|
參 考 文 獻
[1] Mother of pearl Abalone shell colorful isolated on white, https://goo.gl/AJZY9Q. Butterfly wings, https://goo.gl/8GpvyU. Opal, https://goo.gl/tB3b6X.
[2] S. Robinson and R. Nakkeeran, “Photonic crystal ring resonator based optical filters,” in “Advances in Photonic Crystals,” , V. M. Passaro, ed. (InTech, Rijeka, 2013), chap. 01.
[3] V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Advanced Materials 25, 2517–2534 (2013).
[4] B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in parides sesostris wing scales,” Interface Focus p. rsfs20110082 (2011).
[5] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Weyl points and line nodes in gyroid photonic crystals,” Nature Photonics 7, 294–299 (2013).
[6] L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Physical Review A 93, 061801 (2016).
[7] M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, “Photonic properties of bicontinuous cubic microphases,” Physical Review B 65, 165123 (2002).
[8] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schrőder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Materials Today: Proceedings 1, 193–208 (2014).
[9] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schrőder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nature Photonics 7, 801–805 (2013).
[10] Negative refraction, https://goo.gl/AoZ6hG.
[11] C. Kittel, Introduction to solid state physics (Wiley, 2005).
[12] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley New York, 1991).
[13] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Advanced Materials 25, 612–617 (2013).
[14] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters 58, 2486–2489 (1987).
[15] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
[16] à. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Physical Review B 62, 10696 (2000).
[17] C. Luo, S. G. Johnson, J. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Physical Review B 65, 201104 (2002).
[18] V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Advanced Materials 25, 2517–2534 (2013).
[19] B. Frank, X. Yin, M. Scha?ferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3d chiral plasmonic structures,” ACS nano 7, 6321–6329 (2013).
[20] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Advanced Materials 19, 207–210 (2007).
[21] M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Advanced Materials 21, 4680–4682 (2009).
[22] M. Saba, M. Thiel, M. D. Turner, S. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Ne- shev, K. Mecke, and G. E. Schr¨oder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Physical Review Letters 106, 103902 (2011).
[23] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[24] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hőgele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[25] Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[26] S. Yoshioka, H. Fujita, S. Kinoshita, and B. Matsuhana, “Alignment of crystal orientations of the multi-domain photonic crystals in parides sesostris wing scales,” Journal of The Royal Society Interface 11, 20131029 (2014).
[27] V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (i4132) photonic crystals in butterfly wing scales,” Proceedings of the National Academy of Sciences 107, 11676–11681 (2010).
[28] G. E. Schrőder-Turk, S. Wickham, H. Averdunk, F. Brink, J. F. Gerald, L. Poladian, M. Large, and S. Hyde, “The chiral structure of porous chitin within the wing-scales of callophrys rubi,” Journal of structural biology 174, 290–295 (2011).
[29] C. Mille, E. C. Tyrode, and R. W. Corkery, “3d titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths,”RSC Advances 3, 3109–3117 (2013).
[30] K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,”Journal of The Royal Society Interface 5, 85–94 (2008).
[31] S. Salvatore, Optical Metamaterials by block copolymer self-assembly (Springer, 2014).
[32] A. Demetriadou, S. S. Oh, S. Wuestner, and O. Hess, “A tri-helical model for nanoplasmonic gyroid metamaterials,” New Journal of Physics 14, 083032 (2012).
[33] A. Demetriadou and O. Hess, “Analytic theory of optical nanoplasmonic metamaterials,” Physical Review B 87, 161101 (2013).
[34] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[35] J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkin- son, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Advanced Optical Materials 3, 12–32 (2015).
[36] M. D. Turner, G. E. Schrőder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Optics Express 19, 10001–10008 (2011).
[37] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters 85, 3966–3969 (2000).
[38] S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess et al., “Tunable 3d extended self- assembled gold metamaterials with enhanced light transmission,” Advanced Mate- rials 25, 2713–2716 (2013).
[39] S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3d optical metamaterial made by self-assembly,” Advanced Materials 24, 23–27 (2012).
[40] P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast nonlinear response of gold gyroid three-dimensional metamaterials,” Physical Review Applied 2, 044002 (2014).
[41] K. S. Yee et al., “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag 14, 302–307 (1966).
[42] W. Jiang, Y. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal devices for wavelength-division-multiplexing and optical modulation,” in “Optics East 2005,” (International Society for Optics and Photonics, 2005), pp. 60140F–60140F.
[43] Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.
[44] J. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Optics Express 13, 8083–8088 (2005).
[45] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied optics 37, 5271–5283 (1998).
|