|
1. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239. 2. K. N. Tu, “Solder Joint Technology”, Springer, New York, 2007. 3. J. H. Lau, “Solder joint reliability of flip chip and plastic ball grid array assemblies under thermal, mechanical and vibration condition” IEEE Trans. on Electron. Pack. Manuf. Tech. 19 (1996) 728. 4. T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials” Materials Science and Engineering: R: Reports, 49 (2005) 1. 5. C. M. Miller, I. E. Anderson and J. F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu” J. Electron. Mater. 23 (1994) 505 6. J. W. Yoon, B. I. Noh, B. K. Kim, C. C. Shur and S. B. Jung, “Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints” J. Alloys Compd. 486 (2009) 142. 7. E.F. De Monlevade and W. Peng, “Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects” J. Electron. Mater. 36 (2007) 783. 8. F. Lin, W. Bi, G. Ju, W. Wang and X. Wei, “Evolution of Ag3Sn at Sn–3.0Ag–0.3Cu–0.05Cr/Cu joint interfaces during thermal aging” J. Alloys Compd. 509 (2011) 6666. 9. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita and K. Takahashi, “Micro Cu Bump Interconnection on 3D Chip Stacking Technology” Japanese J. Appl. Phys. 43 (2004) 2264. 10. [10] K Sakuma, P. S. Andry, B. Dang, J. Maria, C. K. Tsang, C. Patel, S. L. Wright, B. Webb, E. Sprogis, S. K. Kang, R. Polastre, R. Horton, and J. U. Knickerbocker, “3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections” Proc. 57th Electronic Components and Technology Conf. (2007) pp. 627 11. X. Deng, R. S. Sidhu, P. Johnson and N. Chawla, “Influence of Reflow and Thermal Aging on the Shear Strength and Fracture Behavior of Sn-3.5Ag Solder/Cu Joints” Metall. Mater. Trans. A. 36A (2005) 55. 12. S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K. J. Puttlitz, “Ag3Sn Plate Formation in the Solidification of Near-Ternary Eutectic Sn-Ag-Cu” JOM (2003). 13. Y. Kurita, S. Matsui, N. Takahashi, K. Soejima, M. Komuro, M. Itou and M. Kawano, “Vertical Integration of Stacked DRAM and High-Speed Logic Device Using SMAFTI Technology” IEEE Trans. Adv. Packag. 32 (2009) 657. 14. C. Li, X. Wang, S. Song, and S. Liu, “21-Layer 3-D Chip Stacking Based on Cu–Sn Bump Bonding” IEEE Trans. on Electron. Pack. Manuf. Tech. 5 (2015) 627. 15. Y. Liu, N. Tamura, D.W. Kim, S. Gu, K.N. Tu, “A metastable phase of tin in 3D integrated circuit solder microbumps” Scripta Materialia. 102 (2015) 39. 16. J. Karppinen, J. Li, J. Pakarinen, T.T. Mattila, M. Paulasto-Kröckel, “Shock impact reliability characterization of a handheld product in accelerated tests and use environment” Microelectron. Reliab. 52 (2012) 190. 17. J. M. Song, Y. R. Liu, Y. S. Lai, Y. T. Chiu and N. C. Lee, “Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints” Microelectron. Reliab. 52 (2012) 180. 18. Z. Huang, P. Kumar, I. Dutta, J. H. L. Pang, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates: I. Effects of Loading and Processing Conditions” J. Electron. Mater. 41 (2011) 375. 19. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map” J. Electron. Mater. 41 (2011) 412. 20. A. Agwai, I. Guven and E. Madenci, “Drop-Shock Failure Prediction in Electronic Packages by Using Peridynamic Theory” IEEE Trans. on Electron. Pack. Manuf. Tech. 2 (2012) 439. 21. K.N. Tu, “Reliability challenges in 3D IC packaging technology, Microelectronics Reliability” 51 (2011) 517. 22. K.N. Tu and T. Tian, “Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products” Sci. China. Tech. Sci. 56 (2013) 1740. 23. J. H. Lau, “Evolution, challenge, and outlook of TSV, 3D IC integration and 3d silicon integration” International Symposium on Advanced Packaging Materials (2011) pp. 462 24. Y. Lv, M. Chen, M. Cai and S. Liu, “A reliable Cu–Sn stack bonding technology for 3D-TSV packaging” Semicond. Sci. Tech. 29 (2014) 025003. 25. H.H. Hsu, Y.T. Huang, S.Y. Huang, T.C. Chang and A.T. Wu, “Evolution of the Intermetallic Compounds in Ni/Sn-2.5Ag/Ni Microbumps for Three-Dimensional Integrated Circuits” J. Electron. Mater. 44 (2015) 3888. 26. S. H. Kim, G. T. Park, J. J. Park and Y. B. Park, “Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump” J. Nanosci. Nanotechno. 15 (2015) 8593. 27. Y. Liu, Y. T. Chen, S. Gu, D. W. Kim and K. N. Tu, “Fracture reliability concern of (Au, Ni)Sn4 phase in 3D integrated circuit microbumps using Ni/Au surface finishing” Scripta Materialia. 119 (2016) 9. 28. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne and K. J. Wolter, “Degradation of Cu6Sn5 intermetallic compound by pore formation in solid–liquid interdiffusion Cu/Sn microbump interconnects” Microelectron. Eng. 117 (2014) 26. 29. B. Talebanpour, Z. Huang, Z. Chen and I. Dutta, “Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages” J. Electron. Mater. 45 (2015) 57. 30. C. Y. Yu, T. K. Lee, M. Tsai, K. C. Liu and J. G. Duh, “Effects of Minor Ni Doping on Microstructural Variations and Interfacial Reactions in Cu/Sn-3.0Ag-0.5Cu-xNi/Au/Ni Sandwich Structures” J. Electron. Mater. 39 (2010) 2544. 31. I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications” J. Mater. Sci: Mater. Electron. 18 (2006) 55. 32. I. E. Anderson and J. L. Harringa, “Suppression of Void Coalescence in Thermal Aging of Tin-Silver-Copper-X Solder Joints” J. Electron. Mater. 35 (2006) 94. 33. M.G. Cho, S.K. Kang, D.-Y. Shih and H.M. Lee, “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging” J. Electron. Mater. 36 (2007) 1501. 34. F. Wang, X. Ma and Y. Qian, “Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition” Scripta Materialia. 53 (2005) 699. 35. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu and W.K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying”, JOM 56 (2004) 34. 36. C.M.L. Wu, D.Q. Yu, C.M.T. Law and L. Wang, “Properties of lead-free solder alloys with rare earth element additions” Mater. Sci. Eng: R: Reports, 44 (2004) 1. 37. Y. M. Kim, T. J. Kim, M.Y. Choi and Y.H. Kim, “Interfacial reactions between Sn–3.0Ag–0.5Cu solder and Cu–xZn (x=0–35wt%) or Cu–xZn–yNi (x=20 and 25wt%, y=15 and 10wt%) substrates” J Alloys Compd. 575 (2013) 350. 38. H. M. Lin and J. G. Duh, “Interfacial reaction between Sn–3.0Ag–0.5Cu liquid solder and Ni–xZn novel UBM layers” Surf. Coat. Tech. 206 (2011) 1941. 39. C. Y. Oh, H. R. Roh, Y. M. Kim, J. S. Lee, H.Y. Cho and Y.H. Kim, “A new solder wetting layer for Pb-free solders” J. Mater. Res. 24 (2011) 297. 40. C. F. Tseng, K. J. Wang, J. G. Duh, “Interfacial Reactions of Sn-3.0Ag-0.5Cu Solder with Cu-Mn UBM During Aging” J. Electron. Mater. 39 (2010) 2522. 41. F.X. Che, J.E. Luan and X. Baraton, “Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders”, Proc. 58th Electronic Components and Technology Conf. (2008) pp. 485-490. 42. W. H. Zhu, L. Xu, J. H. L. Pang, X. R. Zhang, E. Poh, Y. F. Sun, A. Y. S. Sun, C. K. Wang and H. B. Tan, “Drop Reliability Study of PBGA Assemblies with SAC305, SAC105 and SAC105-Ni Solder Ball on Cu-OSP and ENIG Surface Finish” Proc. 58th Electronic Components and Technology Conf. (2008) pp. 1667. 43. Y. W. Wang and C. R. Kao, “Development of Lead-Free Solders with Superior Drop Test Reliability Performance” ICEPT-HDP (2009) 534. 44. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman and K. Nogita, The influence of solder composition on the impact strength of lead-free solder ball grid array joints, Microelectron. Reliab. 51 (2011) 657. 45. M. Tanaka, T. Sasaki, T.i Kobayashi and K. Tatsumi, “Improvement in Drop Shock Reliability of Sn-1.2Ag-0.5Cu BGA Interconnects by Ni Addition” Proc. 56th Electronic Components and Technology Conf. (2006) pp. 78. 46. Y. W. Wang, C .C. Chang and C. R. Kao, “Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth” J Alloys Compd. 478 (2009) L1. 47. Y. M. Kim, K. M. Harr and Y. H. Kim, “Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate” Electron. Mater. Lett. 6 (2010) 151. 48. Y. M. Kim, H. R. Roh, S. Kim and Y. H. Kim, “Kinetics of Intermetallic Compound Formation at the Interface Between Sn-3.0Ag-0.5Cu Solder and Cu-Zn Alloy Substrates” J. Electron. Mater. 39 (2010) 2504. 49. C. Y. Yu and J. G. Duh, “Microstructural Variation and Phase Evolution in the Reaction of Sn-xAg-Cu Solders and Cu-yZn Substrates During Reflow” J. Electron. Mater. 39 (2010) 2627. 50. C. Y. Yu, K. J. Wang and J. G. Duh, “Interfacial Reaction of Sn and Cu-xZn Substrates After Reflow and Thermal Aging” J. Electron. Mater. 39 (2009) 230. 51. W. Y. Chen, C. Y. Yu and J. G. Duh, “Suppressing the growth of interfacial Cu–Sn intermetallic compounds in the Sn–3.0Ag–0.5Cu–0.1Ni/Cu–15Zn solder joint during thermal aging” J. Mater. Sci. 47 (2012) 4012. 52. C. Y. Yu, W. Y. Chen and J. G. Duh, “Suppressing the growth of Cu–Sn intermetallic compounds in Ni/Sn–Ag–Cu/Cu–Zn solder joints during thermal aging” Intermetallics. 26 (2012) 11. 53. H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li and C. Robert Kao, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages” IEEE Trans. Device Mater. Rel. 12 (2012) 233. 54. H. Y. Chuang, J. J. Yu, M. S. Kuo, H. M. Tong and C. R. Kao, “Elimination of voids in reactions between Ni and Sn: A novel effect of silver” Scripta Materialia. 66 (2012) 171. 55. R. W. Yang, Y. W. Chang, W. C. Sung and C. Chen, “Precipitation of large Ag3Sn intermetallic compounds in SnAg2.5 microbumps after multiple reflows in 3D-IC packaging” Mater. Chem. Phys. 134 (2012) 340. 56. L. Mo, Z. Chen, F. Wu and C. Liu, “Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition” Intermetallics. 66 (2015) 13. 57. R. Labie, W. Ruythooren and J. Van Humbeeck, “Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions” Intermetallics. 15 (2007) 396. 58. D. Li, C. Liu and P.P. Conway, “Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn–Ag–Cu flip-chip solder interconnects” Mater. Sci. Eng: A, 391 (2005) 95. 59. K. Sakuma1, K. Sueoka1, S. Kohara1, K. Matsumoto1, H. Noma1, T. oki, Y. Oyama, H. Nishiwaki, P. S. Andry, C. K. Tsang, J. U. Knickerbocker and Y. Orii, “IMC Bonding for 3D Interconnection” Proc. 60th Electronic Components and Technology Conf. (2010) pp. 864. 60. Y. Tian, R. Zhang, C. Hang, L. Niu and C. Wang, “Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads” Mater. Charact. 88 (2014) 58. 61. D. Mu, H. Yasuda, H. Huang and K. Nogita, Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu” J. Alloys Compd. 536 (2012) 38. 62. K. Chu, Y. Sohn and C. Moon, “A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding” Scripta Materialia. 109 (2015) 113. 63. J. F. Li, P. A. Agyakwa and C. M. Johnson, “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process” Acta Materialia. 59 (2011) 1198. 64. N. S. Bosco and F. W. Zok, “Strength of joints produced by transient liquid phase bonding in the Cu–Sn system” Acta Materialia, 53 (2005) 2019. 65. N.S. Bosco, F.W. Zok, “Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system” Acta Materialia. 52 (2004) 2965. 66. W. Y. Chen, T. T. Chou, W. Tu, H. C. Chang, C. J. Lee and J. G. Duh, “Retarding the Cu–Sn and Ag–Sn intermetallic compounds by applying Cu–xZn alloy on micro-bump in novel 3D-IC technologies” J. Mater. Sci: Mater Electron. 26 (2015) 2357. 67. R. Zhang, Y. Tian, C. Hang, B. Liu and C. Wang, “Formation mechanism and orientation of Cu3Sn grains in Cu–Sn intermetallic compound joints” Mater. Lett. 110 (2013) 137. 68. S. J. Wang, L. H. Hsu, N. K. Wang and C. E. Ho, “EBSD Investigation of Cu-Sn IMC Microstructural Evolution in Cu/Sn-Ag/Cu Microbumps During Isothermal Annealing” J. Electron. Mater. 43 (2013) 219. 69. H. Liu, K. Wang, K. E. Aasmundtveit and N. Hoivik, “Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding” J. Electron. Mater. 41 (2012) 2453. 70. A. Garnier, C. Grémion, R. Franiatte, D. Bouchu, R. Anciant and S. Chéramy, “Investigation Of Copper-Tin Transient Liquid Phase Bonding Reliability For 3D Integration” Proc. 63th Electronic Components and Technology Conf. (2013) pp. 2151. 71. B. H. Kwak, M. H. Jeong and Y. B. Park, “Effects of Temperature and Current Stressing on the Intermetallic Compounds Growth Characteristics of Cu Pillar/Sn–3.5Ag Microbump” Jpn. J. Appl. Phy. 51 (2012) 05EE05. 72. R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook”, 2nd edition, Van Nostrand Reihold, New York, 1997. 73. J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, 1995. 74. http://electronicdesign.com/components/future-looks-bright-3d-integration 75. P. Ramm, A. Klumpp, J. Weber and M. M. V. Taklo, “3D System-on-Chip technologies for More than Moore systems”, Microsyst Technol 16 (2010) 1051. 76. T. Y. Kuo, S. M. Chang, Y. C. Shih, C. W. Chiang, C. K. Hsu, C. K. Lee, C. T. Lin, Y. H. Chen and W. C. Lo, “Reliability Tests for a Three Dimensional Chip Stacking Structure with Through Silicon Via Connections and Low Cost” Proc. 58th Electronic Components and Technology Conf. (2008) pp. 853-858. 77. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239. 78. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, 1996, pp. 26-30.P.A. 79. J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and Applications”, McGraw-Hill, New York, 1999. 80. R. Beica, “Flip Chip Market and Technology Trends” EMPC (2013) 81. K.J. Puttlitz and K.A. Stalter, “Handbook of Lead-Free Solder Technology for Microelectronic Assemblies”, Marcel Dekker, Inc., New York, 2004, pp. 1-48. 82. C. A. Haper, “Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000. 83. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, pp.423. 84. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45 (1993) 25. 85. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free solder alloy with superior mechanical-properties” Appl. Phys. Lett. 63 (1993) 15. 86. K. Suganuma, “Advanced in lead-free electronics soldering” Current Opinion Solid State Mater. Sci. 5 (2001) 55. 87. C. S. Chang, A. Oscilowski and R. C. Bracken, “Future channenges in electronics packaging” IEEE Circuits Devices Mag. 14 (1998) 45. 88. M. Abtew and G. Selyaduray, “Lead-free solders in microelectronics” Mater. Sci. Eng. R 27 (2000) 95. 89. Vardaman, Surface Mount Technology Recent Japanese Developments, IEEE Press, New York, 1993, Part 4. 90. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Boston: PWS Publishing Company, 1994) 91. N. Chawla and R. S. Sidhu, “Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys” J Mater Sci: Mater Electron 18 (2007) 175. 92. H. Fei, K. Yazzie, N. Chawla and H. Jiang, “Modeling Fracture of Sn-Rich (Pb-Free) Solder Joints Under Mechanical Shock Conditions” J. Electron. Mater. 41 (2012) 2089. 93. C. Y. Yu and J. G. Duh, “Stabilization of hexagonal Cu6(Sn,Zn)5 by minor Zn doping of Sn-based solder joints” Scripta Mater 65 (2011) 783. 94. W. Y. Chen, C. Y. Yu and J. G. Duh, “Improving the shear strength of Sn-Ag-Cu-Ni/Cu-Zn solder joints via modifying the microstructure and phase stability of Cu-Sn intermetallic compounds” Intermetallics 54 (2014) 181. 95. G. Ghosh, “Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging” J. Mater. Res. 19 (2004) 1439. 96. C. Y. Yu, W. Y. Chen and J. G. Duh, “Improving the impact toughness of Sn–Ag–Cu/Cu–Zn Pb-free solder joints under high speed shear testing” J. Alloys Compd. 586 (2014) 633. 97. http://www.crct.polymtl.ca/fact/documentation/BINARY/Cu-Sn.jpg 98. K. J. Wang, Y. C. Lin and Jenq-Gong Duh, “In situ investigation of the interfacial reaction in Sn/Cu system by synchrotron radiation” J. Mater. Res. 25 (2010) 972. 99. T.Y. Kanga, Y.Y. Xiub, C.Z. Liub, L. Hui, J.J. Wang and W.P. Tong, “Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect” J. Alloys Compd 509 (2011) 1785. 100. F. Gao, H. Nishikawa and T. Takemoto, “Additive Effect of Kirkendall Void Formation in Sn-3.5Ag Solder Joints on Common Substrates” J. Electron. Mater. 37 (2008) 45. 101. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508. 102. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys” Mater. Sci. Eng. A 333 (2002) 106. 103. D. Monlevade, Eduardo, and Weiqun Peng. “Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects” J. Electron. Mater. 36 (2007) 783. 104. T.C. Chiu, K. Zeng, R. Stierman, D. Edwards, and K. Ano, “Effect of Thermal ging on Board Level Drop Reliability for Pb-free BGA Packages’’, Proc. 54th Electronic Components and Technology Conf., pp. 1256-1262. 105. K. Nogita. and T. Nishimura, “Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys” Scripta Materialia 59 (2008) 191. 106. K. Nogita. “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys” Intermetallics 18 (2010) 145. 107. K. Nogita, D. Mu, S.D. McDonald, J. Read and Y.Q. Wu, “Effect of Ni on phase stability and thermal expansion of Cu6-xNixSn5 (X= 0, 0.5, 1, 1.5 and 2)” Intermetallics 26 (2012) 78. 108. W.H. Zhu, L. Xu, J.H.L Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y.S. Sun, et al, Drop reliability study of PBGA assemblies with SAC305, SAC105 and SAC105-Ni solder ball on Cu-OSP and ENIG surface finish, Electronic Components & Technology Conference, Proceedings, 58 th, Florida, 2008, pp. 1667-1672 109. M. Tanaka, T. Sasaki, T. Kobayashi, K. Tatsumi, Improvement in drop shock reliability of Sn-1.2Ag-0.5Cu BGA interconnects by Ni addition, Electronic Components & Technology Conference, Proceedings, 56 th, San Diego, 2006, pp. 78-84 110. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, K. Nogita, The influence of solder composition on the impact strength of lead-free solder ball grid array joints, Microelectron. Reliab. 51 (2011) 657-667. 111. A. Syed, T.S. Kim, Y.M. Cho, C.W. Kim, M. Yoo, Alloying effect of Ni, Co, and Sb in SAC solder for improved drop performance of chip scale packages with cu OSP pad finish, Electronic Packaging Technology Conference, 8 th, Singapore, 2006, pp. 404-411 112. D.S. Jiang, Y.P. Wang, C.S. Hsiao, Effect of minor doping elements on lead free solder joint quality, Electronic Packaging Technology Conference, 8 th, Singapore, 2006, pp. 385-389 113. A.A. El-Daly, A.M. El-Taher, Improved strength of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solder alloys under controlled processing parameters, Mater. Des. 47 (2013) 607-614. 114. P. Liu, P. Yao, J. Liu, Evolutions of the interface and shear strength between SnAgCu–xNi solder and Cu substrate during isothermal aging at 150°C, J. Alloys Compod. 486 (2009) 474-479. 115. C.M. Chuang, P.C. Shih, K.L. Lin, Mechanical strength of Sn-3.5Ag-based solders and related bondings, J. Electron. Mater. 33 (2004) 1-6. 116. F.J. Wang, X. Ma and Y. Qian, “Improvement of microstructure and interface structure of eutectic Sn-0.7Cu solder with small amount of Zn addition”, Scripta Mater. 53 (2005) 699. 117. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho and J. Yu, “Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition”, J. Electron. Mater. 35 (2006) 479. 118. S.C. Yang, C.E. Ho, C.W. Chang and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res. 21 (2006) 2436 119. S.C. Yang, Y.W. Wang, C.C. Chang and C.R. Kao, “Analysis and experimental verification of the volume effect in the reaction between Zn-doped solders and Cu”, J. Electron. Mater. 37 (2008) 1591. 120. N. Hamada, T. Uesugi, Y. Takigawa, K. Higashi, Effects of Zn addition and aging treatment on tensile properties of Sn–Ag–Cu alloys. J. Alloys Compd. 527, 226-232 (2012) 121. Z.B. Luo, J. Zhao, Y.J. Gao, L. Wang, Revisiting mechanisms to inhibit Ag3Sn plates in Sn–Ag–Cu solders with 1wt.% Zn addition. J. Alloys Compd. 500, 39-45 (2010) 122. D. Liu and S. Park, “Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art” J. Electron. Packag. 136 (2014) 014001-1 123. C. Maxfield, “2D vs. 2.5D vs. 3D ICs 101,” EE Times (2012) 124. G. Pares, F. De Crecy, S. Moreau, C. Maurice, A. Borbely, J. Mazuir, L. L. Chapelon and N. Sillon, “Assessment and Characterization of Stress Induced by Via-First TSV Technology,” J. Microelectron. Electron. Packag. 8(4) (2011) 129. 125. R. He, H. Wang, J. Zhou, X. Guo, D. Yu and L. Wan, “Nonlinear Thermo-Mechanical Analysis of TSV Interposer Filling With Solder, Cu and Cu-Cored Solder,” 12th ICEPT-HDP (2011) 126. S. W. R. Lee, R. Hon, S. X. D. Zhang and C. K. Wong, “3D Stacked Flip Chip Packaging With Through Silicon Vias and Copper Plating or Conductive Adhesive Filling,” Electronic Components & Technology Conference, Proceedings, 55 th, Lake Buena Vista, 2005, pp. 795 127. V. Venkatadri, B. Sammakia, K. Srihari and D. Santos, “A Review of Recent Advances in Thermal Management in Three Dimensional Chip Stacks in Electronic Systems” J. Electron. Packag. 133(4) (2011) 041011. 128. S. Onkaraiah and T. Chuan Seng, “Mitigating Heat Dissipation and Thermo-Mechanical Stress Challenges in 3-D IC Using Thermal Through Silicon Via (TTSV),” Proc. 60th Electronic Components and Technology Conf. (2010) pp. 411. 129. M. Santarini, “Stacked & Loaded: Xilinx SSI, 28-Gbps I/O Yield Amazing FPGAs” Xcell J. 74 (2011) 8. 130. B. Banijamali, S. Ramalingam, K. Nagarajan and R. Chaware, “Advanced Reliability Study of TSV Interposers and Interconnects for the 28nm Technology FPGA” Proc. 61th Electronic Components and Technology Conf. (2011) pp. 285. 131. T. L. Yang, J. J. Yu, W. L. Shih, C. H. Hsueh and C. R. Kao, “Effects of silver addition on Cu–Sn microjoints for chip-stacking applications” J. Alloys Compd. 605 (2014) 193. 132. Y. J. Chena, C. K. Chung, C. R. Yang and C. R. Kao, “Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics” Microelectron. Reliab. 53 (2013) 47. 133. B. Ebersberger and C. Lee, “Cu Pillar Bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects”, Proc. Electronic Components and Technology Conf. Proc. 57th (2008) p. 59. 134. W. Y. Chen,W. Tu, H. C. Chang, T. T. Chou and J. G. Duh, “Growth orientation of Cu–Sn IMC in Cu/Sn–3.5Ag/Cu–xZn microbumps and Zn-doped solder joints” Mater. Lett. 134 (2014) 184. 135. C. Hang, Y. Tian, R. Zhang and D. Yang, “Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process” J. Mater. Sci: Mater. Electron. 24 (2013) 3905. 136. A. T. Tan, A. W. Tan and F. Yusof, “Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions” Sci. Technol. Adv. Mater. 16 (2015) 033505. 137. C. F. Tseng and J. G. Duh, “Correlation between microstructure evolution and mechanical strength in the Sn–3.0Ag–0.5Cu/ENEPIG solder joint” Mater. Sci. Eng: A. 580 (2013) 169. 138. A. Hayashi, C. R. Kao, Y. A. Chang, “Reactions of Solid Copper with Pure Liquid Tin and Liquid Tin Saturated with Copper” Scripta Mater 37 (1997) 393. 139. K. Nogita, C.M. Gourlay and T. Nishimura, “Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates”, JOM 61 (2009) 45. 140. U. Schwingenschlogl, C.D. Paola, K. Nogita and C.M. Gourlay, “The influence of Ni additions on the relative stability of η and η’ Cu6Sn5”, Appl. Phys. Lett. 96 (2010) 061908. 141. S. Wang and C. Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint” Scripta Mater 55 (2006) 347. 142. S. J. Wang and C. Y. Liu, “Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structures” Mater 35 (2006) 1955. 143. J. Chang, S. Seo and H. M. Lee, “Phase Equilibria in the Sn-Ni-Zn Ternary System: Isothermal Sections at 200A degrees C, 500A degrees C, and 800A degrees C” J. Electron. Mater 39 (2010) 2643. 144. C. Y. Li, G. J. Chiou and J. G. Duh, “Phase Distribution and Phase Analysis in Cu6Sn5, Ni3Sn4, and the Sn-Rich Corner in the Ternary Sn-Cu-Ni Isotherm at 240°C” J. Electron. Mater. 35 (2006) 343. 145. A. J. Sunwoo, J. W. Morris and G. K. Lucey, “The Growth of Cu-Sn Intermetallics at a Pretinned Copper-Solder Interface” Metall. Trans. A. 23 (1992) 1323. 146. K. Nogita, C. M. Gourlay, J. Read, T. Nishimura, S. Suenaga and A. K. Dahle, “Effects of Phosphorus on Microstructure and Fluidity of Sn-0.7Cu-0.05Ni Lead-Free Solder” Mater. Trans. 49 (2008) 443. 147. M. L. Huang, F. Yang, N. Zhao and Y. C. Yang, “Synchrotron radiation real-time in situ study on dissolution and precipitation of Ag3Sn plates in sub-50μm Sn–Ag–Cu solder bumps” J. Alloys Compd. 602 (2014) 281. 148. R. Kinyanjui, L. P. Lehman, L. Zavalij and E. Cotts, “Effect of Sample Size on the Solidification Temperature and Microstructure of SnAgCu Near Eutectic Alloys” J. Mater. Res. 20 (2011) 2914. 149. X. Hu and Z. Ke, “Growth behavior of interfacial Cu–Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging” J. Mater. Sci-Mater. El. 25 (2013) 936. 150. G. T. Lim, B. J. Kim, K. Lee, J. Kim, Y. C. Joo and Y. B. Park, “Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps” J. Electron. Mater. 38 (2009) 2228. 151. W. M. Tang, A. Q. He, Q. Liu and D. G. Ivey, “Solid state interfacial reactions in electrodeposited Cu/Sn couples” T. Nonferr. Metal. Soc. 20 (2010) 90. 152. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys” American Society for Metals (1973) 153. H. R. Kotadia, O. Mokhtari, M. P. Clode, M. A. Green and S. H. Mannan, “Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates” J. Alloys Compd. 511 (2012) 176. 154. N. Hansen, “Hall–Petch relation and boundary strengthening” Scripta Materialia, 51 (2004) 801. 155. G. Zeng, S. D. McDonald, Q. Gu and K. Nogita, “Effect of Zn, Au, and In on the polymorphic phase transformation in Cu6Sn5 intermetallics” J. Mater. Res. 27 (2012) 2609. 156. H. F. Zou, H. J. Yang and Z. F. Zhang, “A study on the orientation relationship between the scallop-type Cu6Sn5 grains and (011) Cu substrate using electron backscattered diffraction” J. Appl. Phys, 106 (2009) 113512. 157. H. F. Zou, H. J. Yang and Z. F. Zhang, “Morphologies, orientation relationships and evolution of Cu 6 Sn 5 grains formed between molten Sn and Cu single crystals” Acta. Mater. 56 (2008) 2649. 158. F. Gao, T. Takemoto and H. Nishikawa, “Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing” Mater. Sci. Eng. A. 420 (2006) 39. 159. A. G. Tyurin and A. A. Shrainer, “Thermodynamics of Chemical and Electrochemical Stability of Brasses” Prot. Met. 43 (2007) 291. 160. E. J. Rapperport and J. P. Pemsler, “Activity measurements in dilute Cu-Zn solutions” Metall. Trans. 3 (1972) 827. 161. M. Kowalski and P. J. Spencer, “Thermodynamic reevaluation of the Cu-Zn system” J. Phase. Equilib, 14 (1993) 432. 162. W. Gierlotka and S. W. Chen, “Thermodynamic descriptions of the Cu–Zn system” J. Mater. Res. 23 (2011) 258. 163. A. M. Gusak and K. N. Tu, “Kinetic theory of flux-driven ripening” Phys. Rev. B, 66 (2002). 164. G. Zeng, S. D. McDonald, Q. Gu, S. Suenaga, Y. Zhang, J. Chen and K. Nogita, “Phase stability and thermal expansion behavior of Cu 6 Sn 5 intermetallics doped with Zn, Au and In” Intermetallics. 43 (2013) 85. 165. S. Chen, W. Zhou and P. Wu, “Effect of Zn Additions on the Mechanical Properties of Cu6Sn5-Based IMCs: Theoretical and Experimental Investigations” J. Electron. Mater. 44 (2015) 3920. 166. S. Chen, W. Zhou and P. Wu, “The structural, elastic, electronic and thermodynamic properties of hexagonal η-Cu 6− x Ni x Sn 5 (x= 0, 0.5, 1, 1.5 and 2) intermetallic compounds” Intermetallics, 54 (2014) 187.
|