|
[1] R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalierous, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking nanotechnology for high-performance and low-power logic transistor applications,” IEEE Transcations On Nanotechnology, vol. 4, no. 2, Mar. 2005. [2] M. T. Bohr, “Nanotechnology goals and challenges for electronic applications,” IEEE Transaction on Nanotechnology, vol. 1, no. 1, pp. 56-62, Mar. 2002. [3] R. Chau, S. Datta, and A, Majumdar, “Opportunities and Challenges of III-V Nanoelectronics for Future High-Speed, Low-Power Logic Applications,” in Proc. IEEE CSIC Dig., pp. 17-20, 2005. [4] R. Chau, B. Doyle, S. Datta, J. Kavalieros, and K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater., vol. 6, no. 11, pp. 810–812, Nov. 2007. [5] D. J. Frank, “Power-constrained CMOS scaling limits,” IBM J. Res. Dev., vol. 46, no. 2.3, pp. 235–244, Mar. 2002. [6] “International Technology Roadmap for Semiconductors (ITRS). Available: http://public.itrs.net/.” [7] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of ballistic nanotransistors,” IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1853–1864, Sep. 2003 [8] D. A. Antoniadis, I. Åberg, C. Ni Chleirigh, O. M. Nayfeh, A. Khakifirooz, and J. L. Hoyt, “Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations,” IBM J. Res. Dev., vol. 50, no. 4.5, pp. 363–376, Jul. 2006. [9] M. S. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE Electron Device Lett., vol. 22, no. 6, pp. 293–295, Jun. 2001. [10] A. Khakifirooz and D. A. Antoniadis, “Transistor Performance Scaling: The Role of Virtual Source Velocity and Its Mobility Dependence,” in IEDM Tech. Dig., 2006, pp. 26.4.1–26.4.4. [11] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, no. 7373, pp. 317–323, Nov. 2011. [12] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-Transport-Enhancement Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 252-257, Jan. 2008.
[13] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-Transport-Enhancement Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 252-257, Jan. 2008. [14] Chien-I Kuo, Heng-Tung Hsu, and Edward Yi Chang, “InAs Channel-based Quantum Well Transistors for High-Speed and Low-Voltage Digital Applications,” Electrochemical and Solid-State Letter, 11(7), H193-H196, 2008. [15] S. Oktyabrsky and P. Ye, Eds., Fundamentals of III-V Semiconductor MOSFETs. New York: Springer, 2010. [16] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, no. 7373, pp. 317–323, Nov. 2011. [17] D.-H. Kim and J. A. del Alamo, “Logic Performance of 40 nm InAs HEMTs,” in IEDM Tech. Dig., 2007, pp. 629–632. [18] N. Waldron, D.-H. Kim, and J. A. del Alamo, “90 nm Self-aligned Enhancement-mode InGaAs HEMT for Logic Applications,” in IEDM Tech. Dig., 2007, pp. 633–636. [19] T.-W. Kim, D.-H. Kim, and J. A. del Alamo, “30 nm In0.7Ga0.3As Inverted-Type HEMTs with reduced gate leakage current for logic applications,” in IEDM Tech. Dig., 2009, pp. 483–486. [20] T.-W. Kim, D.-H. Kim, and J. A. del Alamo, “60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics,” in IEDM Tech. Dig., 2010, pp. 30.7.1–30.7.4. [21] D.-H. Kim, B. Brar, and J. A. del Alamo, “fT = 688 GHz and fmax = 800 GHz in Lg=40nm In0.7Ga0.3As MHEMTs with gm_max=2.7 mS/um,” in IEDM Tech. Dig., 2011, pp. 13.6.1–13.6.4. [22] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “A New Field-Effect Transistor with Selectively Doped GaAs/n-AlGaAs Heterojunctions,” Jpn. J. Appl. Phys., vol. 19, pp. L225-L227, 1980. [23] S.M. Sze, “High Speed Semiconductor Device,” Murryay Hill, New Jersey. [24] T. Enoki, K. Arai, A. Kohzen and Y. Ishii, “InGaAs/InP double channel HEMT on InP,” Proc. 4th IPRM Conf., pp. 14-17, 1992. [25] T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, “Improved InAlAs/InGaAs HEMT Characteristics by Inserting an InAs layer into the InGaAs Channel,” IEEE Electron Device Lett., vol. 13, pp.325,1992. [26] G. Meneghesso, D. Buttari, E. Perin, C Canali, and E. Zanoni, “Improvement of DC, low frequency and reliability properties of InAlAs-InGaAs InP-based HEMTs by means of InP etch stop layer,” in IEDM Tech. Dig., pp.227-230 1998. [27] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, “30-nm two step-recess gate InP-based InAlAs/InGaAs HEMTs” IEEE Trans. Electron Devices, Vol. 49, no. 10, pp.1694-1700, Oct. 2002. [28] Tanaka, Junko, et al. "Simulation of sub-0.1-mu m MOSFETs with completely suppressed short-channel effect." Electron Device Letters, IEEE 14.8 (1993): 396-399. [29] Haddock, Joshua N., et al. "A comprehensive study of short channel effects in organic field-effect transistors." Organic electronics 7.1 (2006): 45-54. [30] S. H. ., et al. "Comparison of short-channel effect and offstate leakage in symmetric vs. asymmetric double gate MOSFETs." SOI Conference, 2000 IEEE International. IEEE, 2000. [31] Ferain, Isabelle, Cynthia A. Colinge, and Jean-Pierre Colinge. "Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors." Nature 479.7373 (2011): 310-316. [32] Kunikiyo, Tatsuya, et al. "Reverse short-channel effect due to lateral diffusion of point-defect induced by source/drain ion implantation." Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 13.4 (1994): 507-514. [33] Chang, Chian-Sern, Ding-Yuan S. Day, and Simon Chan. "An analytical two-dimensional simulation for the GaAs MESFET drain-induced barrier lowering: a short-channel effect." Electron Devices, IEEE Transactions on 37.5 (1990): 1182-1186. [34] Sun, Haifeng, et al. "Theoretical study of short channel effect in highly scaled GaN HEMTs." Radio-Frequency Integration Technology (RFIT), 2012 IEEE International Symposium on. IEEE, 2012 [35] Trew, R.J. Wide bandgap transistor amplifiers for improved performance microwave power and radar applications. 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON - 2004, May 17-19 2004. 2004. Warszawa, Poland: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States. [36] Karmalkar, S. and U.K. Mishra, Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Transactions on Electron Devices, 2001. 48(8): p. 1515-1521. [37] Johnson, F. Scott, et al. "Characterization of LPCVD of silicon nitride in a rapid thermal processor." MRS Proceedings. Vol. 146. Cambridge University Press, 1989. [38] R. Williams, “Modern GaAs Processing Methods,” Artech House, Inc., 1991. [39] T. Suemitsu, T. Enkoi, H. Yokoyama, Y. Ishii, “Improved recessed-gate structure for sub-0.1-um-Gate InP-based high electron mobility transistors,” Jpn. J. Appl. Phys., vol. 37, pp. 1365-1372, 1998. [40] W. Liu, “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” John Wiley & Sons, Inc., 1999. [41] D. H. Kim, J. A. Alamo, J. H. Lee, and K. S. Seo, “Performance Evaluation of 50 nm In0.7Ga0.3As HEMTs for beyond-CMOS logic applications,” in IEDM Tech. Dig., pp.767-770, 2005. [42] L. H. Chu, E. Y. Chang, L. Chang, Y. H. Wu, S. H. Chen, H. T. Hsu, T. L. Lee, Y. C. Lien, and C. Y. Chang, “Effect of Gate Sinking on the Device Performance of the InGaP/AlGaAs/InGaAs Enhancement-Mode PHEMT,” IEEE Electron Device Lett., vol. 28, pp. 82-85, Feb. 2007. [43] T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, “Improved InAlAs/InGaAs HEMT Characteristics by Inserting an InAs Layer into the InGaAs Channel,” IEEE Electron Device Lett., vol. 13, pp. 325-327, Jun. 1992. [44] G. F. Engen, and C.A. Hoer, “Thru-Reflect-Line:An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer,” IEEE Trans. On Microwave Theory and Techniques, vol. 27, no. 12, pp. 987-993, Dec. 1979. [45] W. Liu, “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” John Wiley & Sons, Inc., pp. 293 1999. [46] H. Philip Li, Olin L. Hartin, and Marcus. “An Updated Temperature-Dependent Breakdown Coupling Model Including Both Impact Ionization and Tunneling Mechanisms for AlGaAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 49, no. 9, Sep 2002. [47] S. M. Sze. Physics of Semiconductor Devices, New York: Wiley, 3rd ed., with Kwok K. Ng, 2007, chapter 6.2.4, p. 315, ISBN 978-0-471-14323-9. [48] Narain Arora (2007). Mosfet Modeling for VLSI Simulation: Theory And Practice. World Scientific. p. 210. ISBN 981-256-862-X [49] Bohr, Mark T. "Interconnect scaling-the real limiter to high performance ULSI." International Electron Devices Meeting. INSTITUTE OF ELECTRICAL & ELECTRONIC ENGINEERS, INC (IEEE), 1995. [50] Chau, Robert, et al. "Benchmarking nanotechnology for high-performance and low-power logic transistor applications." Nanotechnology, IEEE Transactions on 4.2 (2005): 153-158. [51] Liou JJ, Ortiz-Conde A, Garcia Sanchez FJ, Analysis and design of MOSFETs: modeling, simulation and parameter extraction, New York, USA: Kluwer Academic Publishers (1998). [52] Liou JJ, Ortiz-Conde A, Garcia Sanchez FJ, Proceedings of IEEE HKEDM, pp. 31–8 (1997). [53] Schroeder DK, Semiconductor material and device characterization, 2nd ed. New York: Wiley (1998). [54] Oritiz-Conde A, Garcia Sanchez FJ, Liou JJ, Acta Cientifica Venezolana, pp. 176-87 (2000). [55] R. Chau, S. Datta, and A. Majumdar, Proc. IEEE CSIC Dig., 17 (2005). [56] Vivek Joshi, Kanak Agarwal, Dennis Sylvester, David Blaauw, IEEE, pp. 739-744 (2010). [57] R. Chau, S. Datta, M. Docyz, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications”, IEEE Trans. Nanotechnology, Vol. 4, No. 2, pp. 153–158, 2005 [58] Dae-Hyun Kim et al., “Logic Suitability of 50-nm In0.7 Ga0.3As HEMTs for Beyond-CMOS Applications,” IEEE Trans. on electronic devices, pp. 2606-2613 (2007) [59] S. H. Kim, et al., (Tokyo Uni.) VLSI2013, T50. [60] S. W. Chang, et al., (TSMC) IEDM2013, p.417. [61] T. W. Kim, et al., (Sematech) IEDM2013, p.425. [62] C. –S. Shin, et al., (KANC, Sematch, GF) VLSI2014, p.30. [63] C. –S. Shin, et al., (KANC, Sematch, GF) VLSI2014, p.31. [64] Arun VT, et al., (Logic Tech.) VLSI2014, p.72. [65] H. Wu, et al., (Purdue Uni.) VLSI2014, p.82. [66] X. Zhou, et al., (IMEC) VLSI2014, p.166. [67] L. Dong, et al., (Purdue Uni.) VLSI2014, p.50. [68] D-H Kim et al., IEDM (2006) [69] D-H Kim et al., IEDM (2007) [70] D-H Kim et al., IEEE Trans. Electron Device (2007)
|