17, 3375-3385.
73. Singh, N., et al., Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator. Chem. Commun. 2015, 51, 13213-13216.
74. Fasman, G. D., Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media: 1996.
75. Workman, J., The concise handbook of analytical spectroscopy: theory, applications, and reference materials. World Scientific: 2014; Vol. 1.
76. Woody, R. W., Circular dichroism and conformation of unordered polypeptides. Adv. Biophys. Chem. 1992, 2, 37-79.
77. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
78. Applied Biosystems. Determination of the amino acid substitution level via an Fmoc assay, Technical Note 123485 Rev 2; Documents on Demand-Applied Biosystems Web Page, Retrieved June 18, 2017, from http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocuments/cms_040640.pdf.
79. Knowlton, R. C.; Byers, L. D., Acyl substituent effects on ester aminolysis. J. Org. Chem. 1988, 53, 3862-3865.
80. Rehor, A., et al., Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. J. Mater. Chem. 2005, 15, 4006-4009
81. Privalov, P. L., Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 1982, 35, 1-104.
82. Michaelis, L. M., M. L., Die kinetik der invertinwirkung. Biochem. Z. 1913, 49, 333–369.
83. Brocklehurst, K.; Dixon, H., pH-dependence of the steady-state rate of a two-step enzymic reaction. Biochem. J. 1976, 155, 61-70.
84. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;, et al. Gaussian 09, Revision B.01, Gaussian, Inc.: Wallingford, CT, 2009.
85. Chakrabartty, A., et al., Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 1993, 32, 5560-5565.
86. Lin, Y. J., et al., Effects of the terminal aromatic residues on polyproline conformation: thermodynamic and kinetic studies. J. Phys. Chem. B 2015, 119, 15796-15806.
87. Loewenthal, R., et al., Histidine-aromatic interactions in barnase. J. Mol. Biol. 1992, 224, 759-770.
88. Macias, M. J., et al., WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002, 513, 30-37.
89. Lorand, L., et al., Thrombin-catalyzed hydrolysis of p-nitrophenyl esters. Arch. Biochem. Biophys. 1962, 96, 147-151.
90. Zhong, H.; Carlson, H. A., Conformational studies of polyprolines. J. Chem. Theory Comput. 2006, 2, 342-353.
91. O'Leary, L. E., et al., Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821-828.
92. Persikov, A. V., et al., Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343-19349.
93. Chen, C. C., et al., Self-assembly of short collagen-related peptides into fibrils via cation-pi interactions. Biochemistry 2011, 50, 2381-2383.
94. 丁翊涵. 金屬誘導膠原蛋白模擬胜肽自組裝與其結構對酯類水解反應之催化活性探討. 碩士學位論文, 國立清華大學, 2016