跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑋佑
研究生(外文):Chen, Wei-Yu
論文名稱:錫銀銅鎳銲料與三維封裝中錫銀微銲點接合新穎銅鋅底層金屬後之微觀結構、晶粒方向性及可靠度測試
論文名稱(外文):Microstructure Evolution, Grain Orientation and Reliability Test of SnAgCu-Ni Solder and SnAg Micro-bump with Novel Cu-Zn Under Bump Metallurgy
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Duh, Jenq-Gong
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:193
中文關鍵詞:覆晶封裝銅鋅凸塊底層金屬三維封裝介金屬化合物晶粒結構可靠度微銲點微結構
外文關鍵詞:flip-chip technologyCu-Zn UBM3D packagesintermetallic compoundgrain structurereliabilitymicro-bumpmicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
於覆晶封裝(flip-chip technology)銲接點與三維封裝(3D packages)微銲點中,界面介金屬化合物(intermetallic compounds)之性質包括形貌、相穩定性、機械性質與晶粒結構將嚴重影響銲接點可靠度。其中,銲料合金與凸塊底層金屬材料的選擇是影響介金屬化合物微結構、相生成與機械強度的重要議題。因此,本研究開發微量鎳參雜之銲料合金與銅鋅凸塊底層金屬,並將其應用於銲接點、微銲點與暫態液相接合中,深入探討鎳與鋅元素對介金屬化合物與可靠度之影響。
本研究首先針對鎳與鋅元素對覆晶接合銲接點中介金屬化合物之影響進行探討。研究發現,參雜微量鎳元素於銲料合金中有助於抑制Cu3Sn之成長並改變界面介金屬化合物之生成形貌,而銅鋅凸塊底層金屬能有效的抑制銅錫介金屬化合物之生成。於SAC305-0.1Ni/Cu-15Zn銲接點中,更是發現鎳元素能增進鋅元素抑制介金屬化合物生長之效果。於此有效抑制生長的機制下,只有平坦的(Cu,Ni)6(Sn,Zn)5緩慢生成於銲接點界面,沒有任何的Cu3Sn與孔洞生成。
此外,SAC305-0.1Ni/Cu-15Zn銲接點於回焊後展現優異的機械可靠度,並於長時間熱處理的過程中,維持其機械強度。此結果歸因於其兩樣特性,其一,由鎳元素引起之平坦狀介金屬化合物將防止機械測試過程中,應力累積於介金屬化合物,其二,鋅元素於(Cu,Ni)6(Sn,Zn)5中能抑制高低溫相轉換,進而避免由晶體體積膨脹引起之應力生成於介金屬化合物中。因此,於鎳與鋅元素同時改善介金屬化合物之性質下,銲接點於熱處理前後皆能展現優異的機械可靠度。
本研究更進一步地將鋅元素抑制介金屬化合物之效果延伸應用於三維封裝微銲點。於微小銲點中,由於銲料體積小,介金屬化合物易大比例充斥整個銲點,其硬脆的特性將容易使銲接點在使用過程中失效,對封裝的可靠度產生莫大的威脅。另外,大片狀脆性Ag3Sn將生成於銲料之中,其與銲點本身之熱膨脹係數差異,將造成大量熱應力累積。於此研究中發現,將鋅元素參雜至銅凸塊底層金屬中能有效地抑制銅錫與銀錫化合物之生長,此抑制機制將會藉由熱力學理論與過冷效應進行解釋與深入探討。
為更深入了解鋅元素對介金屬化合物之效益,本研究於鋅元素添加之銲接點、微銲點與暫態液相接合中,針對介金屬化合物之晶粒結構進行探討。於銲料體積小之微銲點與暫態液相接合中,對接後之介金屬化合物其晶粒將呈現均勻且單一方向性,於外力衝擊下,此結構將容易使裂痕穿越銲點,造成破壞。本研究發現將傳統銅凸塊底層金屬置換為新穎銅鋅凸塊底層金屬後,鋅元素能使銲接點與微銲點中介金屬化合物之晶粒展現多方向性,進而阻止裂痕穿越行為,提升可靠度。
有趣地,於回焊後長滿介金屬化合物之暫態液相接合中,鋅元素引起之多向性介金屬化合物將形成交錯之結構,根據Hall-Petch理論,此交錯結構將能有效阻止差排滑移與裂痕穿越,進而提升整體可靠度。於長時間熱處理過程中,鋅元素仍然能使介金屬化合物仍呈現多向性之晶粒結構,並有效抑制Cu3Sn化合物之生成。此多向性結構生成之相關機制,本研究將藉由熱力學相關理論、第一原理模擬、電子顯微鏡觀察與背向散射繞射儀之結果進行深入探討。
綜合上述,鎳與鋅元素針對介金屬化合物展現優異的特性,包括抑制其生長、穩定生成相、微結構細化、韌性提升與晶粒結構改善等。本研究呈現之所有結果,有效解決覆晶封裝銲接點、三維封裝微銲點與暫態液相接合面臨之可靠度重要議題。因此,微量鎳參雜之銲料合金與銅鋅凸塊底層金屬將有機會成為電子構裝中穩定連結之理想材料。


The properties of interfacial intermetallic compound (IMC), including morphology, phase stability, mechanical properties and grain structure, significantly affect the reliability of solder joint in flip-chip technology (FCT) and micro-bump in 3D packages. The material selection for solder alloys and under bump metallurgies (UBMs) material is a critical issue to affect the microstructure, phase formation, and the mechanical strength of intermetallic compound. In this study, Ni-doped solder and Cu-Zn UBM were developed and applied on solder joints, micro-bump and transient liquid-phase (TLP) bonding. The effects of Ni and Zn on the IMCs and reliability are investigated and discussed.
The combined effects of Ni and Zn on interfacial IMC in solder joints were first investigated. Doping Ni in the solder joint suppressed the growth of Cu3Sn and altered the morphology of the interfacial intermetallic compounds (IMCs) from scallop type to layer type. In comparison with the Cu substrates, the Cu-Zn substrates effectively suppressed the formation of Cu-Sn IMCs. It was revealed that the presence of Ni acted to enhance the effect of Zn on the suppression of Cu-Sn IMCs in SAC305-0.1Ni/Cu-15Zn solder joint. The efficient limitation of IMCs lead to that only layer-type (Cu,Ni)6(Sn,Zn)5 formed at joint interface before and after aging.
Furthermore, it was notable that the SAC305-0.1Ni/Cu-15Zn solder joint exhibited good impact reliability after reflow and maintained the bonding strength during thermal aging for a long time. The formation of layer-type IMCs caused by Ni prevents the stress accumulation in IMCs under high speed impact test. Moreover, doping small amount of Zn into (Cu,Ni)6(Sn,Zn)5 inhibited the phase transformation (η-Cu6Sn5 to η’-Cu6Sn5) during aging and thus avoided the occurrence of stress in IMC caused by volume expansion. In SAC305-0.1Ni/Cu-15Zn solder joint, the properties of interfacial IMCs were simultaneously modified by Ni and Zn, resulting in the high bonding strength before and after aging.
Thereupon, the advantages of Zn on IMCs suppression was extended to be used in micro-bumps of 3D packages. Due to the small size of micro-bumps, Cu-Sn intermetallic compounds (IMCs) rapidly form from the Cu pads. These brittle IMCs occupy the entire joint and weaken joint reliability. Moreover, Ag3Sn tends to precipitate inside the solder in large plates, which results in the accumulation of thermal stress due to a CTE mismatch between Ag3Sn and β-Sn. It wass demonstrated that doping Zn into one of the Cu substrates effectively suppressesed the growth of Cu-Sn and Ag-Sn IMCs. The mechanisms involved were explained in detail using thermodynamic theories and undercooling effects.
To further study the Zn effects on IMC, the evolution of grain structures in IMCs in Zn-doped solder joints, micro-bumps, and TLP bondings were investigated. Due to the small size of micro-bumps and TLP bonding, the grain orientation of impinged intermetallic compounds (IMCs) tends to be homogenous and closely-grouped, allowing cracks to more easily propagate under impact experiences. Replacing the Cu substrate with Cu-Zn causes the grain orientation of Cu-Sn IMCs in both solder joints and micro-bumps to become more random and dispersed, which may hinder crack propagation and enhance the bonding strength of joint interface.
Fancifully, in the Zn-doped TLP bonding composed of IMC, the randomly-orientated IMCs formed as interfolding pattern after reflow. According to the Hall-Petch theory, this interfolded structure may inhibit the move of dislocations and propagation of cracks. Besides, Zn in the TLP bonding efficiently retained the multi-orientation structure of Cu-Sn IMCs and suppressed the formation of Cu3Sn during lone-time aging. The formation mechanisms of randomly-orientated IMCs were explained in details using thermodynamic related theories, First-principle simulation, FE-SEM observation and EBSD analyses.
In summary, Ni and Zn exhibits good ability on suppression, phase stabilization, refinement, toughness enhancement and grain structure modification of IMCs. All the results in this study provide the solutions for critical issues of reliability in solder joints, micro-bumps and TLP bondings. Therefore, Cu-Zn UBM and Ni-doped solder are expected to be two of the idea materials for stable interconnections in electronic packages.


Contents
Lists of Table XII
Figures Caption XIV
Chapter I Introduction 1
1.1 Background 1
1.2 Motivations and Goals in this Study 2
1.2.1 Suppressing the growth of interfacial Cu-Sn intermetallic compounds in the Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joint during thermal aging 4
1.2.2 Improving the shear strength of Sn-Ag-Cu-Ni/Cu-Zn solder joints via modifying the microstructure and phase stability of Cu-Sn intermetallic compounds 5
1.2.3 Retarding the Cu-Sn and Ag-Sn Intermetallic Compounds by Applying Cu-xZn Alloy on Micro-bump in Novel 3D-IC Technologies 6
1.2.4 Growth orientation of Cu-Sn IMC in Cu/Sn-3.5Ag/Cu-xZn micro-bumps and Zn-doped solder joints 7
1.2.5 Grain structure modification of Cu-Sn IMCs by applying Cu-Zn UBM on transient liquid-phase bonding in novel 3D-IC Technologies 8
1.2.6 Suppression of Cu3Sn layer and formation of multi-orientation IMCs during thermal aging in Cu/Sn-3.5Ag/Cu-15Zn transient liquid-phase bonding in novel 3D-IC Technologies 9
Chapter II Literature Review 11
2.1 Electronic Package 11
2.2 Flip-Chip Technology 12
2.3 Solder Bump 13
2.3.1 Pb-Free Solder 14
2.4 Under Bump Metallurgy (UBM) 15
2.4.1 Cu-Based UBM 16
2.5 Metallurgical Reactions in Pb-Free Solder Joints 16
2.5.1 Metallurgical Reactions between Pb-free Solder and Cu UBM 17
2.6 Ni Addition to Sn-Based Solder Alloy on Cu UBM 18
2.7 Zn effects on Ag-Sn and Cu-Sn IMCs in solder joint 20
2.7.1 Zn Addition to Sn-Based Solder Alloy on Cu UBM 20
2.7.2 Metallurgical Reactions between Solders and Cu-Zn UBM 22
2.8 Three Dimensional Packages (3D packages) 23
2.9 Metallurgical Reactions in Small-sized Solder Joint 25
2.9.1 Metallurgical Reactions in Cu-based Micro-bump 26
2.9.2 Metallurgical Reactions in Cu-based Transient Liquid Phase Bonding 27
2.10. Properties of Cu6Sn5 IMC at Solder/Cu Interface 28
2.10.1 Grain Structure and Preferred Orientation of Cu6Sn5 at Solder/Cu Interface 28
2.10.2 Multiple morphologies of Cu6Sn5 at Solder/Cu Interface 30
2.10.3 Phase stability of Cu6Sn5 at Solder/Cu Interface 31
Chapter III Experimental Procedures 69
3.1 Preparation and Analysis for SAC305-0.1Ni/Cu-xZn (x= 0 or 15 wt %) Solder Joints 69
3.1.1 Fabrication of SAC305-0.1Ni/Cu-xZn (x= 0 or 15 wt %) Solder Joints 69
3.1.2 Analysis Methods for SAC305-0.1Ni/Cu-xZn (x= 0 or 15 wt %) Solder Joints 70
3.2 High Speed Impact Testing and Characterization Analyzing for SAC305-0.1Ni/Cu-xZn (x= 0 or 15 wt %) Solder Joints 71
3.3 Preparation and Grain Analysis for Cu6(Sn,Zn)5 in SAC305/Cu-xZn (x=0 or 15 wt %) Solder Joint and Cu/Sn-3.5Ag/Cu-xZn Micro-bump 72
3.4 Preparation and Analysis for Cu/Sn-3.5Ag/Cu-xZn (x=0 or 15 wt%) Micro-bump after Reflow 72
3.4.1 Fabrication of Cu/Sn-3.5Ag/Cu-xZn Micro-bump 73
3.4.2 Microstructural Evaluation and Compositional Analysis of Cu/Sn-3.5Ag/Cu-xZn Micro-bump 73
3.5 Preparation and Analysis for Cu/Sn-3.5Ag/Cu-xZn (x=0 or 15 wt %) Transient Liquid Phase Bonding after Reflow 73
3.5.1 Fabrication of Cu/Sn-3.5Ag/Cu-xZn Transient Liquid Phase Bonding after Reflow 74
3.5.2 Analysis for the Cu/Sn-3.5Ag/Cu-xZn Transient Liquid Phase Bonding 74
3.6 Preparation and Analysis for Cu/Sn-3.5Ag/Cu-xZn (x=0 or 15 wt %) Transient Liquid Phase Bonding after Thermal Aging 75
3.6.1 Fabrication of Cu/Sn-3.5Ag/Cu-xZn Transient Liquid Phase Bonding after Thermal Aging 75
3.6.2 Microstructure and Composition Analysis of Cu/Sn-3.5Ag/Cu-xZn Transient Liquid Phase Bonding after Thermal Aging 75
Chapter IV Results and Discussion 82
4.1 Suppressing the growth of interfacial Cu-Sn intermetallic compounds in the Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joint during thermal aging 82
4.1.1 Phase identification and microstructural variation 82
4.1.2 Quantitative analysis and elemental distribution 85
4.1.3 Mechanism of phase formation 87
4.2 Improving the shear strength of Sn-Ag-Cu-Ni/Cu-Zn solder joints via modifying the microstructure and phase stability of Cu-Sn intermetallic compounds 97
4.2.1 Interfacial reaction between the Ni-doped solder and the Cu-xZn (x=0 or 15 wt%) substrate before and after thermal aging 97
4.2.2 High speed shear testing for the SAC305-0.1Ni/Cu and SAC305-0.1Ni/Cu-15Zn solder joints before and after thermal aging 99
4.2.3 Mechanism for the improvement of impact reliability in SAC305-0.1Ni/Cu-15Zn solder joints 101
4.3 Retarding the Cu-Sn and Ag-Sn Intermetallic Compounds by Applying Cu-xZn Alloy on Micro-bump in Novel 3D-IC Technologies 114
4.3.1 Microstructure observation of interfacial Cu-Sn IMCs in Cu/Sn3.5Ag/Cu-xZn (x=0 or 15 wt%) micro-bumps 114
4.3.2 Elemental distribution in micro-bump 115
4.3.3 Formation mechanisms of Ag-Sn and Cu-Sn IMCs in Cu/Sn3.5Ag/Cu-xZn (x=0 or 15 wt%) micro-bumps 115
4.4 Growth orientation of Cu-Sn IMC in Cu/Sn-3.5Ag/Cu-xZn micro-bumps and Zn-doped solder joint 125
4.4.1 Grain structure and orientation of Cu-Sn IMC in in Cu/Sn-3.5Ag/Cu-xZn micro-bumps and Zn-doped solder joint 125
4.4.2 Possible mechanisms of randomly-orientated Cu6(Sn,Zn)5 in micro-bump 127
4.5 Grain structure modification of Cu-Sn IMCs by applying Cu-Zn UBM on transient liquid-phase bonding in novel 3D-IC Technologies 133
4.5.1 Grain structure and orientation of Cu-Sn IMC in Cu/Sn-3.5Ag/Cu-xZn (x=0 or 15 wt %) TLP bonding 133
4.5.2 Possible mechanisms of the randomly-orientated Cu6(Sn,Zn)5 in TLP bonding 135
4.5.3 Frist principle simulation for lattice lengths in Cu6(Sn,Zn)5 with various Zn concentration 137
4.6 Suppression of Cu3Sn layer and formation of multi-orientation IMCs during thermal aging in Cu/Sn-3.5Ag/Cu-15Zn transient liquid-phase bonding in novel 3D-IC Technologies 148
4.6.1 Microstructure observation of Cu-Sn IMCs in Cu/Sn-3.5Ag/Cu-xZn (x=0 or 15 wt%) TLP bonding before and after thermal aging 148
4.6.2 Possible mechanisms of Cu-Sn IMCs suppression in TLP bonding during thermal aging 149
4.6.3 Grain structure detection of Cu-Sn IMCs in TLP bonding after thermal aging 150
Chapter V Conclusions 157
References 160


1. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
2. K. N. Tu, “Solder Joint Technology”, Springer, New York, 2007.
3. J. H. Lau, “Solder joint reliability of flip chip and plastic ball grid array assemblies under thermal, mechanical and vibration condition” IEEE Trans. on Electron. Pack. Manuf. Tech. 19 (1996) 728.
4. T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials” Materials Science and Engineering: R: Reports, 49 (2005) 1.
5. C. M. Miller, I. E. Anderson and J. F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu” J. Electron. Mater. 23 (1994) 505
6. J. W. Yoon, B. I. Noh, B. K. Kim, C. C. Shur and S. B. Jung, “Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints” J. Alloys Compd. 486 (2009) 142.
7. E.F. De Monlevade and W. Peng, “Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects” J. Electron. Mater. 36 (2007) 783.
8. F. Lin, W. Bi, G. Ju, W. Wang and X. Wei, “Evolution of Ag3Sn at Sn–3.0Ag–0.3Cu–0.05Cr/Cu joint interfaces during thermal aging” J. Alloys Compd. 509 (2011) 6666.
9. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita and K. Takahashi, “Micro Cu Bump Interconnection on 3D Chip Stacking Technology” Japanese J. Appl. Phys. 43 (2004) 2264.
10. [10] K Sakuma, P. S. Andry, B. Dang, J. Maria, C. K. Tsang, C. Patel, S. L. Wright, B. Webb, E. Sprogis, S. K. Kang, R. Polastre, R. Horton, and J. U. Knickerbocker, “3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections” Proc. 57th Electronic Components and Technology Conf. (2007) pp. 627
11. X. Deng, R. S. Sidhu, P. Johnson and N. Chawla, “Influence of Reflow and Thermal Aging on the Shear Strength and Fracture Behavior of Sn-3.5Ag Solder/Cu Joints” Metall. Mater. Trans. A. 36A (2005) 55.
12. S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K. J. Puttlitz, “Ag3Sn Plate Formation in the Solidification of Near-Ternary Eutectic Sn-Ag-Cu” JOM (2003).
13. Y. Kurita, S. Matsui, N. Takahashi, K. Soejima, M. Komuro, M. Itou and M. Kawano, “Vertical Integration of Stacked DRAM and High-Speed Logic Device Using SMAFTI Technology” IEEE Trans. Adv. Packag. 32 (2009) 657.
14. C. Li, X. Wang, S. Song, and S. Liu, “21-Layer 3-D Chip Stacking Based on Cu–Sn Bump Bonding” IEEE Trans. on Electron. Pack. Manuf. Tech. 5 (2015) 627.
15. Y. Liu, N. Tamura, D.W. Kim, S. Gu, K.N. Tu, “A metastable phase of tin in 3D integrated circuit solder microbumps” Scripta Materialia. 102 (2015) 39.
16. J. Karppinen, J. Li, J. Pakarinen, T.T. Mattila, M. Paulasto-Kröckel, “Shock impact reliability characterization of a handheld product in accelerated tests and use environment” Microelectron. Reliab. 52 (2012) 190.
17. J. M. Song, Y. R. Liu, Y. S. Lai, Y. T. Chiu and N. C. Lee, “Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints” Microelectron. Reliab. 52 (2012) 180.
18. Z. Huang, P. Kumar, I. Dutta, J. H. L. Pang, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates: I. Effects of Loading and Processing Conditions” J. Electron. Mater. 41 (2011) 375.
19. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map” J. Electron. Mater. 41 (2011) 412.
20. A. Agwai, I. Guven and E. Madenci, “Drop-Shock Failure Prediction in Electronic Packages by Using Peridynamic Theory” IEEE Trans. on Electron. Pack. Manuf. Tech. 2 (2012) 439.
21. K.N. Tu, “Reliability challenges in 3D IC packaging technology, Microelectronics Reliability” 51 (2011) 517.
22. K.N. Tu and T. Tian, “Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products” Sci. China. Tech. Sci. 56 (2013) 1740.
23. J. H. Lau, “Evolution, challenge, and outlook of TSV, 3D IC integration and 3d silicon integration” International Symposium on Advanced Packaging Materials (2011) pp. 462
24. Y. Lv, M. Chen, M. Cai and S. Liu, “A reliable Cu–Sn stack bonding technology for 3D-TSV packaging” Semicond. Sci. Tech. 29 (2014) 025003.
25. H.H. Hsu, Y.T. Huang, S.Y. Huang, T.C. Chang and A.T. Wu, “Evolution of the Intermetallic Compounds in Ni/Sn-2.5Ag/Ni Microbumps for Three-Dimensional Integrated Circuits” J. Electron. Mater. 44 (2015) 3888.
26. S. H. Kim, G. T. Park, J. J. Park and Y. B. Park, “Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump” J. Nanosci. Nanotechno. 15 (2015) 8593.
27. Y. Liu, Y. T. Chen, S. Gu, D. W. Kim and K. N. Tu, “Fracture reliability concern of (Au, Ni)Sn4 phase in 3D integrated circuit microbumps using Ni/Au surface finishing” Scripta Materialia. 119 (2016) 9.
28. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne and K. J. Wolter, “Degradation of Cu6Sn5 intermetallic compound by pore formation in solid–liquid interdiffusion Cu/Sn microbump interconnects” Microelectron. Eng. 117 (2014) 26.
29. B. Talebanpour, Z. Huang, Z. Chen and I. Dutta, “Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages” J. Electron. Mater. 45 (2015) 57.
30. C. Y. Yu, T. K. Lee, M. Tsai, K. C. Liu and J. G. Duh, “Effects of Minor Ni Doping on Microstructural Variations and Interfacial Reactions in Cu/Sn-3.0Ag-0.5Cu-xNi/Au/Ni Sandwich Structures” J. Electron. Mater. 39 (2010) 2544.
31. I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications” J. Mater. Sci: Mater. Electron. 18 (2006) 55.
32. I. E. Anderson and J. L. Harringa, “Suppression of Void Coalescence in Thermal Aging of Tin-Silver-Copper-X Solder Joints” J. Electron. Mater. 35 (2006) 94.
33. M.G. Cho, S.K. Kang, D.-Y. Shih and H.M. Lee, “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging” J. Electron. Mater. 36 (2007) 1501.
34. F. Wang, X. Ma and Y. Qian, “Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition” Scripta Materialia. 53 (2005) 699.
35. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu and W.K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying”, JOM 56 (2004) 34.
36. C.M.L. Wu, D.Q. Yu, C.M.T. Law and L. Wang, “Properties of lead-free solder alloys with rare earth element additions” Mater. Sci. Eng: R: Reports, 44 (2004) 1.
37. Y. M. Kim, T. J. Kim, M.Y. Choi and Y.H. Kim, “Interfacial reactions between Sn–3.0Ag–0.5Cu solder and Cu–xZn (x=0–35wt%) or Cu–xZn–yNi (x=20 and 25wt%, y=15 and 10wt%) substrates” J Alloys Compd. 575 (2013) 350.
38. H. M. Lin and J. G. Duh, “Interfacial reaction between Sn–3.0Ag–0.5Cu liquid solder and Ni–xZn novel UBM layers” Surf. Coat. Tech. 206 (2011) 1941.
39. C. Y. Oh, H. R. Roh, Y. M. Kim, J. S. Lee, H.Y. Cho and Y.H. Kim, “A new solder wetting layer for Pb-free solders” J. Mater. Res. 24 (2011) 297.
40. C. F. Tseng, K. J. Wang, J. G. Duh, “Interfacial Reactions of Sn-3.0Ag-0.5Cu Solder with Cu-Mn UBM During Aging” J. Electron. Mater. 39 (2010) 2522.
41. F.X. Che, J.E. Luan and X. Baraton, “Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders”, Proc. 58th Electronic Components and Technology Conf. (2008) pp. 485-490.
42. W. H. Zhu, L. Xu, J. H. L. Pang, X. R. Zhang, E. Poh, Y. F. Sun, A. Y. S. Sun, C. K. Wang and H. B. Tan, “Drop Reliability Study of PBGA Assemblies with SAC305, SAC105 and SAC105-Ni Solder Ball on Cu-OSP and ENIG Surface Finish” Proc. 58th Electronic Components and Technology Conf. (2008) pp. 1667.
43. Y. W. Wang and C. R. Kao, “Development of Lead-Free Solders with Superior Drop Test Reliability Performance” ICEPT-HDP (2009) 534.
44. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman and K. Nogita, The influence of solder composition on the impact strength of lead-free solder ball grid array joints, Microelectron. Reliab. 51 (2011) 657.
45. M. Tanaka, T. Sasaki, T.i Kobayashi and K. Tatsumi, “Improvement in Drop Shock Reliability of Sn-1.2Ag-0.5Cu BGA Interconnects by Ni Addition” Proc. 56th Electronic Components and Technology Conf. (2006) pp. 78.
46. Y. W. Wang, C .C. Chang and C. R. Kao, “Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth” J Alloys Compd. 478 (2009) L1.
47. Y. M. Kim, K. M. Harr and Y. H. Kim, “Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate” Electron. Mater. Lett. 6 (2010) 151.
48. Y. M. Kim, H. R. Roh, S. Kim and Y. H. Kim, “Kinetics of Intermetallic Compound Formation at the Interface Between Sn-3.0Ag-0.5Cu Solder and Cu-Zn Alloy Substrates” J. Electron. Mater. 39 (2010) 2504.
49. C. Y. Yu and J. G. Duh, “Microstructural Variation and Phase Evolution in the Reaction of Sn-xAg-Cu Solders and Cu-yZn Substrates During Reflow” J. Electron. Mater. 39 (2010) 2627.
50. C. Y. Yu, K. J. Wang and J. G. Duh, “Interfacial Reaction of Sn and Cu-xZn Substrates After Reflow and Thermal Aging” J. Electron. Mater. 39 (2009) 230.
51. W. Y. Chen, C. Y. Yu and J. G. Duh, “Suppressing the growth of interfacial Cu–Sn intermetallic compounds in the Sn–3.0Ag–0.5Cu–0.1Ni/Cu–15Zn solder joint during thermal aging” J. Mater. Sci. 47 (2012) 4012.
52. C. Y. Yu, W. Y. Chen and J. G. Duh, “Suppressing the growth of Cu–Sn intermetallic compounds in Ni/Sn–Ag–Cu/Cu–Zn solder joints during thermal aging” Intermetallics. 26 (2012) 11.
53. H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li and C. Robert Kao, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages” IEEE Trans. Device Mater. Rel. 12 (2012) 233.
54. H. Y. Chuang, J. J. Yu, M. S. Kuo, H. M. Tong and C. R. Kao, “Elimination of voids in reactions between Ni and Sn: A novel effect of silver” Scripta Materialia. 66 (2012) 171.
55. R. W. Yang, Y. W. Chang, W. C. Sung and C. Chen, “Precipitation of large Ag3Sn intermetallic compounds in SnAg2.5 microbumps after multiple reflows in 3D-IC packaging” Mater. Chem. Phys. 134 (2012) 340.
56. L. Mo, Z. Chen, F. Wu and C. Liu, “Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition” Intermetallics. 66 (2015) 13.
57. R. Labie, W. Ruythooren and J. Van Humbeeck, “Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions” Intermetallics. 15 (2007) 396.
58. D. Li, C. Liu and P.P. Conway, “Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn–Ag–Cu flip-chip solder interconnects” Mater. Sci. Eng: A, 391 (2005) 95.
59. K. Sakuma1, K. Sueoka1, S. Kohara1, K. Matsumoto1, H. Noma1, T. oki, Y. Oyama, H. Nishiwaki, P. S. Andry, C. K. Tsang, J. U. Knickerbocker and Y. Orii, “IMC Bonding for 3D Interconnection” Proc. 60th Electronic Components and Technology Conf. (2010) pp. 864.
60. Y. Tian, R. Zhang, C. Hang, L. Niu and C. Wang, “Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads” Mater. Charact. 88 (2014) 58.
61. D. Mu, H. Yasuda, H. Huang and K. Nogita, Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu” J. Alloys Compd. 536 (2012) 38.
62. K. Chu, Y. Sohn and C. Moon, “A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding” Scripta Materialia. 109 (2015) 113.
63. J. F. Li, P. A. Agyakwa and C. M. Johnson, “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process” Acta Materialia. 59 (2011) 1198.
64. N. S. Bosco and F. W. Zok, “Strength of joints produced by transient liquid phase bonding in the Cu–Sn system” Acta Materialia, 53 (2005) 2019.
65. N.S. Bosco, F.W. Zok, “Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system” Acta Materialia. 52 (2004) 2965.
66. W. Y. Chen, T. T. Chou, W. Tu, H. C. Chang, C. J. Lee and J. G. Duh, “Retarding the Cu–Sn and Ag–Sn intermetallic compounds by applying Cu–xZn alloy on micro-bump in novel 3D-IC technologies” J. Mater. Sci: Mater Electron. 26 (2015) 2357.
67. R. Zhang, Y. Tian, C. Hang, B. Liu and C. Wang, “Formation mechanism and orientation of Cu3Sn grains in Cu–Sn intermetallic compound joints” Mater. Lett. 110 (2013) 137.
68. S. J. Wang, L. H. Hsu, N. K. Wang and C. E. Ho, “EBSD Investigation of Cu-Sn IMC Microstructural Evolution in Cu/Sn-Ag/Cu Microbumps During Isothermal Annealing” J. Electron. Mater. 43 (2013) 219.
69. H. Liu, K. Wang, K. E. Aasmundtveit and N. Hoivik, “Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding” J. Electron. Mater. 41 (2012) 2453.
70. A. Garnier, C. Grémion, R. Franiatte, D. Bouchu, R. Anciant and S. Chéramy, “Investigation Of Copper-Tin Transient Liquid Phase Bonding Reliability For 3D Integration” Proc. 63th Electronic Components and Technology Conf. (2013) pp. 2151.
71. B. H. Kwak, M. H. Jeong and Y. B. Park, “Effects of Temperature and Current Stressing on the Intermetallic Compounds Growth Characteristics of Cu Pillar/Sn–3.5Ag Microbump” Jpn. J. Appl. Phy. 51 (2012) 05EE05.
72. R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook”, 2nd edition, Van Nostrand Reihold, New York, 1997.
73. J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, 1995.
74. http://electronicdesign.com/components/future-looks-bright-3d-integration
75. P. Ramm, A. Klumpp, J. Weber and M. M. V. Taklo, “3D System-on-Chip technologies for More than Moore systems”, Microsyst Technol 16 (2010) 1051.
76. T. Y. Kuo, S. M. Chang, Y. C. Shih, C. W. Chiang, C. K. Hsu, C. K. Lee, C. T. Lin, Y. H. Chen and W. C. Lo, “Reliability Tests for a Three Dimensional Chip Stacking Structure with Through Silicon Via Connections and Low Cost” Proc. 58th Electronic Components and Technology Conf. (2008) pp. 853-858.
77. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
78. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, 1996, pp. 26-30.P.A.
79. J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and Applications”, McGraw-Hill, New York, 1999.
80. R. Beica, “Flip Chip Market and Technology Trends” EMPC (2013)
81. K.J. Puttlitz and K.A. Stalter, “Handbook of Lead-Free Solder Technology for Microelectronic Assemblies”, Marcel Dekker, Inc., New York, 2004, pp. 1-48.
82. C. A. Haper, “Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000.
83. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, pp.423.
84. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45 (1993) 25.
85. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free solder alloy with superior mechanical-properties” Appl. Phys. Lett. 63 (1993) 15.
86. K. Suganuma, “Advanced in lead-free electronics soldering” Current Opinion Solid State Mater. Sci. 5 (2001) 55.
87. C. S. Chang, A. Oscilowski and R. C. Bracken, “Future channenges in electronics packaging” IEEE Circuits Devices Mag. 14 (1998) 45.
88. M. Abtew and G. Selyaduray, “Lead-free solders in microelectronics” Mater. Sci. Eng. R 27 (2000) 95.
89. Vardaman, Surface Mount Technology Recent Japanese Developments, IEEE Press, New York, 1993, Part 4.
90. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Boston: PWS Publishing Company, 1994)
91. N. Chawla and R. S. Sidhu, “Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys” J Mater Sci: Mater Electron 18 (2007) 175.
92. H. Fei, K. Yazzie, N. Chawla and H. Jiang, “Modeling Fracture of Sn-Rich (Pb-Free) Solder Joints Under Mechanical Shock Conditions” J. Electron. Mater. 41 (2012) 2089.
93. C. Y. Yu and J. G. Duh, “Stabilization of hexagonal Cu6(Sn,Zn)5 by minor Zn doping of Sn-based solder joints” Scripta Mater 65 (2011) 783.
94. W. Y. Chen, C. Y. Yu and J. G. Duh, “Improving the shear strength of Sn-Ag-Cu-Ni/Cu-Zn solder joints via modifying the microstructure and phase stability of Cu-Sn intermetallic compounds” Intermetallics 54 (2014) 181.
95. G. Ghosh, “Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging” J. Mater. Res. 19 (2004) 1439.
96. C. Y. Yu, W. Y. Chen and J. G. Duh, “Improving the impact toughness of Sn–Ag–Cu/Cu–Zn Pb-free solder joints under high speed shear testing” J. Alloys Compd. 586 (2014) 633.
97. http://www.crct.polymtl.ca/fact/documentation/BINARY/Cu-Sn.jpg
98. K. J. Wang, Y. C. Lin and Jenq-Gong Duh, “In situ investigation of the interfacial reaction in Sn/Cu system by synchrotron radiation” J. Mater. Res. 25 (2010) 972.
99. T.Y. Kanga, Y.Y. Xiub, C.Z. Liub, L. Hui, J.J. Wang and W.P. Tong, “Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect” J. Alloys Compd 509 (2011) 1785.
100. F. Gao, H. Nishikawa and T. Takemoto, “Additive Effect of Kirkendall Void Formation in Sn-3.5Ag Solder Joints on Common Substrates” J. Electron. Mater. 37 (2008) 45.
101. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508.
102. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys” Mater. Sci. Eng. A 333 (2002) 106.
103. D. Monlevade, Eduardo, and Weiqun Peng. “Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects” J. Electron. Mater. 36 (2007) 783.
104. T.C. Chiu, K. Zeng, R. Stierman, D. Edwards, and K. Ano, “Effect of Thermal ging on Board Level Drop Reliability for Pb-free BGA Packages’’, Proc. 54th Electronic Components and Technology Conf., pp. 1256-1262.
105. K. Nogita. and T. Nishimura, “Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys” Scripta Materialia 59 (2008) 191.
106. K. Nogita. “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys” Intermetallics 18 (2010) 145.
107. K. Nogita, D. Mu, S.D. McDonald, J. Read and Y.Q. Wu, “Effect of Ni on phase stability and thermal expansion of Cu6-xNixSn5 (X= 0, 0.5, 1, 1.5 and 2)” Intermetallics 26 (2012) 78.
108. W.H. Zhu, L. Xu, J.H.L Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y.S. Sun, et al, Drop reliability study of PBGA assemblies with SAC305, SAC105 and SAC105-Ni solder ball on Cu-OSP and ENIG surface finish, Electronic Components & Technology Conference, Proceedings, 58 th, Florida, 2008, pp. 1667-1672
109. M. Tanaka, T. Sasaki, T. Kobayashi, K. Tatsumi, Improvement in drop shock reliability of Sn-1.2Ag-0.5Cu BGA interconnects by Ni addition, Electronic Components & Technology Conference, Proceedings, 56 th, San Diego, 2006, pp. 78-84
110. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, K. Nogita, The influence of solder composition on the impact strength of lead-free solder ball grid array joints, Microelectron. Reliab. 51 (2011) 657-667.
111. A. Syed, T.S. Kim, Y.M. Cho, C.W. Kim, M. Yoo, Alloying effect of Ni, Co, and Sb in SAC solder for improved drop performance of chip scale packages with cu OSP pad finish, Electronic Packaging Technology Conference, 8 th, Singapore, 2006, pp. 404-411
112. D.S. Jiang, Y.P. Wang, C.S. Hsiao, Effect of minor doping elements on lead free solder joint quality, Electronic Packaging Technology Conference, 8 th, Singapore, 2006, pp. 385-389
113. A.A. El-Daly, A.M. El-Taher, Improved strength of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solder alloys under controlled processing parameters, Mater. Des. 47 (2013) 607-614.
114. P. Liu, P. Yao, J. Liu, Evolutions of the interface and shear strength between SnAgCu–xNi solder and Cu substrate during isothermal aging at 150°C, J. Alloys Compod. 486 (2009) 474-479.
115. C.M. Chuang, P.C. Shih, K.L. Lin, Mechanical strength of Sn-3.5Ag-based solders and related bondings, J. Electron. Mater. 33 (2004) 1-6.
116. F.J. Wang, X. Ma and Y. Qian, “Improvement of microstructure and interface structure of eutectic Sn-0.7Cu solder with small amount of Zn addition”, Scripta Mater. 53 (2005) 699.
117. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho and J. Yu, “Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition”, J. Electron. Mater. 35 (2006) 479.
118. S.C. Yang, C.E. Ho, C.W. Chang and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res. 21 (2006) 2436
119. S.C. Yang, Y.W. Wang, C.C. Chang and C.R. Kao, “Analysis and experimental verification of the volume effect in the reaction between Zn-doped solders and Cu”, J. Electron. Mater. 37 (2008) 1591.
120. N. Hamada, T. Uesugi, Y. Takigawa, K. Higashi, Effects of Zn addition and aging treatment on tensile properties of Sn–Ag–Cu alloys. J. Alloys Compd. 527, 226-232 (2012)
121. Z.B. Luo, J. Zhao, Y.J. Gao, L. Wang, Revisiting mechanisms to inhibit Ag3Sn plates in Sn–Ag–Cu solders with 1wt.% Zn addition. J. Alloys Compd. 500, 39-45 (2010)
122. D. Liu and S. Park, “Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art” J. Electron. Packag. 136 (2014) 014001-1
123. C. Maxfield, “2D vs. 2.5D vs. 3D ICs 101,” EE Times (2012)
124. G. Pares, F. De Crecy, S. Moreau, C. Maurice, A. Borbely, J. Mazuir, L. L. Chapelon and N. Sillon, “Assessment and Characterization of Stress Induced by Via-First TSV Technology,” J. Microelectron. Electron. Packag. 8(4) (2011) 129.
125. R. He, H. Wang, J. Zhou, X. Guo, D. Yu and L. Wan, “Nonlinear Thermo-Mechanical Analysis of TSV Interposer Filling With Solder, Cu and Cu-Cored Solder,” 12th ICEPT-HDP (2011)
126. S. W. R. Lee, R. Hon, S. X. D. Zhang and C. K. Wong, “3D Stacked Flip Chip Packaging With Through Silicon Vias and Copper Plating or Conductive Adhesive Filling,” Electronic Components & Technology Conference, Proceedings, 55 th, Lake Buena Vista, 2005, pp. 795
127. V. Venkatadri, B. Sammakia, K. Srihari and D. Santos, “A Review of Recent Advances in Thermal Management in Three Dimensional Chip Stacks in Electronic Systems” J. Electron. Packag. 133(4) (2011) 041011.
128. S. Onkaraiah and T. Chuan Seng, “Mitigating Heat Dissipation and Thermo-Mechanical Stress Challenges in 3-D IC Using Thermal Through Silicon Via (TTSV),” Proc. 60th Electronic Components and Technology Conf. (2010) pp. 411.
129. M. Santarini, “Stacked & Loaded: Xilinx SSI, 28-Gbps I/O Yield Amazing FPGAs” Xcell J. 74 (2011) 8.
130. B. Banijamali, S. Ramalingam, K. Nagarajan and R. Chaware, “Advanced Reliability Study of TSV Interposers and Interconnects for the 28nm Technology FPGA” Proc. 61th Electronic Components and Technology Conf. (2011) pp. 285.
131. T. L. Yang, J. J. Yu, W. L. Shih, C. H. Hsueh and C. R. Kao, “Effects of silver addition on Cu–Sn microjoints for chip-stacking applications” J. Alloys Compd. 605 (2014) 193.
132. Y. J. Chena, C. K. Chung, C. R. Yang and C. R. Kao, “Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics” Microelectron. Reliab. 53 (2013) 47.
133. B. Ebersberger and C. Lee, “Cu Pillar Bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects”, Proc. Electronic Components and Technology Conf. Proc. 57th (2008) p. 59.
134. W. Y. Chen,W. Tu, H. C. Chang, T. T. Chou and J. G. Duh, “Growth orientation of Cu–Sn IMC in Cu/Sn–3.5Ag/Cu–xZn microbumps and Zn-doped solder joints” Mater. Lett. 134 (2014) 184.
135. C. Hang, Y. Tian, R. Zhang and D. Yang, “Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process” J. Mater. Sci: Mater. Electron. 24 (2013) 3905.
136. A. T. Tan, A. W. Tan and F. Yusof, “Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions” Sci. Technol. Adv. Mater. 16 (2015) 033505.
137. C. F. Tseng and J. G. Duh, “Correlation between microstructure evolution and mechanical strength in the Sn–3.0Ag–0.5Cu/ENEPIG solder joint” Mater. Sci. Eng: A. 580 (2013) 169.
138. A. Hayashi, C. R. Kao, Y. A. Chang, “Reactions of Solid Copper with Pure Liquid Tin and Liquid Tin Saturated with Copper” Scripta Mater 37 (1997) 393.
139. K. Nogita, C.M. Gourlay and T. Nishimura, “Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates”, JOM 61 (2009) 45.
140. U. Schwingenschlogl, C.D. Paola, K. Nogita and C.M. Gourlay, “The influence of Ni additions on the relative stability of η and η’ Cu6Sn5”, Appl. Phys. Lett. 96 (2010) 061908.
141. S. Wang and C. Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint” Scripta Mater 55 (2006) 347.
142. S. J. Wang and C. Y. Liu, “Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structures” Mater 35 (2006) 1955.
143. J. Chang, S. Seo and H. M. Lee, “Phase Equilibria in the Sn-Ni-Zn Ternary System: Isothermal Sections at 200A degrees C, 500A degrees C, and 800A degrees C” J. Electron. Mater 39 (2010) 2643.
144. C. Y. Li, G. J. Chiou and J. G. Duh, “Phase Distribution and Phase Analysis in Cu6Sn5, Ni3Sn4, and the Sn-Rich Corner in the Ternary Sn-Cu-Ni Isotherm at 240°C” J. Electron. Mater. 35 (2006) 343.
145. A. J. Sunwoo, J. W. Morris and G. K. Lucey, “The Growth of Cu-Sn Intermetallics at a Pretinned Copper-Solder Interface” Metall. Trans. A. 23 (1992) 1323.
146. K. Nogita, C. M. Gourlay, J. Read, T. Nishimura, S. Suenaga and A. K. Dahle, “Effects of Phosphorus on Microstructure and Fluidity of Sn-0.7Cu-0.05Ni Lead-Free Solder” Mater. Trans. 49 (2008) 443.
147. M. L. Huang, F. Yang, N. Zhao and Y. C. Yang, “Synchrotron radiation real-time in situ study on dissolution and precipitation of Ag3Sn plates in sub-50μm Sn–Ag–Cu solder bumps” J. Alloys Compd. 602 (2014) 281.
148. R. Kinyanjui, L. P. Lehman, L. Zavalij and E. Cotts, “Effect of Sample Size on the Solidification Temperature and Microstructure of SnAgCu Near Eutectic Alloys” J. Mater. Res. 20 (2011) 2914.
149. X. Hu and Z. Ke, “Growth behavior of interfacial Cu–Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging” J. Mater. Sci-Mater. El. 25 (2013) 936.
150. G. T. Lim, B. J. Kim, K. Lee, J. Kim, Y. C. Joo and Y. B. Park, “Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps” J. Electron. Mater. 38 (2009) 2228.
151. W. M. Tang, A. Q. He, Q. Liu and D. G. Ivey, “Solid state interfacial reactions in electrodeposited Cu/Sn couples” T. Nonferr. Metal. Soc. 20 (2010) 90.
152. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys” American Society for Metals (1973)
153. H. R. Kotadia, O. Mokhtari, M. P. Clode, M. A. Green and S. H. Mannan, “Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates” J. Alloys Compd. 511 (2012) 176.
154. N. Hansen, “Hall–Petch relation and boundary strengthening” Scripta Materialia, 51 (2004) 801.
155. G. Zeng, S. D. McDonald, Q. Gu and K. Nogita, “Effect of Zn, Au, and In on the polymorphic phase transformation in Cu6Sn5 intermetallics” J. Mater. Res. 27 (2012) 2609.
156. H. F. Zou, H. J. Yang and Z. F. Zhang, “A study on the orientation relationship between the scallop-type Cu6Sn5 grains and (011) Cu substrate using electron backscattered diffraction” J. Appl. Phys, 106 (2009) 113512.
157. H. F. Zou, H. J. Yang and Z. F. Zhang, “Morphologies, orientation relationships and evolution of Cu 6 Sn 5 grains formed between molten Sn and Cu single crystals” Acta. Mater. 56 (2008) 2649.
158. F. Gao, T. Takemoto and H. Nishikawa, “Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing” Mater. Sci. Eng. A. 420 (2006) 39.
159. A. G. Tyurin and A. A. Shrainer, “Thermodynamics of Chemical and Electrochemical Stability of Brasses” Prot. Met. 43 (2007) 291.
160. E. J. Rapperport and J. P. Pemsler, “Activity measurements in dilute Cu-Zn solutions” Metall. Trans. 3 (1972) 827.
161. M. Kowalski and P. J. Spencer, “Thermodynamic reevaluation of the Cu-Zn system” J. Phase. Equilib, 14 (1993) 432.
162. W. Gierlotka and S. W. Chen, “Thermodynamic descriptions of the Cu–Zn system” J. Mater. Res. 23 (2011) 258.
163. A. M. Gusak and K. N. Tu, “Kinetic theory of flux-driven ripening” Phys. Rev. B, 66 (2002).
164. G. Zeng, S. D. McDonald, Q. Gu, S. Suenaga, Y. Zhang, J. Chen and K. Nogita, “Phase stability and thermal expansion behavior of Cu 6 Sn 5 intermetallics doped with Zn, Au and In” Intermetallics. 43 (2013) 85.
165. S. Chen, W. Zhou and P. Wu, “Effect of Zn Additions on the Mechanical Properties of Cu6Sn5-Based IMCs: Theoretical and Experimental Investigations” J. Electron. Mater. 44 (2015) 3920.
166. S. Chen, W. Zhou and P. Wu, “The structural, elastic, electronic and thermodynamic properties of hexagonal η-Cu 6− x Ni x Sn 5 (x= 0, 0.5, 1, 1.5 and 2) intermetallic compounds” Intermetallics, 54 (2014) 187.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 藉改變銅/錫銀/鎳微凸塊系統之金屬基材接合順序以調控介金屬化合物的相生成及演變機制
2. FePd及FePd/IrMn薄膜晶體結構與磁性質之研究
3. 探討焊料中銀含量及新穎銅鋅合金底層金屬對於微焊點微結構與機械性質之影響
4. 藉由銲料中銀含量的調變與表面處理材料之選擇探討錫銀銅焊接系統於高低溫循環測試下之失效機制與可靠度
5. 應用於鋰離子電池之錳系高工作電壓尖晶石正極材料與高電容量富鋰層狀氧化物之合成機制、結構分析與電化學性能探討
6. 以成分控制與田口實驗規劃法開發多功能之 Zr-Cu基金屬玻璃薄膜
7. 應用於無鉛銲點之低電阻薄鎳鈀金表面處理技術:界面相變化、接合強度及最佳鎳(磷)層厚度設計
8. 以奈米複合晶技術開發具優異高溫穩定性之多元氮化鉻鋁矽薄膜
9. 錫銀銅銲料與無電鍍鎳(磷)/鈀/金底層金屬之微觀結構、可靠度測試及結構方向性
10. 廢料之復活: 利用鍍膜及電漿表面改質技術於回收矽/碳化矽之複合材 與其鋰離子電池之應用
11. 以表面改質和奈米複合材料提升高功率型鈦酸鋰鋰離子負極材料
12. 利用高速擺錘衝擊與摔落測試評估單邊與雙邊接合銲料接面之界面反應、元素分佈、晶向生長結構與 機械性質可靠度
13. 錫基無鉛銲料與鎳、銅、及新穎銅鋅合金底層金屬接點之相關界面反應、微結構變化及衝擊可靠度
14. 利用鎳摻雜方法改質三維立體封裝中錫銀銅銲點之微觀結構、晶相特徵及改善可靠度
15. 探討奈米複合晶鉻鉬矽氮薄膜高溫磨耗行為及田口法製程優化提升薄膜強度與抗磨耗性能