跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政穎
研究生(外文):Lin, Zheng-Ying
論文名稱:金屬/介電質混成雙螺旋二十四面體的能帶與模態分析研究
論文名稱(外文):Band Structure and Mode Analysis of Metal/Dielectric Double Gyroid
指導教授:洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員:何榮銘薛涵宇
口試委員(外文):Ho, Rong-MingHsueh, Han-Yu
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:55
中文關鍵詞:螺旋二十四面體光子晶體掌性結構負折射光子能隙超穎材料
外文關鍵詞:gyoridmetamaterialsphotonic crystaldispersion relationchiral structurenegative refractionphotonic band gap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
螺旋二十四面體是一種三維旋性結構,在許多昆蟲物種可發現。因為其週期性與具有旋性的結構,螺旋二十四面體已被證明具有光子能隙及圓偏振相關特性。在之前的結果顯示雙螺旋二十四面體的光學特性可以透過結構的折射率及體積分率調控。但是雙螺旋二十四面體主要是基於介電質或是金屬的一種單一材料進行研究。由不同材料組成的雙螺旋二十四面體的光學性質的影響尚未探討。
在本研究,建立在有限差分時域法,我們研究金屬及介電質所組成的雙螺旋二十四面體的旋性相關特性。我們計算能帶結構、穿透頻譜、圓二色性指標、耦合係數確認旋性能隙及完全能隙在金屬/介電質雙螺旋二十四面體的存在。對應不同參數的變化也發表其中。除此之外,我們利用色散曲面及等頻線圖分析金屬/介電質雙螺旋二十四面體,因為其特殊的色散性質,我們探討包括負折射、自準直效應在內的異常折射。這些結果對於基於混合金屬/電介質雙陀螺結構的圓偏振元件的功能設計可能是非常有意義的。
Gyroid is a type of three-dimensional chiral structure that has been found in many insect species. Due to the periodic and chiral structure, the gyroid has been shown to exhibit photonic band gap and circular polarization dependent characteristics. Previous results show that the optical properties of the double gyroid can be tuned by refractive index contrast of the constituent materials or the volume fraction. However, double gyroid structures are mainly studied based on one constituent material, either dielectric or metal. The influence of different materials on the optical properties of double gyroid has not been explored.
In this work, we investigate the polarization-dependent characteristics of a hybrid metal/dielectric double gyroid based on finite-difference time domain (FDTD) method. The corresponding band structure, transmission spectra, CD indices and coupling indices are calculated to examine the existence of polarization band gap and complete band gap in a metal/dielectric double gyroid. The evolution of band gaps with respect to different fractions of the hybrid system are presented. Furthermore, the dispersion surfaces and equifrequency contours (EFCs) are analyzed in the hybrid double gyroid. Based on the dispersion characteristics, anomalous guiding characteristics including negative refraction and collimation effect are discussed. These results could be of great interests for the design of function of circular-polarization devices based on hybrid metal/dielectric double gyroid structures.
第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 光子晶體介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 手性結構中的螺旋二十四面體介紹 . . . . . . . . . . . . . . . . 2
1.2.1 單螺旋二十四面體介紹 . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 雙螺旋二十四面體 . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 螺旋二十四面體光學特性 . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 完全光子能隙 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 旋性能隙. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 負折射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 論文動機. . . . . . . . .. . . . .. . . . . . . . . . . . . . . 11

第二章 實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 光子能帶. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 時域有限差分法 (Finite-Difference Time-domain Method) . . . . 13
2.1.2 約化布里淵區 (The irreducible Brillouin Zone) . . . . . . . . 14
2.1.3 色散曲面及等頻率線圖(EFCs) . . . . . . . . . . . . . . . . . . 15
2.2 圓二色性 (Circular Dichroism , CD) . . . . . . . . . . . . 17
2.2.1 左右旋判定方式 . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 圓二色性指數 (CD index) . . . . . . . . .. . . . .. . . . . . 17
2.2.3 耦合係數 (Coupling index). . . . . . . . .. . . . .. . . . . . 18
2.3 模擬設定. . . . . .. . . . . . . . .. . . . .. . . . . . . . . 19
2.3.1 雙螺旋二十四面體(Double Gyroid, DG) . . . . . . . . . . . . . 19

第三章 金屬/介電質 混成雙螺旋二十四面體的旋性能隙 . . . . . . . . . . 20
3.1 金屬/介電質 混成雙螺旋二十四面體 . . . . . . . . . . . . 20
3.1.1 金屬單螺旋二十四面體 . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 能帶圖及穿透頻譜分析 . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 結構參數與材料參數之影響 . . . . . . .. . . . . . . . . . . . . 27
3.1.3.1 整體體積分率 . . . . . . . . . . . . . . . . . . .. . . . . 27
3.1.3.2 完美導體的體積分率 . . . . . . . . . . . . . . . . . . . . . 29
3.1.3.3 介電質折射率 . . . . . . . . . . . . . . . . . . . . . . . . 30

第四章 金屬/介電質 混成雙螺旋二十四面體之模態演變 . . . . . . . . . . 34
4.1 等頻率線分析 . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 等頻率線預測與驗證 . . . . . . . . . . . . . . . . . . . . . . 37
4.3 電磁場輪廓 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

第五章 結果與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . 49

參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
參 考 文 獻


[1] Mother of pearl Abalone shell colorful isolated on white, https://goo.gl/AJZY9Q. Butterfly wings, https://goo.gl/8GpvyU. Opal, https://goo.gl/tB3b6X.

[2] S. Robinson and R. Nakkeeran, “Photonic crystal ring resonator based optical filters,” in “Advances in Photonic Crystals,” , V. M. Passaro, ed. (InTech, Rijeka, 2013), chap. 01.

[3] V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Advanced Materials 25, 2517–2534 (2013).

[4] B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in parides sesostris wing scales,” Interface Focus p. rsfs20110082 (2011).

[5] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Weyl points and line nodes in gyroid photonic crystals,” Nature Photonics 7, 294–299 (2013).

[6] L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Physical Review A 93, 061801 (2016).

[7] M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, “Photonic properties of bicontinuous cubic microphases,” Physical Review B 65, 165123 (2002).

[8] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schrőder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Materials Today: Proceedings 1, 193–208 (2014).

[9] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schrőder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nature Photonics 7, 801–805 (2013).

[10] Negative refraction, https://goo.gl/AoZ6hG.

[11] C. Kittel, Introduction to solid state physics (Wiley, 2005).

[12] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley New York, 1991).

[13] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Advanced Materials 25, 612–617 (2013).

[14] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters 58, 2486–2489 (1987).

[15] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).

[16] à. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Physical Review B 62, 10696 (2000).

[17] C. Luo, S. G. Johnson, J. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Physical Review B 65, 201104 (2002).

[18] V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Advanced Materials 25, 2517–2534 (2013).

[19] B. Frank, X. Yin, M. Scha?ferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3d chiral plasmonic structures,” ACS nano 7, 6321–6329 (2013).

[20] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Advanced Materials 19, 207–210 (2007).

[21] M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Advanced Materials 21, 4680–4682 (2009).

[22] M. Saba, M. Thiel, M. D. Turner, S. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Ne- shev, K. Mecke, and G. E. Schr¨oder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Physical Review Letters 106, 103902 (2011).

[23] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).

[24] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hőgele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).

[25] Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).

[26] S. Yoshioka, H. Fujita, S. Kinoshita, and B. Matsuhana, “Alignment of crystal orientations of the multi-domain photonic crystals in parides sesostris wing scales,” Journal of The Royal Society Interface 11, 20131029 (2014).

[27] V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (i4132) photonic crystals in butterfly wing scales,” Proceedings of the National Academy of Sciences 107, 11676–11681 (2010).

[28] G. E. Schrőder-Turk, S. Wickham, H. Averdunk, F. Brink, J. F. Gerald, L. Poladian, M. Large, and S. Hyde, “The chiral structure of porous chitin within the wing-scales of callophrys rubi,” Journal of structural biology 174, 290–295 (2011).

[29] C. Mille, E. C. Tyrode, and R. W. Corkery, “3d titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths,”RSC Advances 3, 3109–3117 (2013).

[30] K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,”Journal of The Royal Society Interface 5, 85–94 (2008).

[31] S. Salvatore, Optical Metamaterials by block copolymer self-assembly (Springer, 2014).

[32] A. Demetriadou, S. S. Oh, S. Wuestner, and O. Hess, “A tri-helical model for nanoplasmonic gyroid metamaterials,” New Journal of Physics 14, 083032 (2012).

[33] A. Demetriadou and O. Hess, “Analytic theory of optical nanoplasmonic metamaterials,” Physical Review B 87, 161101 (2013).

[34] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).

[35] J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkin- son, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Advanced Optical Materials 3, 12–32 (2015).

[36] M. D. Turner, G. E. Schrőder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Optics Express 19, 10001–10008 (2011).

[37] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters 85, 3966–3969 (2000).

[38] S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess et al., “Tunable 3d extended self- assembled gold metamaterials with enhanced light transmission,” Advanced Mate- rials 25, 2713–2716 (2013).

[39] S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3d optical metamaterial made by self-assembly,” Advanced Materials 24, 23–27 (2012).

[40] P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast nonlinear response of gold gyroid three-dimensional metamaterials,” Physical Review Applied 2, 044002 (2014).

[41] K. S. Yee et al., “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag 14, 302–307 (1966).

[42] W. Jiang, Y. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal devices for wavelength-division-multiplexing and optical modulation,” in “Optics East 2005,” (International Society for Optics and Photonics, 2005), pp. 60140F–60140F.

[43] Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.

[44] J. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Optics Express 13, 8083–8088 (2005).

[45] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied optics 37, 5271–5283 (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊