跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張永昌
研究生(外文):Chang, Yung Chang
論文名稱:FePd及FePd/IrMn薄膜晶體結構與磁性質之研究
論文名稱(外文):Crystallographic and magnetic properties of FePd and FePd/IrMn films
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Duh, Jenq Gong
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:198
中文關鍵詞:鐵鈀銥錳序化相轉變交換耦合
外文關鍵詞:FePdIrMnordering transformationexchange coupling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
由於材料本身高的磁晶異向能與應用於MRAM時低的臨界電流,序化L10相的鐵鈀薄膜一直被視為重要的高密度磁紀錄媒體與自旋電子元件應用的選擇替代性材料。本論文採用鐵鈀/銥錳雙層膜材料系統研究此系統基礎的交換耦合效應,以期將來能將此材料系統應用於硬碟讀取頭與MRAM等領域。論文分為三個部分進行探討,包括於玻璃基板上成長鐵鈀薄膜、於氧化鎂單晶基板上成長鐵鈀薄膜、鐵鈀/銥錳雙層膜系統。首先,鐵鈀薄膜成長於玻璃基板上,當鈀含量(51 at.%)的多晶鐵鈀薄膜成長溫度由400oC上升到800oC時,其磁性質由軟磁轉變為硬磁,而序化度由0增加到接近1。在800oC成長的鐵鈀薄膜具有兩相共存(L10+A1)的結構與島狀的表面形貌,其矯頑磁力高達4.1kOe,飽和磁化量為814emu/cm3。就薄膜成分比例來說,鐵鈀薄膜鈀含量(<47 at.%)表現出非序化相結構與軟磁特性;薄膜鈀含量(56 at.%)的試片具單一L10相與硬磁特性;薄膜鈀含量(62 at.%)結晶結構由L10相轉變為L12相,伴隨著軟磁特性。為了得到良好垂直磁異向性,將鐵鈀薄膜成長於氧化鎂基板上,隨著成長溫度從300oC到550oC的變化,薄膜鐵含量(54 at.%)的磁性質從水平異向性轉變到垂直異向性,其序化度也由0.33增加到0.84。在薄膜成分比例來說,薄膜鐵含量介於46~54 at.%均表現出垂直磁異向性。而本質矯頑磁場與鐵鈀薄膜的L10序化程度呈現強烈關聯性,在薄膜鐵含量(54 at.%)薄膜中可得到最高序化度0.84對應到最高的本質矯頑磁場20kOe。最後,奠基於前面兩部分的研究基礎,將鐵鈀/銥錳雙層膜成長於氧化鎂基板上,在成長單層銥錳薄膜於基板時,當沉積溫度從400oC依序上升到700oC,L12相銥錳薄膜的序化度由0.17增加到0.81,但表面粗糙度也逐步上升。鐵鈀/銥錳系統的交換耦合場在底層銥錳薄膜為非序化相時為22Oe,在銥錳層漸序化成L12相的過程中遞減為0。具補償界面的銥錳層表面粗糙度上升並沒有增加鐵鈀薄膜的交換耦合場,反鐵磁性結構銥錳層的相變化(由A1到L12)才是鐵鈀交換耦合場變化的原因。
Due to its large magnetocrystalline anisotropy energy and low critical current density in MRAM, L10 ordered FePd thin films with perpendicular magnetic anisotropy have been probed as candidates in applications of dense magnetic recording media, spintronics devices, etc. FePd/IrMn bilayer system was used to investigate its fundamental exchange coupling effect and applications of hard disk and MRAM. First of all, FePd films were deposited on glass substrates to find out the influences of in-situ annealing temperatures and film stoichiometry on L10 phase transformation and magnetic properties of FePd thin films. When annealing temperature was raised from 400 to 800oC, the magnetic behavior changed from magnetically soft to hard for the polycrystalline FePd films with Pd contents of 51 at.%, while the ordering parameter S increased from 0 to near unity. The 800oC-deposited FePd film has two-phase (L10 + A1) structure and island-like morphology, which exhibited a coercivity of 4.1 kOe and saturated magnetization of 814 emu/cm3. In terms of the stoichiometric effect, the results showed disordered structure and soft magnetic properties for the FePd films with Pd concentration ≦ 47 at.%. For the samples with Pd content of 56 at.%, the single L10 phase with magnetically hard properties was obtained. With increasing Pd contents up to 62 at.% , the crystal structure changed from L10 to L12 phase, as accompanied with magnetic softening. Second, FePd films were grown on MgO(001) substrates to expect better perpendicular magnetic anisotropy. With substrate temperature increasing from 300 to 550oC, the magnetic behavior altered from longitudinal to perpendicular anisotropy for epitaxial (001) FePd films with 54 at. % Fe, whereas ordering parameter S increased from 0.33 to 0.84. With regard to the stoichiometric effect, XRD tests with a synchrotron radiation source showed L10 epitaxial structures of the FePd films with Fe concentrations over a wide range 40–54 at. %, unlike the equilibrium phase diagram of FePd bulk. Magnetic results revealed the presence of a perpendicular anisotropy for epitaxial FePd films with Fe contents from 46 to 54 at.%. The measured Hk was correlated with the L10 ordering of the FePd films. The greatest S, 0.84, and Hk, 20 kOe, were obtained for a film with 54 at. % Fe. The results of this work indicated that a Fe-rich FePd film might be preferable for applications that require a large magnetic anisotropy. Finally, two series of samples of single-layer IrMn and IrMn/FePd films were grown on a singlecrystal MgO substrate at different IrMn deposition temperatures (Ts=300–700 oC). XRD characterization using a synchrotron radiation source revealed that the L12 ordered IrMn phases were obtained in the epitaxial (001) IrMn films with Ts≧400oC. As Ts was raised from 400 to 700oC, the ordering parameter of L12 phase increased from 0.17 to 0.81 as surface roughness increased. The exchange bias behavior of the IrMn/FePd bilayer films with an Heb value of 22 Oe was obtained when the FePd layer was deposited on the disordered IrMn layer. Increasing the L12 ordering of IrMn layers gradually reduced the Heb values to 0 Oe. The increased surface roughness of the IrMn layers with compensated surface spins did not enhance the Heb of the FePd. The change of the antiferromagnetic structure of IrMn layers from the A1 phase to the L12 phase was responsible for the evolution of Heb of FePd.
目錄
致謝 ..................................................... 2
摘要 ..................................................... 4
Abstract ................................................ 5
表目錄 ................................................... 9
圖目錄 ................................................... 10
符號說明 ................................................. 14
第一章 緒論 .............................................. 15
1-1 前言: .............................................. 15
1-2 超順磁效應的磁紀錄密度極限: ............................ 18
1-3 鐵磁/反鐵磁薄膜介面的交換磁異向性 ........................ 23
1-4 背景與研究動機 ........................................ 30
第二章 理論基礎與文獻回顧 ................................... 33
2-1 Fe-Pd合金之結構與磁性 ................................. 33
2-2 序化–非序化相轉變 ..................................... 35
2-2-1 序化度之定義 ....................................... 35
2-2-2 序化相依結構改變之分類 ............................... 36
2-2-3 序化相依熱力學反應之分類 .............................. 38
2-3 L10系合金薄膜之文獻回顧 ................................ 40
2-3-1 非序化-序化溫度的主要影響因素 ......................... 42
2-3-2 誘導L10系合金薄膜(001)優選方位 ....................... 71
2-4 交換磁異向性文獻回顧 ................................... 83
2-4-1交換磁異向性的應用回顧 ................................ 84
2-4-2 反鐵磁性層材料系統 .................................. 96
2-4-3 理論機制發展 ....................................... 101
第三章 實驗方法 .......................................... 106
3-1 實驗流程 ............................................ 106
3-2 實驗設備與試片製備 .................................... 106
3-2-1 真空濺鍍系統 ....................................... 106
3-2-2 靶材 ............................................. 108
3-2-3 基板選用及清洗 ..................................... 108
3-2-4 薄膜製備與熱處理 ................................... 110
3-2-5 場退火處理(field-cooling) ......................... 112
3-2-6 實驗設計 .......................................... 113
3-3 分析設備與方法 ....................................... 115
3-3-1 成份分析 .......................................... 115
3-3-2 鍍率量測 .......................................... 116
3-3-3 晶體結構分析 ....................................... 117
3-3-4 X光反射率分析 ...................................... 119
3-3-5 序化度計算 ........................................ 122
3-3-6 晶粒(域)大小計算 ................................... 125
3-3-7 搖擺曲線分析 ....................................... 127
3-3-8 低掠角繞射 ........................................ 128
3-3-9 表面形貌分析 ....................................... 130
3-3-10 表面粗糙度分析 .................................... 131
3-3-11 微結構分析 ....................................... 134
3-3-12 磁性質量測 ....................................... 135
第四章 結果與討論 ........................................ 136
4-1在玻璃基板上成長鐵鈀薄膜 ............................... 136
4-1-1成長溫度對於鐵鈀薄膜的影響............................. 137
4-1-2 成分比例對於鐵鈀薄膜的影響 ........................... 143
4-2在氧化鎂(MgO)基板上成長鐵鈀薄膜 ......................... 149
4-2-1成長溫度對於鐵鈀薄膜的影響............................. 151
4-2-2化學計量比對於鐵鈀薄膜的影響 .......................... 154
4-3銥錳/鐵鈀雙層膜的交換磁異向性 ........................... 160
4-3-1於氧化鎂基板上成長銥錳薄膜 ............................ 162
4-3-2於氧化鎂基板上成長銥錳/鐵鈀雙層膜 ...................... 167
第五章 結論 ............................................. 172
未來展望 ................................................ 175
參考文獻 ................................................ 176
相關著作 ................................................ 198
[1] M. Andreas, T. Kentaro, T. M. David, A. Manfred, S. Yoshiaki, I. Yoshihiro, et al., "Magnetic recording: advancing into the future," Journal of Physics D: Applied Physics, vol. 35, p. R157, 2002.
[2] R. E. Fontana, S. R. Hetzler, and G. Decad, "Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications," IEEE Transactions on Magnetics, vol. 48, pp. 1692-1696, 2012.
[3] Z. Z. Bandic and R. H. Victora, "Advances in Magnetic Data Storage Technologies," Proceedings of the IEEE, vol. 96, pp. 1749-1753, 2008.
[4] D. Weller, A. Moser, L. Folks, M. E. Best, L. Wen, M. F. Toney, et al., "High Ku materials approach to 100 Gbits/in2," IEEE Transactions on Magnetics, vol. 36, pp. 10-15, 2000.
[5] J. S. Yang, "Principles of perpendicular Magnetic Recording," 台灣資訊儲存協會會刊, p. 940403, 2005.
[6] D. Weller and T. McDaniel, Media for Extremely High Density Recording: Springer, 2006.
[7] J. P. Wang, Z. S. Shan, S. N. Piramanayagam, and T. C. Chong, "Anti-ferromagnetic coupling effects on energy barrier and reversal properties of recording media," IEEE Transactions on Magnetics, vol. 37, pp. 1445-1448, 2001.
[8] E. N. Abarra, B. Ramamuthy, A. Inomata, A. Ajan, and I. Okamoto, "Synthetic Ferrimagnetic Media," FUJITSU Sci. Tech., vol. 37, pp. 145-154, 2001.
[9] I. Okamoto, "Advanced Technologies in Synthetic Ferrimagnetic Media," FUJITSU Sci. Tech., vol. 42, pp. 131-138, 2006.
[10] J.-G. Zhu and Y. Tang, "A medium microstructure for high area density perpendicular recording," Journal of Applied Physics, vol. 99, p. 08Q903, 2006.
[11] J. Nogués and I. K. Schuller, "Exchange Bias," Journal of Magnetism and Magnetic Materials vol. 192, pp. 203-232, 1999.
[12] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, et al., "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices," Physical Review Letters, vol. 61, pp. 2472-2475, 11/21/ 1988.
[13] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B, vol. 39, pp. 4828-4830, 03/01/ 1989.
[14] 江文中, 李尚凡, "2007諾貝爾物理獎-輕鬆看巨磁阻" 物理雙月刊, vol. 30, pp. 116-121, 2008.
[15] 張慶瑞, 蘇又新, "巨磁阻物理之歷史與展望" 物理雙月刊, vol. 30, pp. 110-115, 2008.
[16] 陳穗斌, 張慶瑞, "自旋相關碰撞之電子傳輸描" 物理雙月刊, vol. 26, pp. 577-580, 2004.
[17] https://www-ssrl.slac.stanford.edu/stohr/magneticexchange.htm
[18] https://www.nims.go.jp/apfim/GMR.html
[19] 詹丁山, 劉如熹, "自旋電子學之基石:簡介磁電阻與半金屬材料之發展與應用" 化學, vol. 66, pp. 37-47, 2008.
[20] 胡裕民, 黃榮俊, "鐵磁反鐵磁金屬薄膜之間的交換磁異向性" 物理雙月刊, vol. 22, pp. 552-560, 2000.
[21] W. H. Meiklejohn and C. P. Bean, "New Magnetic Anisotropy," Physical Review, vol. 102, pp. 1413-1414, 1956.
[22] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, "Giant magnetoresistive in soft ferromagnetic multilayers," Physical Review B, vol. 43, pp. 1297-1300, 1991.
[23] M. Lederman, "Performance of metallic antiferromagnets for use in spin-valve read sensors," IEEE Transactions on Magnetics, vol. 35, pp. 794-799, 1999.
[24] A. J. Devasahayam and M. H. Kryder, "Biasing materials for spin-valve read heads," IEEE Transactions on Magnetics, vol. 35, pp. 649-654, 1999.
[25] K. Watanabe, T. Kaneko, and S. Ohnuma, "Temperature Dependence of Magnetic Properties in Co-Pt, Fe-Pt and Cr-Pt Permanent Magnet Alloys," Materials Transactions, JIM, vol. 35, pp. 136-141, 1994.
[26] T. Cohen-Karni, J. J. Vlassak, and Y. Sugimura, "Fe-Pd alloy ferromagnetic shape memory thin films," Technion—Israel Institute of Technology, Harvard University, 2003.
[27] D. E. Laughlin, K. Srinivasan, M. Tanase, and L. Wang, "Crystallographic aspects of L10 magnetic materials," Scripta Materialia, vol. 53, pp. 383-388, 2005.
[28] Y. O. Kvashnin, S. Khmelevskyi, J. Kudrnovský, A. N. Yaresko, L. Genovese, and P. Bruno, "Noncollinear magnetic ordering in compressed FePd3 ordered alloy: A first principles study," Physical Review B, vol. 86, p. 174429, 2012.
[29] V. G. Myagkov, V. S. Zhigalov, B. A. Belyaev, L. E. Bykova, L. A. Solovyov, and G. N. Bondarenko, "Solid-state synthesis and magnetic properties of epitaxial FePd3(0 0 1) films," Journal of Magnetism and Magnetic Materials, vol. 324, pp. 1571-1574, 2012.
[30] B. E. Warren, X-ray Diffraction, Dover, New York, 1990.
[31] S. D. Willoughby, J. M. MacLaren, T. Ohkubo, S. Jeong, M. McHenry, D. E. Laughlin, et al., "Electronic, magnetic, and structural properties of L10 FePtxPd1−x alloys," Journal of Applied Physics, vol. 91, pp. 8822-8824, 2002.
[32] J. Aboaf, T. McGuire, S. Herd, and E. Klokholm, "Magnetic, transport, and structural properties of iron-platinum thin films," IEEE Transactions on Magnetics, vol. 20, pp. 1642-1644, 1984.
[33] B. M. Lairson, M. R. Visokay, R. Sinclair, and B. M. Clemens, "Epitaxial PtFe(001) thin films on MgO(001) with perpendicular magnetic anisotropy," Applied Physics Letters, vol. 62, pp. 639-641, 1993.
[34] K. R. Coffey, M. A. Parker, and J. K. Howard, "High anisotropy L10 thin films for longitudinal recording," IEEE Transactions on Magnetics, vol. 31, pp. 2737-2739, 1995.
[35] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices," Science, vol. 287, pp. 1989-1992, 2000.
[36] O. Gutfleisch, J. Lyubina, K. H. Müller, and L. Schultz, "FePt Hard Magnets," Advanced Engineering Materials, vol. 7, pp. 208-212, 2005.
[37] A. Cebollada, R. Farrow, M. Toney, and H. Nalwa, Magnetic nanostructures, 2002.
[38] M. Kohda, S. Iimori, R. Ohsugi, H. Naganuma, T. Miyazaki, Y. Ando, et al., "Structural and magnetic properties of L10-FePd/MgO films on GaAs and InP lattice mismatched substrates," Applied Physics Letters, vol. 102, p. 102411, 2013.
[39] J. Ko, T. Bae, and J. Hong, "Effect of a change in thickness on the structural and perpendicular magnetic properties of L10 ordered FePd ultra-thin films with (001) texture," Journal of Applied Physics, vol. 112, p. 113919, 2012.
[40] M. Ohtake, S. Ouchi, F. Kirino, and M. Futamoto, "L10 ordered phase formation in FePt, FePd, CoPt, and CoPd alloy thin films epitaxially grown on MgO(001) single-crystal substrates," Journal of Applied Physics, vol. 111, p. 07A708, 2012.
[41] A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, et al., "Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment," Physical Review B, vol. 50, pp. 3419-3422, 1994.
[42] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, "Preparation and magnetic properties of highly coercive FePt films," Applied Physics Letters, vol. 81, p. 1050, 2002.
[43] M. R. Visokay and R. Sinclair, "Direct formation of ordered CoPt and FePt compound thin films by sputtering," Applied Physics Letters, vol. 66, p. 1692, 1995.
[44] V. Gehanno, A. Marty, B. Gilles, and Y. Samson, "Magnetic domains in epitaxial ordered FePd(001) thin films with perpendicular magnetic anisotropy," Physical Review B, vol. 55, pp. 12552-12555, 1997.
[45] M. Ohtake, O. Yabuhara, K. Tobari, F. Kirino, and M. Futamoto, "Structure and magnetic properties of FePd-alloy epitaxial thin films grown on MgO single-crystal substrates with different orientations," Journal of Applied Physics, vol. 109, p. 07B757, 2011.
[46] O. Ersen, V. Parasote, V. Pierron-Bohnes, M. C. Cadeville, and C. Ulhaq-Bouillet, "Growth conditions to optimize chemical order and magnetic properties in molecular-beam-epitaxy-grown CoPt/MgO(001) thin films," Journal of Applied Physics, vol. 93, p. 2987, 2003.
[47] T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, and K. Hono, "L10 ordering of off-stoichiometric FePt (001) thin films at reduced temperature," Applied Physics Letters, vol. 82, p. 2461, 2003.
[48] K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, et al., "On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films," Journal of Applied Physics, vol. 98, p. 033904, 2005.
[49] M. F. Toney, W.-Y. Lee, J. A. Hedstrom, and A. Kellock, "Thickness and growth temperature dependence of structure and magnetism in FePt thin films," Journal of Applied Physics, vol. 93, p. 9902, 2003.
[50] C. Clavero, J. M. García-Martín, J. L. Costa Krämer, G. Armelles, A. Cebollada, Y. Huttel, et al., "Temperature and thickness dependence at the onset of perpendicular magnetic anisotropy in FePd thin films sputtered onMgO(001)," Physical Review B, vol. 73, 2006.
[51] S. N. Hsiao, F. T. Yuan, H. W. Chang, H. W. Huang, S. K. Chen, and H. Y. Lee, "Effect of initial stress/strain state on order-disorder transformation of FePt thin films," Applied Physics Letters, vol. 94, p. 232505, 2009.
[52] G. R. Trichy, J. Narayan, and H. Zhou, "L10 ordered epitaxial FePt (001) thin films on TiN∕Si (100) by pulsed laser deposition," Applied Physics Letters, vol. 89, p. 132502, 2006.
[53] A. Hotta, T. Ono, M. Hatayama, K. Tsumura, N. Kikuchi, S. Okamoto, et al., "Magnetic anisotropy and order structure of L10-FePt(001) single-crystal films grown epitaxially on (001) planes of MgO, SrTiO3, and MgAl2O4 substrates," Journal of Applied Physics, vol. 115, p. 17B712, 2014.
[54] D. Suzuki, M. Ohtake, F. Kirino, and M. Futamoto, "Ordered phase formation in Co50Pt50-alloy single-layer and Co/Pt multilayer films epitaxially grown on MgO(111) substrates," Journal of Applied Physics, vol. 115, p. 17C120, 2014.
[55] A. Cebollada, P. Caro, J. L. Menéndez, F. Briones, D. Garcı́a, A. Hernando, et al., "Structure and magnetic anisotropies of epitaxial FePd (0 0 1) and (1 1 0) alloys," Journal of Magnetism and Magnetic Materials, vol. 203, pp. 162-164, 1999.
[56] P. Caro, A. Cebollada, F. Briones, and M. F. Toney, "Structure and chemical order in sputtered epitaxial FePd(0 0 1) alloys," Journal of Crystal Growth, vol. 187, pp. 426-434, 1998.
[57] F. Bonell, S. Murakami, Y. Shiota, T. Nozaki, T. Shinjo, and Y. Suzuki, "Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films," Applied Physics Letters, vol. 98, p. 232510, 2011.
[58] D. H. Wei and Y. D. Yao, "Controlling microstructure and magnetization process of FePd (001) films by staged thermal modification," Applied Physics Letters, vol. 95, p. 172503, 2009.
[59] C. Clavero, J. M. García-Martín, G. Armelles, A. Cebollada, Y. Huttel, S. Estradé, et al., "Perpendicular magnetic anisotropy in chemically disordered FePd–FeV(100) alloy thin films," Journal of Applied Physics, vol. 99, p. 073903, 2006.
[60] C. Kooy and U. Enz, "Experimental and theoretical study of the domain configuration in thin layers of BaFe12O19," Philips Res. Rep, vol. 15, p. 181, 1960.
[61] W. F. Druyvesteyn, J. W. F. Dorleijn, and P. J. Rijnierse, "Analysis of a method for measuring the magnetocrystalline anisotropy of bubble materials," Journal of Applied Physics, vol. 44, pp. 2397-2400, 1973.
[62] B. W. Roberts, "X-ray measurement of order in CuAu," Acta Metallurgica, vol. 2, pp. 597-603, 1954.
[63] T. Schied, A. Lotnyk, C. Zamponi, L. Kienle, J. Buschbeck, M. Weisheit, et al., "Fe–Pd thin films as a model system for self-organized exchange coupled nanomagnets," Journal of Applied Physics, vol. 108, p. 033902, 2010.
[64] P. Kamp, A. Marty, B. Gilles, R. Hoffmann, S. Marchesini, M. Belakhovsky, et al., "Correlation of spin and orbital anisotropies with chemical order in FePd alloy films using magnetic circular x-ray dichroism," Physical Review B, vol. 59, pp. 1105-1112, 1999.
[65] T. Shima, K. Takanashi, Y. K. Takahashi, K. Hono, G. Q. Li, and S. Ishio, "High coercivity and magnetic domain observation in epitaxially grown particulate FePt thin films," Journal of Magnetism and Magnetic Materials, vol. 266, pp. 171-177, 2003.
[66] P. Rasmussen, X. Rui, and J. E. Shield, "Texture formation in FePt thin films via thermal stress management," Applied Physics Letters, vol. 86, p. 191915, 2005.
[67] J.-S. Kim, Y.-M. Koo, B.-J. Lee, and S.-R. Lee, "The origin of (001) texture evolution in FePt thin films on amorphous substrates," Journal of Applied Physics, vol. 99, p. 053906, 2006.
[68] J.-S. Kim, Y.-M. Koo, and N. Shin, "The effect of residual strain on (001) texture evolution in FePt thin film during postannealing," Journal of Applied Physics, vol. 100, p. 093909, 2006.
[69] C. P. Luo, S. H. Liou, L. Gao, Y. Liu, and D. J. Sellmyer, "Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy," Applied Physics Letters, vol. 77, pp. 2225-2227, 2000.
[70] T. Ichitsubo, S. Tojo, T. Uchihara, E. Matsubara, A. Fujita, K. Takahashi, et al., "Mechanism of c-axis orientation of L10 FePt in nanostructured FePt/B2O3 thin films," Physical Review B, vol. 77, p. 094114, 2008.
[71] J. K. Mei, F. T. Yuan, W. M. Liao, Y. D. Yao, H. M. Lin, H. Y. Lee, et al., "Effect of initial stress/strain state on formation of (001) preferred orientation in L10 FePt thin films," Journal of Applied Physics, vol. 109, p. 07A737, 2011.
[72] S. N. Hsiao, S. H. Liu, S. K. Chen, F. T. Yuan, and H. Y. Lee, "Effect of intrinsic tensile stress on (001) orientation in L10 FePt thin films on glass substrates," Journal of Applied Physics, vol. 111, p. 07A702, 2012.
[73] S. N. Hsiao, S. H. Liu, S. K. Chen, T. S. Chin, and H. Y. Lee, "Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films," Applied Physics Letters, vol. 100, p. 261909, 2012.
[74] P. Caro, A. Cebollada, D. Ravelosona, F. Briones, D. Garcı́a, M. Vázquez, et al., "The influence of the Pt buffer layer on the perpendicular magnetic anisotropy in epitaxial FePd(001) ordered alloys grown by sputtering," Journal of Applied Physics, vol. 81, pp. 5050-5052, 1997.
[75] J. L. Menéndez, P. Caro, and A. Cebollada, "Epitaxy, strain and morphology of low Ar pressure sputtered Pt thin films," Journal of Crystal Growth, vol. 192, pp. 164-174, 8/15/ 1998.
[76] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, S. Hom, G. R. Harp, et al., "Growth temperature dependence of long‐range alloy order and magnetic properties of epitaxial FePt films," Applied Physics Letters, vol. 69, pp. 1166-1168, 1996.
[77] A. Gupta, H. Wang, A. Kvit, G. Duscher, and J. Narayan, "Effect of microstructure on diffusion of copper in TiN films," Journal of Applied Physics, vol. 93, pp. 5210-5214, 2003.
[78] J. Narayan and B. C. Larson, "Domain epitaxy: A unified paradigm for thin film growth," Journal of Applied Physics, vol. 93, pp. 278-285, 2003.
[79] F. Casoli, F. Albertini, L. Pareti, S. Fabbrici, L. Nasi, C. Bocchi, et al., "Growth and characterization of epitaxial Fe-Pt films," IEEE Transactions on Magnetics, vol. 41, pp. 3223-3225, 2005.
[80] Y. K. Takahashi, K. Hono, T. Shima, and K. Takanashi, "Microstructure and magnetic properties of FePt thin films epitaxially grown on MgO (0 0 1) substrates," Journal of Magnetism and Magnetic Materials, vol. 267, pp. 248-255, 2003.
[81] Y. Kota and A. Sakuma, "Relationship between Magnetocrystalline Anisotropy and Orbital Magnetic Moment in L10-Type Ordered and Disordered Alloys," Journal of the Physical Society of Japan, vol. 81, p. 084705, 2012.
[82] F. Casoli, L. Nasi, F. Albertini, S. Fabbrici, C. Bocchi, F. Germini, et al., "Morphology evolution and magnetic properties improvement in FePt epitaxial films by in situ annealing after growth," Journal of Applied Physics, vol. 103, p. 043912, 2008.
[83] G. R. Trichy, D. Chakraborti, J. Narayan, and J. T. Prater, "Structure-magnetic property correlations in the epitaxial FePt system," Applied Physics Letters, vol. 92, p. 102504, 2008.
[84] A. s. Kovács, K. Sato, and Y. Hirotsu, "High-resolution transmission electron microscopy analysis of L10 ordering process in Fe/Pd thin layers," Journal of Applied Physics, vol. 102, p. 123512, 2007.
[85] H. Ho, D. E. Laughlin, and J. G. Zhu, "Effect of RuAl and TiN Underlayers on Grain Morphology, Ordering, and Magnetic Properties of FePt-SiOx Thin Films," IEEE Transactions on Magnetics, vol. 49, pp. 3663-3666, 2013.
[86] S. D. Granz and M. H. Kryder, "Granular L10 FePt (0 0 1) thin films for Heat Assisted Magnetic Recording," Journal of Magnetism and Magnetic Materials, vol. 324, pp. 287-294, 2012.
[87] S. C. Chen, T. H. Sun, C. L. Shen, W. C. Peng, C. D. Chen, P. C. Kuo, et al., "Microstructure and Magnetic Properties of In-Situ Deposited L10 FePt Films on MgO(200) Films of Varying Thicknesses," IEEE Transactions on Magnetics, vol. 47, pp. 517-520, 2011.
[88] Y. Xu, J. S. Chen, and J. P. Wang, "In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100−xRux underlayer at low substrate temperature," Applied Physics Letters, vol. 80, pp. 3325-3327, 2002.
[89] J. S. Chen, B. C. Lim, Y. F. Ding, and G. M. Chow, "Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording," Journal of Magnetism and Magnetic Materials, vol. 303, pp. 309-317, 2006.
[90] K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, "Composite nanogranular films of FePt-MgO with (001) orientation onto glass substrates," Applied Physics Letters, vol. 84, pp. 404-406, 2004.
[91] B. S. D. C. S. Varaprasad, Y. K. Takahashi, A. Ajan, and K. Hono, "Electrically conductive (Mg0.2Ti0.8)O underlayer to grow FePt-based perpendicular recording media on glass substrates," Journal of Applied Physics, vol. 113, p. 203907, 2013.
[92] D. Halley, B. Gilles, P. Bayle-Guillemaud, R. Arenal, A. Marty, G. Patrat, et al., "Chemical ordering in magnetic FePd/Pd(001)epitaxial thin films induced by annealing," Physical Review B, vol. 70, 2004.
[93] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, "Electrical spin injection in a ferromagnetic semiconductor heterostructure," Nature, vol. 402, pp. 790-792, 1999.
[94] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, et al., "Electrical detection of spin transport in lateral ferromagnet-semiconductor devices," Nat Phys, vol. 3, pp. 197-202, 2007.
[95] W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photonics Technology Letters, vol. 11, pp. 1012-1014, 1999.
[96] S. Hiromasa and N. Yoshiaki, "First Demonstration of TE Mode Nonreciprocal Propagation in an InGaAsP/InP Active Waveguide for an Integratable Optical Isolator," Japanese Journal of Applied Physics, vol. 43, p. L1561, 2004.
[97] K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, "(001) oriented FePt–Ag composite nanogranular films on amorphous substrate," Applied Physics Letters, vol. 82, pp. 3284-3286, 2003.
[98] H. Zeng, M. L. Yan, N. Powers, and D. J. Sellmyer, "Orientation-controlled nonepitaxial L10 CoPt and FePt films," Applied Physics Letters, vol. 80, pp. 2350-2352, 2002.
[99] Y.-C. Wu, L.-W. Wang, and C.-H. Lai, "Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers," Applied Physics Letters, vol. 91, p. 072502, 2007.
[100] K. Sato and Y. Hirotsu, "Structure and magnetic property changes of epitaxially grown L10-FePd isolated nanoparticles on annealing," Journal of Applied Physics, vol. 93, p. 6291, 2003.
[101] T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, and W. A. Soffa, "Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets," Scripta Metallurgica et Materialia, vol. 33, pp. 1793-1805, 1995.
[102] Y. K. Takahashi, T. O. Seki, K. Hono, T. Shima, and K. Takanashi, "Microstructure and magnetic properties of FePt and Fe/FePt polycrystalline films with high coercivity," Journal of Applied Physics, vol. 96, p. 475, 2004.
[103] H. Y. Wang, "Improvement in hard magnetic properties of FePt films by N addition," Journal of Applied Physics, vol. 95, p. 2564, 2004.
[104] M. J. Sablik, "Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels," Journal of Applied Physics, vol. 89, p. 5610, 2001.
[105] J. P. Attané, Y. Samson, A. Marty, D. Halley, and C. Beigné, "Domain wall pinning on strain relaxation defects in FePt(001)/Pt thin films," Applied Physics Letters, vol. 79, p. 794, 2001.
[106] E. Menendez, J. Demeter, J. Van Eyken, P. Nawrocki, E. Jedryka, M. Wojcik, et al., "Improving the magnetic properties of Co-CoO systems by designed oxygen implantation profiles," ACS Appl Mater Interfaces, vol. 5, pp. 4320-7, 2013.
[107] C. H. Hsiao, Y. D. Yao, S. C. Lo, H. W. Chang, and C. Ouyang, "Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films," Applied Physics Letters, vol. 107, p. 142407, 2015.
[108] W. H. Meiklejohn, "Exchange Anisotropy—A Review," Journal of Applied Physics, vol. 33, pp. 1328-1335, 1962.
[109] A. E. Berkowitz and K. Takano, "Exchange anisotropy — a review," Journal of Magnetism and Magnetic Materials, vol. 200, pp. 552-570, 1999.
[110] E. Wohlfarth, "Hard magnetic materials," Advances in physics, vol. 8, pp. 87-224, 1959.
[111] F. S. Luborsky, Elector-Technology, p. 107, 1962.
[112] M. Ohkoshi, K. Tamari, M. Harada, S. Honda, and T. Kusuda, "Microstructure and Exchange Anisotropy of Co-CoO Sputtered Films with Perpendicular Magnetization," IEEE Translation Journal on Magnetics in Japan, vol. 1, pp. 37-38, 1985.
[113] A. A. Glazer, A. P. Potapov, and R. I. Tagirov, "Thermographic Recording on a Manganese-permalloy Film with Exchange Anisotropy," Soviet Journal of Experimental and Theoretical Physics Letters, vol. 15, p. 259, 1972.
[114] G. L. Bona, F. Meier, H. C. Siegmann, and R. J. Gambino, "Unidirectional anisotropy in surface magnetism of amorphous GdCo," Applied Physics Letters, vol. 52, pp. 166-168, 1988.
[115] S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, "Magnetic properties of ultrafine Co particles," IEEE Transactions on Magnetics, vol. 28, pp. 3174-3176, 1992.
[116] V. Papaefthymiou, A. Kostikas, A. Simopoulos, D. Niarchos, S. Gangopadyay, G. C. Hadjipanayis, et al., "Magnetic hysteresis and Mössbauer studies in ultrafine iron particles," Journal of Applied Physics, vol. 67, pp. 4487-4489, 1990.
[117] W. Qin-tang, P. Guo-hong, and S. Yun-xi, "Origins of the perpendicular magnetic anisotropy of reactive evaporated Co-CoO thin film," Journal of Magnetism and Magnetic Materials, vol. 78, pp. 190-194, 1989.
[118] K. Hemmes and T. J. A. Popma, "Exchange anisotropy in CoCr films," Journal of Physics D: Applied Physics, vol. 21, p. 228, 1988.
[119] C. Tsang, "Magnetics of small magnetoresistive sensors," Journal of Applied Physics, vol. 55, pp. 2226-2231, 1984.
[120] R. Hempstead, S. Krongelb, and D. Thompson, "Unidirectional anisotropy in nickel-iron films by exchange coupling with antiferromagnetic films," IEEE Transactions on Magnetics, vol. 14, pp. 521-523, 1978.
[121] A. J. Devasahayam, K. R. Mountfield, and M. H. Kryder, "Small track width MR sensors stabilized with NiMn," IEEE Transactions on Magnetics, vol. 33, pp. 2881-2883, 1997.
[122] L. Tsann, G. L. Gorman, and T. Ching, "Antiferromagnetic and hard-magnetic stabilization schemes for magnetoresistive sensors," IEEE Transactions on Magnetics, vol. 32, pp. 3443-3445, 1996.
[123] K. Watanabe, S. Tadokoro, T. Kawabe, M. Fuyama, H. Fukui, and S. Narishige, "Exchange-Biased Magnetoresistive Elements with Oxide Antiferromagnetic Thin Films," Journal of the Magnetics Society of Japan, vol. 18, pp. S1_355-358, 1994.
[124] V. S. Speriosu, J. D. A. Herman, T. Yogi, and I. L. Sanders, "Magnetic thin films in recording technology," IBM J. Res. Dev., vol. 34, pp. 884-902, 1990.
[125] C. Tsang, M. M. Chen, and T. Yogi, "Gigabit-density magnetic recording," Proceedings of the IEEE, vol. 81, pp. 1344-1359, 1993.
[126] W. C. Cain and M. H. Kryder, "Improved bias and stability in dual-exchange-biased unshielded magnetoresistive heads," IEEE Transactions on Magnetics, vol. 26, pp. 2412-2414, 1990.
[127] C. Tsang and R. Fontana, "Fabrication and wafer testing of barber-pole and exchange-biased narrow-track MR sensors," IEEE Transactions on Magnetics, vol. 18, pp. 1149-1151, 1982.
[128] C. Tsang, "Unshielded MR elements with patterned exchange-biasing," in Magnetics Conference, 1989. Digests of INTERMAG '89., International, 1989, pp. EQ10-EQ10.
[129] N. Miyamoto, N. Koyama, K. Mitsuoka, and H. Fukui, "Track Pronle Characteristics of MR Heads with an NiO Domain Control Layer," Journal of the Magnetics Society of Japan, vol. 19, pp. 105-108, 1995.
[130] J. C. S. Kools, "Exchange-biased spin-valves for magnetic storage," IEEE Transactions on Magnetics, vol. 32, pp. 3165-3184, 1996.
[131] D. E. Heim, R. E. Fontana, C. Tsang, V. S. Speriosu, B. A. Gurney, and M. L. Williams, "Design and operation of spin valve sensors," IEEE Transactions on Magnetics, vol. 30, pp. 316-321, 1994.
[132] J. M. Daughton and Y. J. Chen, "GMR materials for low field applications," IEEE Transactions on Magnetics, vol. 29, pp. 2705-2710, 1993.
[133] B. A. Gurney, V. S. Speriosu, D. R. Wilhoit, H. Lefakis, R. E. Fontana, D. E. Heim, et al., "Can spin valves be reliably deposited for magnetic recording applications? (invited)," Journal of Applied Physics, vol. 81, pp. 3998-4003, 1997.
[134] K. M. H. Lenssen, H. W. van Kesteren, T. G. S. M. Rijks, J. C. S. Kools, M. C. de Nooijer, R. Coehoorn, et al., "Giant magnetoresistance and its application in recording heads," Sensors and Actuators A: Physical, vol. 60, pp. 90-97, 1997.
[135] B. Dieny, "Giant magnetoresistance in spin-valve multilayers," Journal of Magnetism and Magnetic Materials, vol. 136, pp. 335-359, 1994.
[136] N. M. Salanskii, V. A. Seredkin, V. A. Burmakin, and A. V. Nabatov, "Stabilization of microdomain configurations in two-layer magnetic films," Journal of Experimental and Theoretical Physics, vol. 38, p. 1011, 1974.
[137] L. Tsan, T. Ching, R. E. Fontana, and J. K. Howard, "Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors," IEEE Transactions on Magnetics, vol. 31, pp. 2585-2590, 1995.
[138] K.-M. H. Lenssen, A. E. M. De Veirman, and J. J. T. M. Donkers, "Inverted spin valves for magnetic heads and sensors," Journal of Applied Physics, vol. 81, pp. 4915-4917, 1997.
[139] N. Smith, A. M. Zeltser, D. L. Yang, and P. V. Koeppe, "Very high sensitivity GMR spin-valve magnetometer," IEEE Transactions on Magnetics, vol. 33, pp. 3385-3387, 1997.
[140] J. L. Leal, N. J. Oliveira, L. M. Rodrigues, A. T. Sousa, and P. P. Freitas, "Unshielded spin-valve sensors exchange-biased by thin TbCo layers," IEEE Transactions on Magnetics, vol. 30, pp. 3831-3833, 1994.
[141] P. P. Freitas, J. L. Leal, L. V. Melo, N. J. Oliveira, L. Rodrigues, and A. T. Sousa, "Spin‐valve sensors exchange‐biased by ultrathin TbCo films," Applied Physics Letters, vol. 65, pp. 493-495, 1994.
[142] M. M. Miller, G. A. Prinz, P. Lubitz, L. Hoines, J. J. Krebs, S. F. Cheng, et al., "Novel absolute linear displacement sensor utilizing giant magnetoresistance elements," Journal of Applied Physics, vol. 81, pp. 4284-4286, 1997.
[143] M. M. Miller, P. Lubitz, G. A. Prinz, J. J. Krebs, A. S. Edelstein, S. F. Cheng, et al., "Development of a high precision absolute linear displacement sensor utilizing GMR spin-valves," IEEE Transactions on Magnetics, vol. 33, pp. 3388-3390, 1997.
[144] L. V. Melo, L. M. Rodrigues, and P. P. Freitas, "Novel spin-valve memory architecture," IEEE Transactions on Magnetics, vol. 33, pp. 3295-3297, 1997.
[145] K. Matsuyama, H. Asada, S. Ikeda, and K. Taniguchi, "Low current magnetic-RAM memory operation with a high sensitive spin valve material," IEEE Transactions on Magnetics, vol. 33, pp. 3283-3285, 1997.
[146] D. D. Tang, P. K. Wang, V. S. Speriosu, S. Le, and K. K. Kung, "Spin-valve RAM cell," IEEE Transactions on Magnetics, vol. 31, pp. 3206-3208, 1995.
[147] 陳立翰, "磁電阻材料及其應用," 磁性技術手冊, 2002, p. 425.
[148] https://siti.blogs.ie.edu/archives/2006/07/mram_la_memoria.php
[149] https://en.wikipedia.org/wiki/Magnetoresistive_random-access_memory
[150] http://www.intechopen.com/books/electronic-properties-of-carbon-nanotubes
[151] J. L. Simonds, "Magnetoelectronics Today and Tomorrow," Physics Today, vol. 48, pp. 26-32, 1995.
[152] W. H. Meiklejohn and C. P. Bean, "New Magnetic Anisotropy," Physical Review, vol. 105, pp. 904-913, 1957.
[153] H.-M. Lin, C. M. Hsu, Y. D. Yao, Y. Y. Cben, T. T. Kuan, F. A. Yang, et al., "Proceedings of the Second International Conference on Nanostructured MaterialsMagnetic study of both nitrided and oxidized CO particles," Nanostructured Materials, vol. 6, pp. 977-980, 1995.
[154] S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, "Effect of exchange anisotropy on the hysteresis behavior of Co particles," Nanostructured Materials, vol. 1, pp. 449-456, 1992.
[155] J. Löffler, H. Van Swygenhoven, W. Wagner, J. Meier, B. Doudin, and J. P. Ansermet, "Influence of grain size and oxidation on the magnetic properties of nanostructured Fe and Ni," Nanostructured Materials, vol. 9, pp. 523-526, 1997.
[156] Y. D. Yao, Y. Y. Chen, C. M. Hsu, H. M. Lin, C. Y. Tung, M. F. Tai, et al., "Proceedings of the Second International Conference on Nanostructured MaterialsThermal and magnetic studies of nanocrystalline Ni," Nanostructured Materials, vol. 6, pp. 933-936, 1995.
[157] Y. D. Yao, Y. Y. Chen, M. F. Tai, D. H. Wang, and H. M. Lin, "International Conference on Nano-Clusters and Granular MaterialsMagnetic anisotropy effects in nano-cluster nickel particles," Materials Science and Engineering: A, vol. 217, pp. 281-285, 1996.
[158] W. H. Meiklejohn, "Exchange Anisotropy in the Iron‐Iron Oxide System," Journal of Applied Physics, vol. 29, pp. 454-455, 1958.
[159] F. J. Darnell, "Exchange Anisotropy in Oxidized Iron-Cobalt Particles," Journal of Applied Physics, vol. 32, pp. S186-S187, 1961.
[160] C. M. Hsu, H. M. Lin, K. R. Tsai, and P. Y. Lee, "High resolution transmission electron microscopy and magnetic properties of nanocrystalline iron particles with oxidized and nitrided surfaces," Journal of Applied Physics, vol. 76, pp. 4793-4799, 1994.
[161] D. S. Geoghegan, P. G. McCormick, and R. Street, "Mechanically alloyed antiferromagnetic-ferromagnetic exchange coupled nano-composites," in Materials Science Forum, 1995, pp. 629-634.
[162] J. H. Greiner, I. M. Croll, and M. Sulich, "Ferromagnetic‐Antiferromagnetic Interaction in Fe‐FeS," Journal of Applied Physics, vol. 31, pp. 2316-2317, 1960.
[163] J. H. Greiner, I. M. Croll, and M. Sulich, "Unidirectional Properties in the Iron-Iron Sulfide System," Journal of Applied Physics, vol. 32, pp. S188-S189, 1961.
[164] T. Iwata, K. Kai, T. Nakamichi, and M. Yamamoto, "Exchange Anisotropy in Single Crystals of Cu-Mn Alloys," Journal of the Physical Society of Japan, vol. 28, pp. 582-589, 1970.
[165] J. S. Kouvel, "The ferromagnetic-antiferromagnetic properties of copper-manganese and silver-manganese alloys," Journal of Physics and Chemistry of Solids, vol. 21, pp. 57-70, 1961.
[166] J. S. Kouvel and C. D. Graham, "Exchange anisotropy in disordered nickel-manganese alloys," Journal of Physics and Chemistry of Solids, vol. 11, pp. 220-225, 1959.
[167] I. A. Campbell, H. Hurdequint, and F. Hippert, "Dzyaloshinsky-Moriya anisotropy in reentrant alloys," Physical Review B, vol. 33, pp. 3540-3542, 1986.
[168] E. V. Shipil, K. Y. Guslienko, and B. Szymanski, "Unidirectional magnetic anisotropy in amorphous Tb-Fe films," IEEE Transactions on Magnetics, vol. 30, pp. 797-799, 1994.
[169] N. Sakamoto, "Magnetic Properties of Cobalt Titanate," Journal of the Physical Society of Japan, vol. 17, pp. 99-102, 1962.
[170] Y. Suzuki, R. B. van Dover, E. M. Gyorgy, J. M. Phillips, V. Korenivski, D. J. Werder, et al., "Magnetic properties of epitaxial ferrite multilayer films," Journal of Applied Physics, vol. 79, pp. 5923-5925, 1996.
[171] N. N. Efimova, S. R. Kufterina, Y. A. Popkov, E. N. Khats' ko, and A. S. Chernyi, "Hysteresis and exchange anisotropy in spin glasses based on dilute Li-Ga spinels," Low Temperature Physics, vol. 22, pp. 824-829, 1996.
[172] T. J. Moran, J. M. Gallego, and I. K. Schuller, "Increased exchange anisotropy due to disorder at permalloy/CoO interfaces," Journal of Applied Physics, vol. 78, pp. 1887-1891, 1995.
[173] A. E. Berkowitz and J. H. Greiner, "Exchange Anisotropy and Strain Interactions in the Ni‐NiO System," Journal of Applied Physics, vol. 36, pp. 3330-3341, 1965.
[174] J. Bransky, I. Bransky, and A. A. Hirsch, "Exchange Anisotropy in Thin Cobalt Films Deposited on a CoO Single‐Crystal Substrate," Journal of Applied Physics, vol. 41, pp. 183-185, 1970.
[175] J. Nogués, T. J. Moran, D. Lederman, I. K. Schuller, and K. V. Rao, "Role of interfacial structure on exchange-biased FeF2-Fe," Physical Review B, vol. 59, pp. 6984-6993, 1999.
[176] C. Schlenker and R. Buder, "Ferromagnetic-antiferromagnetic coupling: NiFe thin films deposited on monocrystalline CoO substrates," Czechoslovak Journal of Physics B, vol. 21, pp. 506-509, 1971.
[177] C. Schlenker and R. Buder, "Ferro-antiferromagnetic coupling between a NiFe thin film and its NiO single crystal substrate," physica status solidi (a), vol. 4, pp. K79-K82, 1971.
[178] A. E. Berkowitz and J. H. Greiner, "Interactions between Ni and NiO," Journal of Applied Physics, vol. 35, pp. 925-926, 1964.
[179] T. J. Moran, J. Nogués, D. Lederman, and I. K. Schuller, "Perpendicular coupling at Fe–FeF2 interfaces," Applied Physics Letters, vol. 72, pp. 617-619, 1998.
[180] T. J. Moran and I. K. Schuller, "Effects of cooling field strength on exchange anisotropy at permalloy/CoO interfaces," Journal of Applied Physics, vol. 79, pp. 5109-5111, 1996.
[181] Y. Iwasaki, M. Takiguchi, and K. Bessho, "Spin-polarized secondary electron microscopy of soft magnetic films on antiferromagnetic substrates," Journal of Applied Physics, vol. 81, pp. 5021-5023, 1997.
[182] M. Saito, Y. Kakaihara, T. Watanabe, and N. Hasegawa, "Exchange coupling between antiferromagnetic PtMn and ferromagnetic film," J. Magn. Soc. Japan, vol. 21, pp. 505-508, 1997.
[183] H. N. Fuke, K. Saito, Y. Kamiguchi, H. Iwasaki, and M. Sahashi, "Spin-valve giant magnetoresistive films with antiferromagnetic Ir-Mn layers," Journal of Applied Physics, vol. 81, pp. 4004-4006, 1997.
[184] J. P. Nozières, S. Jaren, Y. B. Zhang, A. Zeltser, K. Pentek, and V. S. Speriosu, "Blocking temperature distribution and long-term stability of spin-valve structures with Mn-based antiferromagnets," Journal of Applied Physics, vol. 87, pp. 3920-3925, 2000.
[185] P. J. van der Zaag, R. M. Wolf, A. R. Ball, C. Bordel, L. F. Feiner, and R. Jungblut, "A study of the magnitude of exchange biasing in [111] Fe3O4/CoO bilayers," Journal of Magnetism and Magnetic Materials, vol. 148, pp. 346-348, 1995.
[186] P. J. van der Zaag, A. R. Ball, L. F. Feiner, R. M. Wolf, and P. A. A. van der Heijden, "Exchange biasing in MBE grown Fe3O4/CoO bilayers: The antiferromagnetic layer thickness dependence," Journal of Applied Physics, vol. 79, pp. 5103-5105, 1996.
[187] Y. Ijiri, J. A. Borchers, R. W. Erwin, S. H. Lee, P. J. van der Zaag, and R. M. Wolf, "Perpendicular Coupling in Exchange-Biased ${\mathrm{Fe}}_{3}{O}_{4}/\mathrm{CoO}$ Superlattices," Physical Review Letters, vol. 80, pp. 608-611, 1998.
[188] J. X. Shen and M. T. Kief, "Exchange coupling between NiO and NiFe thin films," Journal of Applied Physics, vol. 79, pp. 5008-5010, 1996.
[189] D.-H. Han, J.-G. Zhu, and J. H. Judy, "NiFe/NiO bilayers with high exchange coupling and low coercive fields," Journal of Applied Physics, vol. 81, pp. 4996-4998, 1997.
[190] D.-H. Han, J.-G. Zhu, J. H. Judy, and J. M. Sivertsen, "Texture and surface/interface topological effects on the exchange and coercive fields of NiFe/NiO bilayers," Journal of Applied Physics, vol. 81, pp. 340-343, 1997.
[191] D.-H. Han, J.-G. Zhu, J. H. Judy, and J. M. Sivertsen, "Stress effects on exchange coupling field, coercivity, and uniaxial anisotropy field of NiO/NiFe bilayer thin film for spin valves," Journal of Applied Physics, vol. 81, pp. 4519-4521, 1997.
[192] L. Chih-Huang, H. Matsuyama, R. L. White, and T. C. Anthony, "Anisotropic exchange for NiFe films grown on epitaxial NiO," IEEE Transactions on Magnetics, vol. 31, pp. 2609-2611, 1995.
[193] S.-S. Lee, D.-G. Hwang, C. M. Park, K. A. Lee, and J. R. Rhee, "Effects of crystal texture on exchange anisotropy in NiO spin valves," Journal of Applied Physics, vol. 81, pp. 5298-5300, 1997.
[194] H. D. Chopra, B. J. Hockey, P. J. Chen, R. D. McMichael, and W. F. Egelhoff, "Nanostructure, interfaces, and magnetic properties in giant magnetoresistive NiO-Co-Cu-based spin valves," Journal of Applied Physics, vol. 81, pp. 4017-4019, 1997.
[195] J. Nogués, D. Lederman, T. J. Moran, I. K. Schuller, and K. V. Rao, "Large exchange bias and its connection to interface structure in FeF2–Fe bilayers," Applied Physics Letters, vol. 68, pp. 3186-3188, 1996.
[196] D. Lederman, J. Nogués, and I. K. Schuller, "Exchange anisotropy and the antiferromagnetic surface order parameter," Physical Review B, vol. 56, pp. 2332-2335, 1997.
[197] J. Nogués, D. Lederman, T. J. Moran, and I. K. Schuller, "Positive Exchange Bias in FeF2-Fe Bilayers," Physical Review Letters, vol. 76, pp. 4624-4627, 1996.
[198] I. N. Krivorotov, C. Leighton, J. Nogués, I. K. Schuller, and E. D. Dahlberg, "Relation between exchange anisotropy and magnetization reversal asymmetry inFe-MnF2 bilayers," Physical Review B, vol. 65, p. 100402, 2002.
[199] R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reinders, "Orientational dependence of the exchange biasing in molecular‐beam‐epitaxy‐grown Ni80Fe20/Fe50Mn50 bilayers (invited)," Journal of Applied Physics, vol. 75, pp. 6659-6664, 1994.
[200] C. M. Park, K. I. Min, and K. H. Shin, "Effects of surface topology and texture on exchange anisotropy in NiFe/Cu/NiFe/FeMn spin valves," Journal of Applied Physics, vol. 79, pp. 6228-6230, 1996.
[201] R. Jungblut, R. Coehoorn, M. T. Johnson, C. Sauer, P. J. van der Zaag, A. R. Ball, et al., "Exchange biasing in MBE-grown Ni80Fe20/Fe50Mn50 bilayers," Journal of Magnetism and Magnetic Materials, vol. 148, pp. 300-306, 1995.
[202] A. M. Choukh, "Effect of interface on exchange coupling in NiFe/FeMn system," IEEE Transactions on Magnetics, vol. 33, pp. 3676-3678, 1997.
[203] S. Soeya, M. Fuyama, S. Tadokoro, and T. Imagawa, "NiO structure–exchange anisotropy relation in the Ni81Fe19/NiO films and thermal stability of its NiO film," Journal of Applied Physics, vol. 79, pp. 1604-1610, 1996.
[204] W. F. Egelhoff, P. J. Chen, C. J. Powell, M. D. Stiles, and R. D. McMichael, "Growth of giant magnetoresistance spin valves using indium as a surfactant," Journal of Applied Physics, vol. 79, pp. 2491-2496, 1996.
[205] L. Néel, "Ferro-antiferromagnetic coupling in thin layers," Ann Phys (Paris), vol. 2, pp. 61-80, 1967.
[206] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, "Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate," Journal of Applied Physics, vol. 62, pp. 3047-3049, 1987.
[207] A. P. Malozemoff, "Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces," Physical Review B, vol. 35, pp. 3679-3682, 1987.
[208] N. C. Koon, "Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces," Physical Review Letters, vol. 78, pp. 4865-4868, 1997.
[209] T. C. Schulthess and W. H. Butler, "Consequences of Spin-Flop Coupling in Exchange Biased Films," Physical Review Letters, vol. 81, pp. 4516-4519, 1998.
[210] X.-L. Zhou and S.-H. Chen, "Theoretical foundation of X-ray and neutron reflectometry," Physics Reports, vol. 257, pp. 223-348, 1995.
[211] S. M. Heald and B. Nielsen, "Density and defects in thin metal films using x‐ray reflectivity and variable‐energy positrons," Journal of Applied Physics, vol. 72, pp. 4669-4673, 1992.
[212] R. P. Chiarello, H. You, H. K. Kim, T. Roberts, R. T. Kempwirth, D. Miller, et al., "X-ray reflectivity study on gold films during sputter deposition," Surface Science, vol. 380, pp. 245-257, 1997.
[213] C. H. Lee and S. Y. Tseng, "Proceedings of the Seventh International Conference on Solid Films and SurfacesIn situ X-ray reflectivity measurement of thin film growth during vacuum deposition," Applied Surface Science, vol. 92, pp. 282-286, 1996.
[214] C. H. Lee and S. Y. Tseng, "In situ fixed-angle x-ray reflectivity measurement of thin-film roughness and thickness during deposition," Journal of applied crystallography, vol. 31, pp. 181-184, 1998.
[215] B. D. Cullity and S. R. Stock, "Elements of X-ray Diffraction," 2001.
[216] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 1996.
[217] 汪建民, 材料分析, 1998.
[218] J. I. Langford and A. J. C. Wilson, "Scherrer after sixty years: a survey and some new results in the determination of crystallite size," Journal of Applied Crystallography, vol. 11, pp. 102-113, 1978.
[219] A. J. C. Wilson and C. Holbrow, "X-ray Optics," American Journal of Physics, vol. 31, pp. 893-893, 1963.
[220] http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[221] http://www.nanoandmore.com/AFM-Probe-PPP-RT-NCHR.html
[222] http://www.hic.ch.ntu.edu.tw/TEM%E5%B7%A5/em4.html
[223] http://www.mse.ntu.edu.tw/index.
[224] C.-M. Kuo, P. C. Kuo, and H.-C. Wu, "Microstructure and magnetic properties of Fe100−xPtx alloy films," Journal of Applied Physics, vol. 85, pp. 2264-2269, 1999.
[225] Y. Hou, H. Kondoh, T. Kogure, and T. Ohta, "Preparation and Characterization of Monodisperse FePd Nanoparticles," Chemistry of Materials, vol. 16, pp. 5149-5152, 2004.
[226] Y. C. Chang, S. N. Hsiao, S. H. Liu, S. K. Chen, Y. T. Liu, H. Y. Lee, et al., "Influence of stoichiometry and growth temperature on the crystal structure and magnetic properties of epitaxial L10 Fe-Pd (001) films," Journal of Applied Physics, vol. 115, p. 17A740, 2014.
[227] E. Meku, C. Du, Y. Sun, L. Du, Y. Wang, and G. Yin, "Electrocatalytic Activity and Stability of Ordered Intermetallic Palladium-Iron Nanoparticles toward Oxygen Reduction Reaction," Journal of The Electrochemical Society, vol. 163, pp. F132-F138, January 1, 2016.
[228] S. Maat, O. Hellwig, G. Zeltzer, E. E. Fullerton, G. J. Mankey, M. L. Crow, et al., "Antiferromagnetic structure of FePt3 films studied by neutron scattering," Physical Review B, vol. 63, p. 134426, 2001.
[229] J. Lyubina, O. Gutfleisch, and O. Isnard, "Phase transformations and magnetic structure of nanocrystalline Fe–Pd and Co–Pt alloys studied by in situ neutron powder diffraction," Journal of Applied Physics, vol. 105, p. 07A717, 2009.
[230] D. Ravelosona, C. Chappert, H. Bernas, D. Halley, Y. Samson, and A. Marty, "Chemical ordering at low temperatures in FePd films," Journal of Applied Physics, vol. 91, pp. 8082-8084, 2002.
[231] T. B. Massalski, Binary Alloy Phase Diagrams: ASM International, Ohio, USA, 1990.
[232] C. F. Wang, K. M. Kuo, C. Y. Lin, and G. Chern, "Magnetic anisotropy in alloy film grown on and MgO(001) by molecular beam epitaxy," Solid State Communications, vol. 149, pp. 1523-1526, 2009.
[233] L. Bao-He, F. Chun, Y. Tao, T. Jiao, Z. Zhong-Hai, Y. Guang-Hua, et al., "Effect of composition on L10 ordering in FePt and FePtCu thin films," Journal of Physics D: Applied Physics, vol. 39, p. 1018, 2006.
[234] M. N. I. Khan, N. Inami, H. Naganuma, Y. Ohdaira, M. Oogane, and Y. Ando, "Promotion of L10 ordering of FePd films with amorphous CoFeB thin interlayer," Journal of Applied Physics, vol. 111, p. 07C112, 2012.
[235] S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, et al., "Magnetic Tunnel Junctions for Spintronic Memories and Beyond," IEEE Transactions on Electron Devices, vol. 54, pp. 991-1002, 2007.
[236] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, et al., "Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited)," Journal of Applied Physics, vol. 85, pp. 5828-5833, 1999.
[237] F. Garcia, F. Fettar, S. Auffret, B. Rodmacq, and B. Dieny, "Exchange-biased spin valves with perpendicular magnetic anisotropy based on (Co/Pt) multilayers," Journal of Applied Physics, vol. 93, pp. 8397-8399, 2003.
[238] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogues, "Beating the superparamagnetic limit with exchange bias," Nature, vol. 423, pp. 850-853, 2003.
[239] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, et al., "Exchange bias in nanostructures," Physics Reports, vol. 422, pp. 65-117, 2005.
[240] K. Li, Z. Guo, G. Han, J. Qiu, and Y. Wu, "Abnormal temperature dependence of exchange bias in the NiFe/Ta0.2/IrMn8 system," Journal of Applied Physics, vol. 93, pp. 6614-6616, 2003.
[241] M. Pakala, Y. Huai, G. Anderson, and L. Miloslavsky, "Effect of underlayer roughness, grain size, and crystal texture on exchange coupled IrMn/CoFe thin films," Journal of Applied Physics, vol. 87, pp. 6653-6655, 2000.
[242] C. Y. Yang, C. H. Lai, S. H. Huang, H. E. Huang, H. Y. Bor, C. Y. Yang, et al., "Exchange Anisotropy in Epitaxial," IEEE Transactions on Magnetics, vol. 42, pp. 3005-3007, 2006.
[243] A. Kohn, A. Kovács, R. Fan, G. J. McIntyre, R. C. C. Ward, and J. P. Goff, "The antiferromagnetic structures of IrMn3 and their influence on exchange-bias," Scientific Reports, vol. 3, p. 2412, 2013.
[244] G.-M. Choi, B.-C. Min, and K.-H. Shin, "FePdB layer for perpendicular magnetic tunnel junctions," Applied Physics Letters, vol. 97, p. 202503, 2010.
[245] M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, "Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets," Science, vol. 315, pp. 349-351, 2007.
[246] S. N. Hsiao, S. K. Chen, T. S. Chin, Y. W. Hsu, H. W. Huang, F. T. Yuan, et al., "Early-stage ordering in in-situ annealed Fe51Pt49 films," Journal of Magnetism and Magnetic Materials, vol. 321, pp. 2459-2466, 2009.
[247] S. G. Wang, A. Kohn, C. Wang, A. K. Petford-Long, S. Lee, R. Fan, et al., "Exchange bias in epitaxial Fe/Ir0.2 Mn0.8 bilayers grown on MgO (0 0 1)," Journal of Physics D: Applied Physics, vol. 42, p. 225001, 2009.
[248] C. Liu, C. Yu, H. Jiang, L. Shen, C. Alexander, and G. J. Mankey, "Effect of interface roughness on the exchange bias for NiFe/FeMn," Journal of Applied Physics, vol. 87, pp. 6644-6646, 2000.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 錫銀銅鎳銲料與三維封裝中錫銀微銲點接合新穎銅鋅底層金屬後之微觀結構、晶粒方向性及可靠度測試
2. 應用於鋰離子電池之錳系高工作電壓尖晶石正極材料與高電容量富鋰層狀氧化物之合成機制、結構分析與電化學性能探討
3. 藉改變銅/錫銀/鎳微凸塊系統之金屬基材接合順序以調控介金屬化合物的相生成及演變機制
4. 探討奈米複合晶鉻鉬矽氮薄膜高溫磨耗行為及田口法製程優化提升薄膜強度與抗磨耗性能
5. 以成分控制與田口實驗規劃法開發多功能之 Zr-Cu基金屬玻璃薄膜
6. 以表面改質和奈米複合材料提升高功率型鈦酸鋰鋰離子負極材料
7. 應用於無鉛銲點之低電阻薄鎳鈀金表面處理技術:界面相變化、接合強度及最佳鎳(磷)層厚度設計
8. 利用高速擺錘衝擊與摔落測試評估單邊與雙邊接合銲料接面之界面反應、元素分佈、晶向生長結構與 機械性質可靠度
9. 廢料之復活: 利用鍍膜及電漿表面改質技術於回收矽/碳化矽之複合材 與其鋰離子電池之應用
10. 鉻鋁矽氮奈米複合晶薄膜高溫抗磨耗特性及藉由低壓電漿滲氮改質基板與鍍膜之附著性
11. 以奈米複合晶技術開發具優異高溫穩定性之多元氮化鉻鋁矽薄膜
12. 整合有機無機與仿生複合概念於奈米複晶及奈米多層膜內進行微結構、組成物及製程控制以達機械性質之強化
13. 無膠系軟性銅箔/聚亞醯胺之匹配性質與老化壽期研究
14. 金屬氧化物半導體奈米材料於紫外光與一氧化氮氣體感測之應用
15. 利用快速熱處理晶圓廢料回收之微米矽 並應用於鋰離子電池負極材料