(44.192.112.123) 您好!臺灣時間:2021/02/28 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王教瑋
研究生(外文):Wang, Jiao-Wei
論文名稱:以鋁漿料共燒結形成背部射極之n型太陽能電池研究
論文名稱(外文):Fabrication of N-Type Silicon Solar Cell with Rear Emitters Formed by Screen-Printed Aluminum
指導教授:王立康
指導教授(外文):Wang, LiKarn
口試委員:陳昇暉余沛慈
口試委員(外文):Chen, Sheng-HuiYu, Peichen
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:55
中文關鍵詞:太陽能電池共燒結背部射極鋁漿料
外文關鍵詞:Screen-PrintedAluminumN-Type Silicon Solar Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
  市售晶體矽太陽能電池發展至今,效率的提升已面臨瓶頸,故除了追求效率提升以外,降低成本也是現今趨勢。以N型矽基板為主製作的太陽能電池較能避免光致衰減效應(LID),且相對於P型矽基板為主的太陽能電池,此類太陽能電池較不受其他金屬雜質的影響,故會有較好的效率。
  本篇將以背部印刷鋁漿料後一步驟共燒結的方式,同時進行摻雜及正背面電極燒結,藉由觀察填充因子及效率等太陽能電池參數,探討同樣電阻值矽基板中較適合的燒結參數,而後比較不同電阻值矽基板下此類架構的表現,最終嘗試製作仿PERC-P型矽基板的局部鈍化背部射極結構並比較。
Compared with p-type crystalline silicon solar cells, n-type crystalline silicon solar cells can reach better performance because n-type solar cells do not suffer from light-induced degradation and have better tolerance of impurities. Some fabrication processes for n-type silicon solar cells are the same as those for p-type solar cells. Taking the process of anti-reflection layer deposition for example, both types of cells may use the PECVD technique for silicon nitride deposition at the front side. Pyramid formation through alkaline etching to trap light at the front surface is also the same process for both types. However, there are some processes for n-type solar cells that are different from those for p-type solar cells.
In this paper, we form emitter by co-firing screen-printed aluminum at the rear side of an n-type crystalline silicon. First, by comparing the performance of different co-firing parameters, we find the best firing temperature in forming rear emitters. Then we use the same temperature for co-firing the cells with higher wafer resistivity. In the study, we also investigate the cell performance as a passivation layer of Al2¬O3 is formed at the rear side.
第一章 序論.....1
1-1 研究背景.....1
1-2 文獻回顧.....4
1-3 研究動機與目的.....5
1-4 論文架構.....6
第二章 實驗原理.....7
2-1 半導體元件物理.....7
2-1.1 固體材料分類.....7
2-1.2 能帶理論.....9
2-1.3 光吸收與材料能隙.....12
2-1.4 半導體摻雜.....14
2-1.5 PN接面(PN junction).....16
2-2 太陽能電池原理.....17
2-2.1 太陽光.....17
2-2.2 光伏效應.....19
2-2.3 太陽能電池等效電路.....20
2-2.4 太陽能電池參數.....21
第三章 實驗流程.....24
3-1 儀器介紹.....24
3-2 實驗步驟.....27
3-2.1 前置清潔.....29
3-2.2 隨機金字塔形成.....30
3-2.3 磷擴散.....31
3-2.4 磷玻璃去除.....31
3-2.5 抗反射層沉積 (ARC coating).....32
3-2.6 濕式氧化法生長氧化鋁鈍化層.....32
3-2.7 網印.....33
3-2.8 共燒結.....33
第四章 實驗數據與討論.....35
4-1 鋁漿料於高溫環境下共熔觀察.....35
4-2 低阻值n型矽基板效率表現.....37
4-3 高阻值n型矽基板效率表現.....39
4-4 正面鈍化層與抗反射層影響觀察.....40
4-5 背部局部鈍化架構試驗.....43
第五章 結論.....48
參考文獻.....50
[1] http://www.beatriceco.com/bti/porticus/bell/belllabs_photovoltaics.html
[2] http://www.taipower.com.tw/content/new_info/new_info-c37.aspx
[3] NREL, https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[4] http://www.chinatimes.com/realtimenews/20170704001896-260410
[5] Pierre Saint-Cast, Jan Benick, Daniel Kania, Lucas Weiss, Marc Hofmann, Jochen Rentsch, Ralf Preu, and Stefan W. Glunz, Member, “Efficient Planar Heterojunction Perovskite Solar Cells by Vapor Deposition,” IEEE Electron Device Letters, Vol. 31, No. 7, 2010.
[6] G. Kulesza, P. Panek, P. Zięba, “Silicon Solar Cells Efficiency Improvement by the Wet Chemical Texturization in the HF/HNO3/Diluent Solution,” Archives of Metallurgy and Materials, Vol. 58, P.291-295, 2012.
[7] Roman Keding, David Stuwe, Mathias Kamp, Christian Reichel, Andreas Wolf, Robert Woehl, Dietmar Borchert, Holger Reinecke, and Daniel Biro, “Co-Diffused Back-Contact Back-Junction Silicon Solar Cells without Gap Regions,” IEEE Journal of Photovoltaics, Vol. 3, No. 4, 2013.
[8] Nicholas Bateman, Paul Sullivan, Christian Reichel, Jan Benick and Martin Hermle, “High Quality Ion Implanted Boron Emitters in an Interdigitated Back Contact Solar Cell with 20% Efficiency,” Energy Procedia, Vol 8, P.509-514, 2011.
[9] Christian Schmiga, Michael Rauer, Marc Rudiger, Karsten Meyer, Jan Lossen, Hans-Joachim Krokoszinski, Martin Hermle, and Stefan W. Glunz, “ Aluminium-Doped p+ Silicon for Rear Emitters and Back Surface Fields: Results and Potentials of Industrial n-and p-type Solar Cells,” European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Fraunhofer Institute for Solar Energy Systems, 2010.
[10] Ran Fu, Donald Chung, Travis Lowder, David Feldman, Kristen Ardani, and Robert Margolis, “U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016,” NREL Technical Report, 2016.
[11] Wei Wang, Jian Sheng, Shengzhao Yuan, Yun Sheng, Wenhao Cai, Yifeng Chen, Chun Zhang, Zhiqiang Feng, and Pierre J. Verlinden, “Industrial Screen-Printed n-Type Rear-Junction Solar Cells With 20.6% Efficiency,” IEEE Journal of Photovoltaics Vol. 5, No. 4, P.1245-1249, 2015.
[12] Xinbo Yang, Andreas Fell, Evan Franklin, Lujia Xu, Daniel Macdonald, and Klaus Weber, “High Efficiency N-type Silicon Solar Cells with Local Back Surface Fields Formed by Laser Chemical Processing,” Photovoltaic Specialist Conference (PVSC) , IEEE, 2015.
[13] Frank Feldmann, Martin Bivour, Christian Reichel, Martin Hermle, and Stefan W. Glunz, “Passivated Rear Contacts for High-Efficiency N-type Si Solar Cells Providing High Interface Passivation Quality and Excellent Transport Characteristics,” Solar Energy Materials & Solar Cells 120, P.270–274, 2014.
[14] Josh Engelhardt, Alexander Frey, Sebastian Gloger, Giso Hahn, and Barbara Terheiden, “Passivating Boron Silicate Glasses for Co-diffused High-efficiency N-type Silicon Solar Cell Application,” Applied Physics Letters 107 042102 , 2015.
[15] Nadine Wehmeier, Bianca Lim, Anja Nowack, Jan Schmidt, Thorsten Dullweber, and Rolf Brendel, “21.0%-Efficient Co-diffused Screen Printed N-type Silicon Solar Cell with Rear-side Boron Emitter,” Phys. Status Solidi RRL 10 No. 2, P.148–152, 2016.
[16] https://cleantechnica.com/2014/09/04/solar-panel-cost-trends-10-charts/
[17] Helge Kragh, Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925, OUP Oxford, P.46-52, 2012.
[18] D.A. Neamen, Semiconductor Physics and devices: Basic Principles, 4th Edition, US:Mc Graw Hill, 2012.
[19] https://sites.google.com/site/ee535test/declan-baugh
[20] 蕭宏, 半導體製程技術導論(第三版), 全華圖書, P.150-155, 2014
[21] A. E. MichelW. Rausch, P. A. Ronsheim, and R. H. Kastl, “Rapid Annealing and the Anomalous Diffusion of Ion Implanted Boron into Silicon,” Applied Physics Letters, Vol.50, P.416-418, 1987.
[22] https://en.wikipedia.org/wiki/Sunlight#/media/File:Solar_spectrum_en.svg
[23] C. Riordan and R. Hulstrom, “What is an Air Mass 1.5 Spectrum,” 10.1109/PVSC.1990.111784, IEEE, 1990.
[24] Augustin Joseph McEvoy, Luis Castañer, and T. Markvart, Solar Cells: Materials, Manufacture and Operation, Academic Press, P.3-10, 2012.
[25] www.ndl.org.tw/docs/devices/CF/T21_E_2.doc
[26] http://www.sintoninstruments.com/Sinton-Instruments-WCT-120.html
[27] Ronadl A. Sinton, “QUASI-Steady-State Photoconductance, A New Method for Solar Cell Material and Device Characterization,” 25th PVSC, IEEE, 1996.
[28] http://www.perkinelmer.com/cmsresources/images/44-74448bro_lambda.pdf
[29] http://oplab.ipt.nthu.edu.tw/main/node/32
[30] Andrea Ehrmann and Tomasz Blachowicz, Examination of Textiles with Mathematical and Physical Methods, Springer, P.20-27, 2016.
[31] http://four-point-probes.com/images/figure1.gif
[32] http://images.caeonline.com/im.php?id=406783
[33] https://www.newport.com/f/class-aaa-solar-simulators
[34] http://www.ndl.org.tw/NdlUC/Intro-NM001.aspx
[35] Karen A. Reinhardt and Richard F. Reidy, Handbook for Cleaning for Semiconductor Manufacturing: Fundamentals and Applications, John Wiley & Sons, Chap 2, 2011.
[36] K. L. Mittal and Ravi Jaiswal, Particle Adhesion and Removal, John Wiley & Sons, Chap 6, 2015.
[37] Xin Zhu, Lei Wang, and Deren Yang, “Investigations of Random Pyramid Texture on the Surface of Single-Crystalline Silicon for Solar Cells,” Proceedings of ISES World Congress 2007 (Vol. I – Vol. V) , P.1126-1130, 2009.
[38] 楊德仁, 太陽能電池材料, 五南圖書, P.97-98, 2008.
[39] 陳柏宏, “濕式氧化法形成Al2O3鈍化層之備面具局部接觸結構矽晶太陽能電池研究”, 國立清華大學光電工程研究所碩士論文, 2016.
[40] A. Kaminski, B. Vandellea, A. Fave, J.P Boyeaux, Le Quan Nam, R. Monna, D. Sarti, and A. Laugier “Aluminium BSF in Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol.72.1, P.373-379, 2002.
[41] Armin G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review,” Progress in Photovoltaics: Research and Applications, P.473-487, 2000.
[42] Kourosh Kalantar-zadeh and Benjamin Fry, “Nanotechnology-Enabled Sensors,” P.165-169, 2007.
[43] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface Passivation of Silicon Solar Cells Using Plasma-enhanced Chemical-vapour-deposited SiN Films and Thin Thermal SiO2/Plasma SiN Stacks,” Semiconductor Science and Technology, Institute of Physics, P.164-170, 2001.
[44] Jens Müller, Karsten Bothe, Sebastian Gatz, Heiko Plagwitz, Gunnar Schubert, and Rolf Brendel, “Contact Formation and Recombination at Screen-Printed Local Aluminum-Alloyed Silicon Solar Cell Base Contacts,” IEEE Transactions on Electron Devices, Vol. 58, No. 10, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔