跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張正偉
研究生(外文):Chang, Cheng Wei
論文名稱:探討銀之合成技術與其於電漿子光學上之應用: 表面電漿極化子傳輸、光降解、表面電漿極化子振幅調制技術
論文名稱(外文):Synthesis and applications of visible plasmonic Silver: Far surface plasmon polariton (SPP) propagation, excellent photodegradation, and SPP amplitude modulations
指導教授:嚴大任
指導教授(外文):Yen, Ta Jen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:150
中文關鍵詞:微米銀板表面電漿極化子傳輸距離光觸媒光降解表面電漿極化子表面電漿極化子振幅調制
外文關鍵詞:Ag MicroplatesSPP Propagation lengthPhtocatalysisphotodegradationSurface Plasmon PolaritonsSPP Amplitude Modulations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
表面電漿極化波是於近場介電質金屬介面間傳輸,其傳輸損耗在電漿子光學元件中如共振態或電漿耦合情形是一門重要課題。在可見光波段下,銀雖有相對其他金屬而言較低之吸收損耗,但其損耗不僅是原自其能帶傳輸所造成,有相當一部分原因是來自銀本身材料缺陷或有其他不純物參雜造成。在本研究我們首先發展硝酸輔助合成單晶大微米銀板,其具有量產優勢且最大側邊長可長至50微米。在本研究會討論其生長機制與展現其表面電漿極化波傳輸增益,我們發現在巧妙控制硝酸與乙二醇濃度可以有效控制銀板生長大小,且相比於電子束蒸鍍製程所鍍銀薄膜,單晶銀板有其兩倍等效傳輸距離,證實銀板可當作電漿子光學材料且具有低材料缺陷、不需鍍緩沖層、且可轉移至任意基板之優勢。
利用上述製程我們也可巧妙控制銀板邊長在3-5微米,藉由鋪平銀板於其上長氧化鋅奈米線,可以有效增強光觸媒活性,使用穿透式電顯與X光能譜儀可證明氧化鋅與銀為直接接觸和有光電子傳遞現象。氧化鋅與銀直接接觸可有效使光電子自氧化鋅電子電洞對分離後傳至銀上,減少再復合現象產生,我們利用降解亞甲基藍溶液得到證實,其異質結構有1.35倍之動力常數,我們也利用工程品質因數來對其他文獻所發展之異質結構做比較,發現此異質結構有較佳之工程品質因數。
最後,我們使用金屬銀與電漿子魚骨結構製作兩種表面電漿極化振幅調制器。一是使用角頻率差1.66 MHz在魚骨結構表面進行調制,另一則為使用偏振態旋轉頻率與偏振態本身做調制,其訊號為1-10k Hz。此優勢為可以有效縮小光學調制器之大小與降低損耗,我們相信此二種訊號調制方式可以有效所小現階段使用之振幅調製器與提升振幅調制訊號之訊號碼(目前多為八至十六碼,利用本偏振調制方式可以容納更高位數)。
Since surface plasmon polarition (SPP) waves propagate in the definite dielectric/metal region, the propagation loss is an important issue and related to the optical responses like on-resonance states or coupling frequencies. In visible region, plasmonic material Ag has attracted great attentions because of low absorption loss. However, the losses in Ag are not only attributed to the interband or intraband transitions but also to the surface defects and the impurities. We herein develop a fabrication method called HNO3-assisted polyol reduction method that possesses mass production single-crystalline Ag microplates with the largest lateral size up to 50 μm. The growth mechanism and the improved SPP propagation length are investigated, showing that the concentrations of ethylene glycol (EG), HNO3 dominate the growth of Ag microplates and the SPP propagation length is 2 folded longer than the typical E-gun deposited Ag thin film. Such the ultralarge Ag microplates can serve as the low defected, versatile used, buffer layer free plasmonic platform
Furthermore, using HNO3-assisted polyol reduction method can control the lateral size of Ag microplates. The use of relatively small size Ag microplates with 3-5 μm is carried out for sinking the photogenerated electrons in the ZnO/Ag heterostrcuture. The growth of ZnO nanowires on Ag microplates shows that the directly contact and the charge transfer effect are confirmed by TEM and XPS observation. The ZnO/Ag contacts can effectively enhance the photocatalytic activity in photoinduced degradation processes, showing that the kinetic constant for our ZnO/Ag heterostructure possesses 1.35 folds than the pure ZnO nanowires. The figure of merit (FOM) value is used for fairly comparing the ability of photodegradation among other ZnO/Ag heterostructure, revealing that our ZnO/Ag heterostructure has a better performance than others (1.02 × 10-2).
In the final part, we use metallic Ag and plasmonic Fishbone (FB) structures to develop two kinds of SPP amplitude modulation (SPPAM). One is the use of angular frequency difference to serve as a modulation signal and beats on 1.66 MHz, showing that beat frequency SPPAM works beyond SPP subwavelength region and can be readout by the oscilloscope construction. The other is the use of changing polarization states frequencies and polarization states that can act as the modulation signals in the ranges of 1-10k Hz, showing that the intensity difference between the left/right-sided FB structures with the modulation signals. Taking the advantages of reducing the power consumption and the channel length, we believe that the compact SPPAMs can be used for miniaturizing the modulators and upgrade the 8/16 coding bits to multi-bits.

中文摘要 1
Abstract 3
Acknowledgement 5
Content 7
List of Figures & Tables 9
CHARPTER 1 INTRODUTION. 11
CHARPTER 2 THEORY & LITERATURE REVIEW OF SURFACE PLASMON POLRITIONS. 13
2.1. Surface plasmon polritons (SPP). 13
2.1.1. Summary. 13
2.1.2. Dispersion relation of surface plasmon polaritons in the dielectric/metal interface . 13
2.1.3. SPP propagation length 17
2.1.4. Methods to exciting the SPP waves 20
2.1.5. Plasmonic couplers 24
2.2. Methods to improving SPP propagation length 25
2.2.1. Summary 25
2.2.2. Epitaxial growth of single crystalline metallic structures 26
2.2.3. Morphology control of metallic nano/micro-sized structures 29
2.2.4. Techniques to SPP propagation length measurement 31
2.3. Plasmonic modulations. 35
2.3.1. Summary 35
2.3.2. Miniaturization of modulations 36
2.3.3. Heterodyne interferometer 39
2.4. Research motivations 43
2.4.1. Synthesis of ultralarge Ag microplates 43
2.4.2. ZnO/Ag heterostructures and its photodegradation 43
2.4.3. Surface plasmon polaritons amplitude modulations (SPPAMs) 44
CHARPTER 3 EXPERIMENTAL SECTION 46
3.1. Summary 46
3.2. Synthesis of single crystalline Ag microplates 46
3.3. Synthesis of ZnO nanowires on Ag microplates 48
3.4. Characterizations. 48
3.5. Photocatalytic activity tests 49
3.6. SPP propagation length 49
3.7. Measurement of SPPAMs 50
3.7.1. FB couplers fabrication 50
3.7.2. Optical setup of SPPAMs 51
3.7.3. FDTD simulation 52
CHARPTER 4 RESULTS & DISCUSSION 53
4.1. Summary 53
4.2. Investigation of growing single crystalline Ag microplates 54
4.2.1. Synthesis of ultralarge Ag microplates 54
4.2.2. FIB nanopatterning on Ag microplates and SPP propagation lengths 69
4.3. Investigation of ZnO/Ag heterostructure 11975
4.3.1. The growth of ZnO nanowires on Ag microplates 75
4.3.2. Improvement of photodegradation 83
4.4. SPPAM 88
4.4.1. FB couplers 88
4.4.2. Observation of directing SPP wave propagation by using FB couplers 91
4.4.3. Beat frequency SPPAM 93
4.4.4. Polarization-controlled SPPAM 95
4.4.5. Discussion of SPPAMs 101
CHARPTER 5 CONCLUSION 104
CHARPTER 6 PUBLICATIONS 107
REFERENCES 109
1. Wanger, F. E. et al. Before striking gold in gold-ruby glass. Nature 407, 691 (2000).
2. Homola, J., Yee, S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensors & Actuators: B chemical 54, 3 (1999).
3. Ritchie, R Plasma losses by fast electrons in thin films. Physical Review 106, 874 (1957).
4. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 58, 267 (2007).
5. Chen, C., Chang, M., Wu, H., Lee, Y. & Yen, T. Enhanced Vibrational Spectroscopy, Intracellular Refractive Indexing for Label-free Biosensing and Bioimaging by Multiband Plasmonic-antenna Array. Biosensors and Bioelectronics 60, 343 (2014).
6. James, T. D., Mulvaney, P. & Roberts, A. The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. Nano Letter 16, 3817 (2016).
7. Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic colour laser printing. Nature Nanotechnology 11, 325 (2016).
8. Wu, Y. R., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit. Scientific Reports 3, 1194 (2013).
9. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature 5, 915 (2009).
10. Yan, Z. et al. Controlling the Position and Orientation of Single Silver Nanowires on a Surface Using Structured Optical Fields. ACS Nano 6, 8144 (2012).
11. Descharmes, N., Dharanipathy, U. P., Diao, Z., Tonin, M. & Houdré, R. Observation of Backaction and Self-Induced Trapping in a Planar Hollow Photonic Crystal Cavity. Physical Review Letters 110, 123601 (2013).
12. Kotnala, A. & Gordon, R. Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer. Nano Letter 14, 853 (2014).
13. Lu, Y. et al. Plasmonic Nanolaser Using Epitaxially Grown Silver Film. Science 337, 450 (2012).
14. Melli, M. et al. Reaching the Theoretical Resonance Quality Factor Limit in Coaxial Plasmonic Nanoresonators Fabricated by Helium Ion Lithography. Nano Letter 13, 2687 (2013).
15. Wang, Y. et al. Ultrafast Nonlinear Control of Progressively Loaded, Single Plasmonic Nanoantennas Fabricated Using Helium Ion Milling. Nano Letter 13, 5647 (2013).
16. Kollmann, H. et al. Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas. Nano Letter 14, 4778 (2014).
17. Lai, Y. et al. Label-Free, Coupler-Free, Scalable and Intracellular Bio-imaging by Multimode Plasmonic Resonances in Split-Ring Resonators. Advance Materials 24, 148 (2012).
18. Homan, K. A. et al. Silver Nanoplate Contrast Agents for in Vivo Molecular Photoacoustic Imaging. ACS Nano 6, 641 (2012).
19. Zeng, J. et al. Successive Deposition of Silver on Silver Nanoplates: Lateral versus Vertical Growth. Angew. Chem., Int. Ed. 50, 244 (2011).
20. Wei, H. et al. Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. Nano Letter 11, 471 (2011).
21. Maier, S. A. Plasmonics. (Springer, 2007).
22. Ben, X. & Park, H. S. Strain engineering enhancement of surface plasmon polariton propagation lengths for gold nanowires. Applied Physics Letters 102, 041909 (2013).
23. Wild, B. et al. Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires. ACS Nano 6, 472 (2012).
24. Wang, C. Y. et al. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nature Communication 6, 7734 (2015).
25. Khurgin, J. B. & Boltasseva, A. Reflecting upon the losses in plasmonics and metamaterials. MRS Bulletin 37, 768 (2012).
26. Naik, G. V., Shalaev, V. M. & Boltasseva A. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials 25, 3264 (2013).
27. Kuttge, M. et al. Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy. Applied Physics Letters 93, 113110 (2008).
28. Park, J. H. et al. Single-Crystalline Silver Films for Plasmonics. Advanced Materials 24, 3988 (2012).
29. Kretschmann, E. & Reather, H. Radiative decay of nonradiative surface plasmon excited by light. Z. Naturforsch. A 23, 2135 (1968).
30. Otto, A. A new method for exciting non-radioactive surface plasma oscillations. Phys.Stat.Sol. 26, 99 (1968).
31. Otto, A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216, 398 (1968).
32. Kim, D. Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors. Applied Optics 44, 3218 (2005).
33. Ma, Y. et al. Direct measurement of propagation losses in silver nanowires. Optical Letters 35, 1160 (2010).
34. Li, Q. et al. Experimental Demonstration of Plasmon Propagation, Coupling, and Splitting in Silver Nanowire at 1550-nm Wavelength. IEEE Journal of Selected Topics in Quantum Electronics 17, 1107 (2011).
35. Zhang, X. et al. Single-nanowire surface plasmon gratings. Nanotechnology 23, 225202 (2012).
36. Wu, Y. et al. Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Advanced Materials 26, 6106 (2014).
37. Hu, W. P. et al. Immunodetection of Pentamer and Modified C-reactive Protein Using Surface Plasmon Resonance Biosensing. Biosensors & Bioelectronics 21, 1631 (2006).
38. Meyer, M. H. F., Hartmann, M. & Keusgen, M. SPR-based Immunosensor for the CRP detection- A New Method to Detect a Well Known Protein. Biosensors & Bioelectronics 21, 1987 (2006).
39. Yanase, Y. et al. Living Cell Positioning On the Surface of Gold Film for SPR Analysis. Biosensors & Bioelectronics 23, 562 (2006).
40. Kawaguchi, T. et al. Fabrication of a Novel Immunosensor Using Functionalized Self-assembled Monolayer for Trace Level Detection of TNT by Surface Plasmon Resonance. Talanta 72, 554 (2007).
41. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720 (1972).
42. Venault, A., Trinch K. M. & Chang, Y. A zwitterionic zP(4VP-r-ODA) copolymer for providing polypropylene membranes with improved hemocompatibility. Journal of Membrane Science 501, 68 (2016).
43. Liu, W, Niu, Y., Viana, A. S. Correia, J. P. & Jin, G. Potential Modulation on Total Internal Reflection Ellipsometry. Analytical Chemistry 88, 3211 (2016).
44. Ma, X. et al. Dynamically Modulated Intensity Interrogation Scheme Using Waveguide Coupled Surface Plasmon Resonance Sensors. Sensors and Actuators A: Physical 157, 9 (2010).
45. Zacher, T. & Wischerhoff, E. Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Building Processes in Biosensing Hydrogels. Langmuir 18, 1748 (2002).
46. Ekgasit, S., Thammacharoen, C., Yu, F. & Knoll, W. Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies. Analytical Chemistry 76, 2210 (2004).
47. Chiang, Y. et al. Innovative Antimicrobial Susceptibility Testing Method Using Surface Plasmon Resonance. Biosensors & Bioelectronics 24, 1905 (2009).
48. Ho, H., Wu, S., Yang, M. & Cheung, A. Application of White Light-emitting Diode to Surface Plasmon Resonance Sensors. Sensor Actuator B: Chemical 80, 89 (2001).
49. Akimoto, T., Sasaki, S., Ikebukuro, K. & Karube, I. Effect of Incident Angle of Light on Sensitivity and Detection Limit for Layers of Antibody With Surface Plasmon Resonance Spectroscopy. Biosensors & Bioelectronics 15, 355 (2009).
50. Kochergin, V., Beloglazov, A., Valeiko, M. & Nikitin, P. Phase Properties of a Surface Plasmon Resonance from the Viewpoint of Sensor Applications. Quantum Electronics 28, 444 (1988).
51. Nelson, S., Johnston, K. & Yee, S. Hugh Sensitivity Surface Plasmon Resinance Sensor Based on Phase Detection. Sensor Actuator B: Chemical 35, 187 (1996).
52. Zayats, A. V. & Richards D. Nano-optics and Near-field Optical Microscopy, Ch. 20, 165-168 (Artech House Inc., 2009).
53. Maier, S. A. et al. Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nature Materials 2, 229 (2003).
54. Zia, R. & Brogersma, M. L. Surface Plasmon Polarition Analogue to Young’s Double-Slit Experiment. Nature Nanotechnology 2, 426 (2006).
55. Epstein, T. & Arie, A. Arbitrary Bending Plasmonic Light Waves. Physical Review Letters 112, 023903 (2014).
56. Yu, N. & Capasso Flat Optics with Designer Metasurfaces. Nature Materials 13, 139 (2014).
57. Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86 (2012).
58. Celebrano, M. et al. Mode Matching in Multiresonant Plasmonic Nanoantennas for Enhanced Second Harmonic Generation. Nature Nanotechnology 10, 412 (2015).
59. Shen, B. Wang, P., Polson, R. & Menon, R. An Integrated-nanophotonics Polarization Beamsplitter with 2.4 × 2.4 μm2 Footprint. Nature Photonics 9, 378 (2015).
60. Tullius, R. et al. “Superchiral” Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures. Journal of the American Chemical Society 137, 8380 (2015).
61. Hendry, E. et al. Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields. Nature Nanotechnology 5, 783 (2010).
62. Chen, H., Bhuiya, A. M., Ding, Q. & Toussaint, K. C. Plasmon-Assisted Audio Recoding. Scientific Reports 5, 9125 (2015).
63. Zheng, G. et al. Metasurface Holograms Reaching 80% Efficiency. Nature Nanotechnology 10, 308 (2015).
64. Liu, L. et al. Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude. Advanced Materials 26, 5031 (2014).
65. Xu, J. J., Zhang, H. C., Zhang, Q. & Cui, T. J. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Applied Physics Letter 106, 021102 (2015).
66. Gao, X., Zhou, L. & Cui, T. J. Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial. Scientific Reports 5, 9250 (2015).
67. Liao, Z. et al. High-order localized spoof surface plasmon resonances and experimental verifications. Scientific Reports 5, 9550 (2015).
68. Kuang, L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications 2, 70 (2013).
69. Miroshnichenko, A. E. & Kivshar, Y. S. Polarization Traffic Control for Surface Plasmons. Science 340, 283 (2013).
70. Li, J. et al. Plasmonic Circular Polarization Analyzer Formed by Unidirectionally Controlling Surface Plasmon Propagation. Applied Physic Letters 106, 161106 (2015).
71. Dai, W., Kin, F., Huang, C. & Huang, J. Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letter 14, 3881 (2014).
72. Wintz, D., Genevet, P., Ambrosio, A. Woolf, A. & Capasso, F. Holographic Metalens for Switchable Focusing of Surface Plasmons. Nano Letter 15, 3585 (2015).
73. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331-334 (2013).
74. Balthasar Mueller, J. P., Leosson, K. & Capasso F. Polarization-selective coupling to long-range Surface plasmon polariton waveguides. Nano Lett. 14, 5524-5527 (2014).
75. Rodríguez-Fortuño F. J. et al. Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science 340, 328 (2013).
76. Liu, H. et al. Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer. ACS Nano 4, 3139 (2010).
77. He, Y. & Shi, G. Surface Plasmon Resonances of Silver Triangle Nanoplates: Graphic Assignments of Resonance Modes and Linear Fittings of Resonance Peaks. J. Phys. Chem. B 109, 17503 (2005).
78. Nagpal, P., Lindquist, N. C., Oh, S. & Norris D. J. Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science 325, 594 (2009).
79. Zhang, W., Chen, P., Gao, Q. Zhang, Y. & Tang, Y. High-Concentration Preparation of Silver Nanowires: Restraining in Situ Nitric Acidic Etching by Steel-Assisted Polyol Method. Chemistry of Materials 20, 1699 (2008).
80. Im, S. H., Lee, Y. T., Wiley, B. & Xia, Y. Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity. Angew. Chem. Int. Ed. 44, 2154 (2005).
81. Chang, S., Chen, K, Hua, Q., Ma, Y. & Huang, W. Evidence for the Growth Mechanisms of Silver Nanocubes and Nanowires. The Journal of Physical Chemistry C 115, 7979 (2011).
82. Li, X., Wang, L. & Yan, G. Review: Recent research progress on preparation of silver nanowires by soft solution method and their applications. Cryst. Res. Technol. 46, 427 (2011).
83. Rycenga, M. et al. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 111, 3669 (2011).
84. Personick, M. L., Langille, M. R., Zhang, J. & Mirkin, C. A. Shape Control of Gold Nanoparticles by Silver Underpotential Deposition. Nano Letter 11, 3394 (2011).
85. Li, C. R. et al. Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution. Journal of Crystal Growth 319, 88 (2011).
86. Chen, H., Simon, F. & Eychmüller, A. E. Large-Scale Synthesis of Micrometer-Sized Silver Nanosheets. The Journal of Physical Chemistry C 114, 4495 (2010).
87. Zhang, L. et al. One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Materials Letter 65, 1295 (2011).
88. Zhang, Q., Li, N., Goebl, J., Lu, Z. & Yin, Y. A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent? Journal of The American Chemical Society 133, 19831 (2011).
89. Liu, Z. et al. Synthesis of Silver Nanoplates by Two-Dimensional Oriented Attachment. Langmuir 28, 9244 (2012).
90. Courty, A., Henry, A., Goubet, N. & Pileni, M. Large Triangular Single Crystals Formed by Mild Annealing of Self-Organized Silver Nanocrystals. Nature Materials 6, 900 (2007).
91. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem., Int. Ed. 48, 60 (2009).
92. Lofton, C. & Sigmund W. Mechanisms Controlling Crystal Habits of Gold and Silver Colloids. Advanced Functional Materials 16, 1197 (2005).
93. Tang, B. et al. Shape Evolution of Silver Nanoplates through Heating and Photoinduction. ACS Applied Materials & Interfaces 5, 646 (2013).
94. Jin, R. C. et al. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 294, 1901 (2001).
95. Jin, R. C. et al. Controlling Anisotropic Nanoparticle Growth Through Plasmon Excitation. Nature 425, 487 (2003).
96. Li, N. et al. H2O2-Aided Seed-Mediated Synthesis of Silver Nanoplates with Improved Yield and Efficiency. ChemPhyChem 13, 2526 (2012).
97. Park, S. H., Son, J. G., Lee, T. G., Park, H. M. & Song, J. Y. One-step large-scale synthesis of micrometer-sized silver nanosheets by a template-free electrochemical method. Nanoscale Research Letters 8, 248 (2013).
98. Lyutov, D. L. et al. Synthesis and Structure of Large Single Crystalline Silver Hexagonal Microplates Suitable for Micromachining. Materials Chemistry & Physics 143, 642 (2014).
99. Luo, X., Li, Z., Yuan, C. & Chen, Y. Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption. Materials Chemistry & Physics 128, 77 (2011).
100. Huang, J. S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications 1, 150 (2010).
101. Jr. D. S. et al. Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires. Nano Letter 10, 3482 (2010).
102. Paul, A. et al. Identification of Higher Order Long-Propagation-Length Surface Plasmon Polariton Modes in Chemically Prepared Gold Nanowires. ACS Nano 6, 8105 (2012).
103. Paul, A. et al. Dye-Assisted Gain of Strongly Confined Surface Plasmon Polaritons in Silver Nanowires. Nano Letter 14, 3674 (2014).
104. Saleh, B. E. A. Fundamental of photonics, 2nd edn, Ch.20, 834-872 (Wiley Press, 2007).
105. Dirksen, P., Werf, J. V. D. & Bardoel, W. Novel two-frequency laser. Prec. Eng. 17, 114-116 (1995).
106. Franklin, D. et al. Polarization-independent Actively Tunable Colour Generation on Imprinted Plasmonic Surfaces. Nature Communications 6, 7337 (2015).
107. Briggs, R. M., Pryce, I. M., Atwater, A. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express 18, 11192 (2010).
108. Ref. from Wikipedia (https://en.wikipedia.org/wiki/Acousto-optic_modulator).
109. Chao, T. H. et al. Compact Liquid Crystal Waveguide Based Fourier Transform Spectrometer for In-Situ and Remote Gas and Chemical Sensing. Proceedings of SPIE 6977, 69770 (2008).
110. Dennis, B. S. et al. Compact nanomechanical plasmonic phase modulators. Nature Photonics 9, 267 (2015).
111. Melikyan, A. et al. High-speed plasmonic phase modulators. Nature Photonics 8, 229 (2014).
112. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical Modulation by Plasmonic Excitation of CdSe Quantum Dots. Nature Photonics 1, 402 (2007).
113. Li, Z., Zhang, S., Halas, N. J., Nordlander, P. & Xu, H. Coherent Modulation of Propagating Plasmons in Silver-Nanowire-Based Structures. Small 7, 593 (2011).
114. Green, W. M. J., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Optics Express 15, 17106 (2007).
115. Haffner, C. et al. High-Speed Plasmonic Mach-Zehnder Modulator in a Waveguide. ECOC 2014, Cannes – France P.D. 2.6. (2014).
116. Zhang, S., Bosch, T. Orthogonally polarized lasers and their applications. Optics and Photonic News 38, 39 (2007).
117. Yu, C. & Lin, C. A simple, full-dynamic-range optical heterodyne single-mode fiber gyroscope. J. Lightwave Technol. 33, 4215 (2015).
118. Lin. C., Yu, C., Li, Y., Tsai, C. & Chou, C. High sensitivity two-frequency paired polarized interferometer in Faraday rotation angle measurement of ambient air with single-traveling configuration. J. App. Phy. 104, 033101 (2008).
119. Kuo, W., Chou, C. & Wu, H. Optical heterodyne surface-plasmon resonance biosensor. Opt. Lett. 28, 1329 (2003).
120. Li, Y., Chang, Y., Su, L. & Chou, C. Differential-phase surface plasmon resonance biosensor. Anal. Chem. 80, 5590 (2008)
121. Hechenblaikner, P. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer. J. Opt. Soc. Am. A 30, 941-947 (2013).
122. Chang, C. et al. HNO3‑Assisted Polyol Synthesis of Ultralarge Single-Crystalline Ag Microplates and Their Far Propagation Length of Surface Plasmon Polariton. ACS Applied Materials & Interfaces 6, 11791 (2014).
123. Ivanova, O. S. & Zamborini, F. P. Size-Dependent Electrochemical Oxidation of Silver Nanoparticles. Journal of the American Chemical Society 132, 70 (2010).
124. Kuo, C. L. & Hwang, K. C. Does Morphology of a Metal Nanoparticle Play a Role in Ostwald Ripening Processes? Chemistry of Materials 25, 365 (2013).
125. Chang, C. et al. Single-crystalline heterostructure of ZnO nanowire arrays on large Ag microplates and its photocatalytic activity. Acta Materialia 61, 6993 (2013).
126. Xiong, Y., Washio, I., Chen, J., Sadilek, M. & Xia, Y. Trimeric Clusters of Silver in Aqueous AgNO3 Solutions and Their Role as Nuclei in Forming Triangular Nanoplates of Silver. Angew. Chem. Int. Ed. 46, 4917 (2007).
127. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew Chem Int Ed Engl. 45, 60 (2009).
128. Xiong, Y. et al. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. Journal of the American Chemical Society 127, 17118 (2005).
129. Xiong, Y. et al. Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions. Langmuir 22, 8563 (2006).
130. Li, H. et al. Self-catalytic Synthesis, Structures, and Properties of High-Quality Tetrapod-Shaped ZnO Nanostructures. Crystal Growth & Design 9, 1863 (2009).
131. Lin, D., Wu, H., Zhang, R. & Pan, W. Enhanced Photocatalysis of Electrospun Ag−ZnO Heterostructured Nanofibers. Chemistry of Materials 21, 3479 (2009).
132. Ren, C. et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. Journal of Hazardous Materials 182, 123 (2010).
133. Lu, W., Gao, S. & Wang, J. One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance. The Journal of Physical Chemistry C 112, 16792 (2008).
134. Xie, W. et al. Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. Journal of Photochemistry and Photobiology A: Chemistry 216, 149 (2010).
135. Lee, Y., Ruby, D. S., Peters, D. W., McKenzie, B. B. & Hsu, J. W. P. ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells. Nano Letter 8, 1501 (2008).
136. Lu, Y. C. & Chou, K. S. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology 21, 215707 (2010)..
137. Liao, Z. et al. Surface effects on photoluminescence of single ZnO nanowires. Physics Letters A 372, 4505 (2008).
138. Greene, L. E. et al. General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds. Nano Letter 5, 1231 (2005).
139. Joo, J. H., Greenberg, K. J., Baram, M., Clarke, D. R. & Hu, E. L. Aqueous Epitaxial Growth of ZnO on Single Crystalline Au Microplates. Crystal Growth & Design 13, 986 (2013).
140. Gu, C. et al. Growth and Photocatalytic Activity of Dendrite-like ZnO@Ag Heterostructure Nanocrystals. Crystal Growth & Design 9, 3278 (2009).
141. Sahu, R. K. et al. Stabilization of intrinsic defects at high temperatures in ZnO nanoparticles by Ag modification. Journal of Colloid and Interface Science 366, 8 (2012).
142. Sun, F., Qiao, X., Tan, F., Wang, W. & Qiu, X. One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. Journal of Materials Science 47, 7262 (2012).
143. Yang, Z. et al. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: Highly photocatalytic property and enhanced photostability. Materials Research Bulletin 46, 1625 (2011).
144. Height, M. J., Prastinis, S. E., Mekasuwandumrong, O. & Praserthdam, P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Applied Catalysis B: Environmental 63, 305 (2005).
145. Liu, T. et al. Dislocated Double-Layer Metal Gratings: An Efficient Unidirectional Coupler. Nano Letter 14, 3848 (2014).
146. Xi, Z., Lu, Y., Yu, W., Wang, P. & Ming, H. Unidirectional surface plasmon launcher: rotating dipole mimicked by optical antennas. J. Opt. 16, 105002 (2014).
147. Huang, X. & Brongersma, M. L. Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett. 13, 5420 (2013).
148. Chen, J., Sun, C., Li, H. & Gong, Q. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. Nanoscale 6, 13487 (2014).
149. Lee, S., Yun, H., Lee, Y. & Lee, B. Switchable surface plasmon dichroic splitter modulated by optical polarization. Laser Photonics Rev. 8, 777 (2014).
150. Govorov, A. O. et al. Gold nanoparticles ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006).
151. George, N. A., George, N. A. Thomas, N. B., Moidu, H. H. & Piyush, K. Optimization of an optical chopper-laser beam arrangement in low-frequency applications. Optik 126, 3628 (2015).
152. Ziyadi, M. et al. Phase-shift-keying and eight-phase-shift-keying data using mapping onto constellation axes. Opt. lett. 40, 4899 (2015).
153. Ishimura, S. & Kukuchi, K. Eight-state trellis-coded optical modulation with signal constellations of four-dimensional M-ary quadrature-amplitude modulation. Optics Express 23, 6692 (2015)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊