(3.239.192.241) 您好!臺灣時間:2021/03/02 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周泓濤
研究生(外文):Chou, Hung-Tao
論文名稱:石墨烯基材料之合成暨其於生物電化學和光熱上之應用
論文名稱(外文):Syntheses of graphene-based materials for bioelectrochemical and photothermal applications
指導教授:戴念華戴念華引用關係
指導教授(外文):Tai, Nyan-Hwa
口試委員:李紫原林建宏張晃猷郭文雄陳盈潔
口試委員(外文):Lee, Chi-YoungLin, Jaeen-HorngChanh, Hwan-YouKuo, Wen-ShyongChen, Ying-Chieh
口試日期:2017-02-17
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:157
中文關鍵詞:石墨烯氧化石墨烯微生物電池生物感測器智能玻璃水氣收集光熱反應
外文關鍵詞:graphenegraphene oxidemicrobial fuel cellbiosensorsmart glassfog harvestingphotothermal effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備以石墨烯為基礎的複合材料並探討此複合材料於生物電化學和光熱性質相關的應用。研究中分別利用石墨烯為鍍材與抗原載體,利用其高比表面積與導電的特性,發展出高耐久度的微生物電池和高敏感度的電冷光生物感測器。此外本研究中也製備碳材料/聚異丙基丙烯醯胺(PNIPAM)複合材料,利用碳材料本身具備的光熱轉換特性,發展智慧變色玻璃和近紅外光控制閘道。
首先,本研究採用成本低廉、製程簡單之浸鍍方式製備碳材料浸鍍三聚氰胺海綿,以此作為微生物電池的陽極,提供一具備高生物相容性、利於大腸桿菌生長的導電網路。該結構具備多孔和高比表面積的特性,除了大幅提高大腸桿菌的貼覆面積外,亦具備良好的物質傳輸速率,顯著地提升微生物電池的表現,除了有極佳的電流密度輸出(可達335 A m-3)更大幅提升電池的耐久度,於37度環境下,電池可穩定運作20天。
接著本研究運用石墨烯高比表面積、高導電性和表面官能基眾多的特性,設計一結合鍍銀氧化石墨烯、铷錯合物和anti-T3抗體的奈米碳針,運用在電冷光奈米探針式生物傳感器中。該探針可藉由施以電力,電泳至陽極生成冷光,並藉此光學訊號判斷檢測物甲狀腺分子的濃度。結果顯示,其有效偵測區間為0.1 pg/mL到 0.8 ng/mL,偵測靈敏度可達0.05 pg/mL。此外,此奈米探針式生物傳感器在擬血漿的環境中運作依然具備良好的專一性
於第三部分研究成果中,製備一以PNIPAM和氧化石墨烯為填充物的智慧玻璃。均勻分散於水膠中,此智慧玻璃包含具光熱轉換能力的氧化石墨烯,因此使此玻璃具自我調節透光能力,其在日光照射下,透光度可由92%降為0%,可屏蔽光線射入屋內,避免空間持續升溫。此外,利用水膠內部的氧化石墨烯吸附有色有機溶液極強的特性,該智慧型玻璃可具備不同的色彩。
最後本研究以多巴胺為中間層、開發環保無毒、步驟簡易的碳纖維布改植方式,將二氧化鈦顆粒和PNIPAM分別嫁接於碳纖維布上,使其分別帶有超疏水和溫度響應的特性。藉由組合具備超疏水特性和親水特性兩種不同表面潤濕性的碳纖維布,於霧氣收集實驗中,可獲得206 mg cm-2h-1的收集效率。此外研究結果顯示,具備溫度響應特性的改質碳纖維布,在水氣逸散調節和紅外光雷射控制的液體閘道有極大的潛力。
This dissertation aims to explore bioelectrochemical- and photothermal-related applications using graphene-based composite materials. A highly durable microbial fuel cell (MFC) and a highly sensitive electrochemiluminescence (ECL) biosensor for the detection of 3,3′,5-triiodothyronine (T3) were designed using reduced graphene oxide as the coating material as well as the biomolecule carrier, attributing to high electroconductivity and high surface to volume ratio of graphene. In addition, because of the intrinsic high photothermal conversion rates, carbon materials integrated with poly(N- isopropylacrylamide) (PNIPAM) can be used for the applications of a smart window and a near-infrared (NIR) light-controllable valve.
First, through a facile and cost-effective dip-coating process, carbon materials-coated melamine sponge was fabricated for MFC’s bioanode, providing a conductive network for the transfer of electrons and excellent biocompatibility for the proliferation of Escherichia coli. The scaffold with high porosity and large specific area not only provided a large specific area for the immobilization of E. coli but also possessed high mass transfer rate, improving the MFC performance with a maximum current density of 335 Am3 and a remarkably durable lifetime of 20 days at 37 °C.
Then, a nanoprobe used in an ECL biosensor was designed, comprising three components, silver nanoparticles decorated with functionalized GO, a ruthenium complex, and an anti-T3 antibody, using the features of high aspect surface ratio, high conductivity, and numerous moieties of GO. By supplying electricity, the GO-based nanoprobe underwent electrophoresis to the anode at which ECL was induced, generating a signal corresponding to the T3 molecule concentration. T3 was quantitatively measured in the range from 0.1 pg/mL to 0.8 ng/mL with a detection limit of 0.05 pg/mL. In addition, the novel immunosensor exhibited good specificity in the presence of serum.
Subsequently, smart glasses loaded with GO-impregnated PNIPAM hydrogel were also prepared. By uniformly intercalating photothermic GO within a thermotropic PNIPAM hydrogel, this automatically smart glass could transform its transparency from 92% to 0% under the sunshine; as a result, screening sunlight and preventing further increase in temperature of a space. In addition, the GO-impregnated thermotropic hydrogel absorbed colored organic solvents, affording a smart glass with arbitrary color.
Finally, an eco-friendly, facile, and efficient method was proposed using dopamine as the base for the secondary immobilization of titanium oxide (TiO2) and PNIPAM on carbon fiber clothes (CFCs), which render CFCs with properties of superhydrophobicity and thermo-responsiveness. A CFC with periodic superhydrophobic-hydrophilic patterns comprising TiO2@CFC and PD-coated hydrophilic striped patterns exhibited excellent performance for water harvesting at rates of 206 mg cm2 h1. In addition, the results reported in the dissertation indicated that the modification of a surface with characteristics of temperature responsiveness demonstrates significant potential for the adjustment of water evaporation, as well as NIR-controllable valves.
Outline
摘要 II
Abstract III
誌謝 IV
Outline V
Table List VII
Figure List VIII
Chapter 1 Overview 1
1.1 Introduction to carbon materials 1
1.1.1 Graphene-based materials 2
1.1.2 Carbon nanotube/carbon fiber 3
1.1.3 Bioelectrochemical applications of graphene-based materials 5
1.1.4 Photothermal-related applications of graphene-based materials 7
1.2 Introduction to MFCs 8
1.2.1 Mechanism and category of MFCs 9
1.2.2 Applications of carbon materials in MFC 10
1.3 Introduction to electrochemiluminescence biosensors 12
1.3.1 Mechanism and category of ECL biosensors 12
1.3.2 Applications of carbon materials in ECL biosensors 14
1.4 Introduction to poly(N-isopropylacrylamide) (PNIPAM) 16
1.4.1 Grafting of PNIPAM 17
1.4.2 Applications of PNIAPM 18
1.4.3 Applications of carbon materials–PNIPAM hybrid composite 20
1.5 Aims of this investigation 22
1.6 Organization 22
Chapter 2 Experiments and Characterizations 36
2.1 Syntheses of graphene based materials 36
2.1.1 Synthesis of GO 36
2.1.2 Synthesis of functionalized GO (fGO) 37
2.1.3 Synthesis of RGO 37
2.1.4 Synthesis of functionalized RGO (fRGO) 38
2.1.5 Synthesis of functionalized MWCNT (fMWCNT) 38
2.2 Fabrications of composites 39
2.2.1 Preparation of sponges coated with fRGO and fMWCNT used as anode in MFC 39
2.2.2 Preparation of silver nanoparticle decorated fGO (Ag@fGO) and Ag@fGO-based nanoprobe used in biosensor 40
2.2.3 Preparation of PNIPAM hydrogel impregnated with GO (GO/PNIPAM) 41
2.2.4 Preparation of surface modified CFCs with TiO2 decoration or PNIPAM immobilization 41
2.3 Characterization technique 43
Chapter 3 Highly durable anodes of MFC using a reduced graphene oxide/carbon nanotube-coated scaffold 45
3.1 Research background 45
3.2 Experiments 45
3.3 Results and discussion 46
3.3.1 Characterization of carbon material 46
3.3.2 Morphologies of RGO/CNT sponge anode 48
3.3.3 Current output and durability of MFC 49
3.3.4 Quantity evaluation of bacteria colonised on anode 51
3.4 Summaries 53
Chapter 4 An ultrasensitive sandwich type electrochemiluminescence immunosensor for T3 detection using silver nanoparticle-decorated graphene oxide as a nanocarrier 63
4.1 Research background 63
4.2 Experiments 64
4.3 Results and discussion 65
4.3.1 Acting mechanism of the Ag@fGO-T3 ECL immunosensor 65
4.3.2 Characterization of Ag@fGO and Ag@fGO-T3 nanoprobe 66
4.3.3 ECL behavior of the immunosensors 68
4.3.4 Long-term performance, specificity and reproducibility of the immunosensor 70
4.4 Summaries 71
Chapter 5 Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency 84
5.1 Research background 84
5.2 Experiments 85
5.3 Results and discussion 86
5.3.1 Characterization of GO/PNIPAM 86
5.3.2 Optical characteristics of smart glass 88
5.3.3 Cooling capability of the hydrogel glass 90
5.3.4 Fabrication of colored smart glass 93
5.4 Summaries 94
Chapter 6 Fabrication and application of PD-modified CFC immobilized with PNIPAM 103
6.1 Research background 103
6.2 Experiments 104
6.3 Results and discussion 105
6.3.1 Characterization of surface-modified CFCs 105
6.3.2 Fog harvesting efficiency of different surface-modified CFCs 108
6.3.3 Water dissipation adjustment using surface-modified CFCs 111
6.3.4 NIR-controllable valve using PNIPAM-PD/TiO2@ CFCs 112
6.4 Summaries 113
Chapter 7 Conclusions 126
References 129
Publication list 156
References
[1] A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007.
[2] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M.G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192-200, 2012.
[3] Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z.Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. M. Cheng, “Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, 2009.
[4] T. Wu, J. Gao, X. Xu, W. Wang, C. Gao, and H. Qiu, “A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles,” Nanotechnology, vol. 24, no. 21, p. 215604, 2013.
[5] Y. Si and E. T. Samulski, “Synthesis of water soluble graphene,” Nano Lett., vol. 8, no. 6, pp. 1679–1682, 2008.
[6] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids,” Nat. Mater., vol. 13, no. 6, pp. 624-630 (2014).
[7] L. Y. Jiao, L. Zhang, X. R Wang, G. Diankov, and H. J. Dai, “Narrow graphene nanoribbons from carbon nanotubes,” Nature, vol. 458, no. 7240, pp. 877-880 (2009).
[8] S. Kim, R. Sergiienko, E. Shibata, Y. Hayasaka, and T. Nakamura, “Production of graphite nanosheets by low-current plasma discharge in liquid ethanol,” Mater. Trans., vol. 51, no. 8, pp. 1455-1459 (2010).
[9] W. F. Zhao, M. Fang, F. R. Wu, H. Wu, L. W. Wang, and G. H. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem., vol. 20, no. 28, pp. 5817-5819, 2010.
[10] S. H. Aboutalebi, M. M. Gudarzi, Q. BinZheng, and J. K. Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater., vol. 21, no. 15, pp. 2978–2988, 2011.
[11] Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater., vol. 22, no. 35, pp. 3906-3924, 2010.
[12] H. Y. He, J. Klinowski, M. Forster, and A. Lerf, “A new structural model for graphite oxide,” Chem. Phys. Lett., vol. 287, pp. 53-56, 1998.
[13] D. R. Dreyer, S. Park, C. W. Bielawski, an R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev., vol. 39, no. 1, pp. 228–240, 2010.
[14] H.C. Gao, Y.M. Sun, J.J Zhou, R. Xu, and H.W. Duan, “Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification,” ACS Appl. Mater. Interfaces, vol. 5, no. 2, pp. 425-432, 2013.
[15] Z. Dong, D.Wang, X. Liu, X. Pei, L. Chen, and J. Jin, “Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity,” J. Mater. Chem. A, vol. 2, no. 14, pp. 5034–5040, 2014.
[16] D. D. Nguyen, N. H. Tai, S. B. Lee, and W. S. Kuo, “Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method,” Energy Environ. Sci., vol. 5, no. 7, pp. 7908, 2012.
[17] J. Zhang, J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, and S. Guo, “Graphene oxide as a matrix for enzyme immobilization,” Langmuir, vol. 26, no. 9, pp. 6083–6085, 2010.
[18] Q. Li, F. Fan, Y. Wang, W. Feng, and P. Ji, “Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent,” Ind. Eng. Chem. Res., vol. 52, no. 19, pp. 6343–6348, 2013.
[19] Y. Xu, K. Sheng, C. Li, and G. Shi, “Self-assembled graphene hydrogel via a one-step hydrothermal process,” ACS Nano, vol. 4, no. 7, pp. 4324–4330, 2010.
[20] S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R. B. Kaner, “A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents,” ACS Nano, vol. 4, no. 7, pp. 3845–3852, 2010.
[21] G. Williams, B. Seger, and P. V. Kamt, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano, vol. 2, no. 7, pp. 1487–1491, 2008.
[22] W. Chen, L. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C, vol. 114, no. 47, pp. 19885–19890, 2010.
[23] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[24] M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions,” J. Phys. Chem. C, vol. 114, no. 14, pp. 6426–6432, 2010.
[25] S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R. S. Ruoff, “Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition,” J. Phys. Chem. Lett., vol. 1, no. 8, pp. 1259–1263, 2010.
[26] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991.
[27] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993.
[28] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, “Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates,” Nano Lett., vol. 9, no. 9, pp. 3137–3141, 2009.
[29] J. W. Mintmire, B. I. Dunlap, and C. T.White, “Are fullerene tubules metallic?,” Phys. Rev. Lett., vol. 68, no. 5, pp. 631–634, 1992.
[30] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, ”Electrical conductivity of indivial carbon nanotubes,” Nature, vol. 382, no. 4, pp. 54-56, 1993.
[31] T. Lee, C. H. Ooi, R.Othman, and F. Y. Yeoh, “Activated carbon fiber- the hybrid of carbon fiber and activated carbon,” Rev. Adv. Mater. Sci., vol. 36, pp. 118–136, 2014.
[32] K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, “High-performance carbon nanotube fiber,” Science, vol. 318, no. 5858, pp. 1892–1895, 2007.
[33] M. D. Stoller, S. Park, Z. Yanwu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008.
[34] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett., vol. 92, no. 15, pp. 151911, 2008.
[35] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
[36] P. Blake, P. D. Brimicombe, R. R.Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene- based liquid crystal device,” Nano Lett., vol. 8, no. 6, pp. 1704–1708, 2008.
[37] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: A review,” Electroanalysis, vol. 22, no. 10. pp. 1027–1036, 2010.
[38] D. S. Yu, L. M. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors,” J. Phys. Chem. Lett., vol. 1, no. 2, pp. 467-470, 2010.
[39] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature, vol. 448, no. 7152, pp. 457–460, 2007.
[40] B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, “3D macroporous graphene frameworks for supercapacitors with high energy and power densities,” ACS Nano, vol. 6, no. 5, pp. 4020–4028, 2012.
[41] C. Li and G. Shi, “Three-dimensional graphene architectures,” Nanoscale, vol. 4, no. 18, pp. 5549–63, 2012.
[42] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, “Electrochemical biosensors,” Chem. Soc. Rev., vol. 39, no. 5, p. 1747, 2010.
[43] J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, “Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring,” ACS Appl. Mater. Interfaces, vol. 7, no. 11, pp. 6317–6324, 2015.
[44] L. Chen, X. Wang, X. Zhang, and H. Zhang, “3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2,” J. Mater. Chem., vol. 22, no. 41, p. 22090, 2012.
[45] Y. Z. Zhang, G. Q. Mo, X. W. Li, W. D. Zhang, J. Q. Zhang, J. S. Ye, X. D. Huang, and C. Z. Yu, “A graphene modified anode to improve the performance of microbial fuel cells,” J. Power Sources, vol. 196, no. 13, pp. 5402–5407, 2011.
[46] X. Wang, J. Wang, H. Cheng, P. Yu, J. Ye, and L. Mao, “Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices,” Langmuir, vol. 27, no. 17, pp. 11180–11186, 2011.
[47] J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D.Vinh, and H.Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc., vol. 133, no. 17, pp. 6825–6831, 2011.
[48] F. Zhou, D. Xing, Z. Ou, B.Wu, D. E.Resasco, and W. R.Chen, “Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.,” J. Biomed. Opt., vol. 14, no. 2, p. 21009, 2014.
[49] K. Yang, L. Feng, X. Shi, and Z. Liu, “Nano-graphene in biomedicine: theranostic applications,” Chem. Soc. Rev., vol. 42, no. 2, pp. 530–547, 2013.
[50] P. Kumar, K. S. Subrahmanyam, and C. N. R. Rao, “Graphene produced by radiation- induced reduction of graphene oxide,” Int. J. Nanosci., vol. 10, pp. 559–566, 2010.
[51] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B.Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science, vol. 297, no. 5581, pp. 593–596, 2002.
[52] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett., vol. 10, no. 9, pp. 3318–3323, 2010.
[53] Y. Mohan, S. Manoj Muthu Kumar, and D. Das, “Electricity generation using microbial fuel cells,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 423–426, 2008.
[54] K. Rabaey and W. Verstraete, “Microbial fuel cells: Novel biotechnology for energy generation,” Trends Biotechnol., vol. 23, no. 6. pp. 291–298, 2005.
[55] A. Shukla, P. Suresh, S. Berchmans, and A. Rajendran, “Biological fuel cells and their applications,” Curr. Sci., vol. 87, no. 4, pp. 455–468, 2004.
[56] C. A.Vega and I. Fernández, “Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens,” Bioelectrochemistry Bioenerg., vol. 17, no. 2, pp. 217–222, 1987.
[57] L. M. Tender, S. A. Gray, E. Groveman, D. A. Lowy, P. Kauffman, J. Melhado, R. C. Tyce, D. Flynn, R. Petrecca, J. Dobarro, “The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy,” J. Power Sources, vol. 179, no. 21, pp. 571–575, 2008.
[58] Y. Yang, G. Sun, and M. Xu, “Microbial fuel cells come of age,” J. Chem. Technol. Biotechnol., vol. 86, pp. 625–632, 2011.
[59] J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S.Cho, and B. H. Kim, “Construction and operation of a novel mediator- and membrane-less microbial fuel cell,” Process Biochem., vol. 39, no. 8, pp. 1007–1012, 2004.
[60] B. E. Logan and J. M. Regan, “Microbial fuel cells--challenges and applications.,” Environ. Sci. Technol., vol. 40, no. 17, pp. 5172–5180, 2006.
[61] K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency,” Biotechnol. Lett., vol. 25, no. 18, pp. 1531–1535, 2003.
[62] E. Herrero-Hernandez, T. J. Smith, and R. Akid, “Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell,” Biosens. Bioelectron., vol. 39, no. 1, pp. 194–198, 2013.
[63] D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus, “Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production,” Appl. Environ. Microbiol., vol. 65, no. 7, pp. 2912–2917, 1999.
[64] D. R. Bond, D. E.Holmes, L. M.Tender, D. R.Lovley, C. E.Reimers, L. M.Tender, S.Fertig, W. Wang, D. L. Lane, J. R. Marchesi, D. J. Lonergan, N. Pfennig, H. Biebl, E. E. Roden, D. R. Lovley, D. R. Lovley, F. H. Chapelle, D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, J. C. Woodward, D. R. Lovley, D. H. Park, J. G. Zeikus, R. Emde, A. Swain, B. Schink, S. D. Roller, J. N. Rooney-Varga, R. T. Anderson, J. L. Fraga, D. Ringelberg, D. R. Lovley, O. L. Snoeyenbos-West, K. P. Nevin, R. T. Anderson, D. R. Lovley, D. R. Lovley, J. C. Woodward, and F. H. Chapelle, “Electrode-reducing microorganisms that harvest energy from marine sediments.,” Science, vol. 295, no. 5554, pp. 483–5, 2002.
[65] B. E. Logan, J. M. Regan,“ Electricity-producing bacterial communities in microbial fuel cells.,” Trends Microbiol., vol. 14, no. 12, pp. 512–8, 2006.
[66] Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment,” Biotechnol. Adv., vol. 25, no. 5, pp. 464–82, 2007.
[67] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, “Microbial fuel cells: Methodology and technology,”
Environ. Sci. Technol., vol. 40, no. 17. pp. 5181–5192, 2006.
[68] S. Cheng and B. E. Logan, “Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells,” Electrochem. Commun., vol. 9, no. 3, pp. 492–496, 2007.
[69] Y. Qiao, C. M. Li, S. J. Bao, and Q. L. Bao, “Carbon nanotube/polyaniline composite as anode material for microbial fuel cells,” J. Power Sources, vol. 170, no. 1, pp. 79–84, 2007.
[70] X. Wang, S. Cheng, Y. Feng, M. D. Merrill, T. Saito, and B. E. Logan, “Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells,” Environ. Sci. Technol., vol. 43, no. 17, pp. 6870–6874, 2009.
[71] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, “Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells,” Electrochem. Commun., vol. 7, no. 12, pp. 1405–1410, 2005.
[72] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, “Challenges and constraints of using oxygen cathodes in microbial fuel cells,” Environ. Sci. Technol., vol. 40, no. 17, pp. 5193–5199, 2006.
[73] G. G. Kumar, V. G. S. Sarathi, and K. S. Nahm, “Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells,” Biosens. Bioelectron., vol. 43, no. 1. pp. 461–475, 2013.
[74] K. Katuri, M. L. Ferrer, M. C. Gutiérrez, R. Jiménez, F. delMonte, and D. Leech, “Three- dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation,” Energy Environ. Sci., vol. 4, no. 10, p. 4201, 2011.
[75] M. C. Gutierrez, Z. Y. Garcia-Carvajal, M. J. Hortiguela, L. Yuste, F. Rojo, M. L. Ferrer, and F. delMonte, “Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli,” J. Mater. Chem., vol. 17, no. 29, pp. 2992–2995, 2007.
[76] J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song, and C. M. Li, “Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells,” Bioresour. Technol., vol. 114, pp. 275–280, 2012.
[77] A. Jain, X. Zhang, G. Pastorella, J. O. Connolly, N. Barry, R. Woolley, S. Krishnamurthy, and E. Marsili, “Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode,” Bioelectrochemistry, vol. 87, pp. 28–32, 2012.
[78] T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “Recent advances in graphene-based biosensors,” Biosens. Bioelectron., vol. 26, no. 12. pp. 4637–4648, 2011.
[79] A. Roda, M. Mirasoli, E. Michelini, M. DiFusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: A critical review,” Biosens. Bioelectron., vol. 76, pp. 164–179, 2016.
[80] H. Qi, Y. Peng, Q. Gao, and C. Zhang, “Applications of nanomaterials in electrogenerated chemiluminescence biosensors,” Sensors, vol. 9, no. 1. pp. 674–695, 2009.
[81] S. E. K. Kirschbaum and A. J. Baeumner, “A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices,” Anal. Bioanal. Chem., vol. 407, no. 14. pp. 3911–3926, 2015.
[82] W. Miao and A. J. Bard, “Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres,” Anal. Chem., vol. 76, no. 23, pp. 7109–7113, 2005.
[83] G. Jin, L. Lu, X. Gao, M. J. Li, B. Qiu, Z. Lin, H. Yang, and G. Chen, “Magnetic graphene oxide-based electrochemiluminescent aptasensor for thrombin,” Electrochim. Acta, vol. 89, pp. 13–17, 2013.
[84] F. Jameison, R. I. Sanchez, L. Dong, J. K. Leland, D. Yost, and M. T. Martin, “Electrochemiluminescence-Based quantitation of classical clinical chemistry analytes,” Anal. Chem., vol. 68, no. 8, pp. 1298–1302, 1996.
[85] X. M. Chen, B. Y. Su, X. H. Song, Q. A. Chen, X. Chen, and X. R. Wang, “Recent advances in electrochemiluminescent enzyme biosensors,” Trac-Trends Anal. Chem., vol. 30, no. 5. pp. 665–676, 2011.
[86] Y. Yu, Q. Cao, M. Zhou, and H. Cui, “A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer,” Biosens. Bioelectron., vol. 43, no. 1, pp. 137–142, 2013.
[87] J. Qian, Z. Zhou, X. Cao, and S. Q. Liu, “Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels,” Anal. Chim. Acta, vol. 665, no. 1, pp. 32–38, 2010.
[88] W. Song, H. Li, H. Liu, Z. Wu, W. Qiang, and D. Xu, “Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E,” Electrochem. Commun., vol. 31, pp. 16–19, 2013.
[89] S. Xu, Y. Liu, T. Wang, and J. Li, “Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection,” Anal. Chem., vol. 83, no. 10, pp. 3817–3823, 2011.
[90] Y. Li, H. Qi, F. Fang, and C. Zhang, “Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl) ruthenium derivative tags,” Talanta, vol. 72, no. 5, pp. 1704–1709, 2007.
[91] C. G. Shi, X. Shan, Z. Q. Pan, J. J. Xu, C. Lu, N. Bao, and H. Y. Gu, “Quantum dot (QD)-modified carbon tape electrodes for reproducible electrochemiluminescence (ECL) emission on a paper-based platform,” Anal. Chem., vol. 84, no. 6, pp. 3033–3038, 2012.
[92] D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater., vol. 22, no. 6, pp. 734–738, 2010.
[93] B. Jiang, K. G. Yang, Q. Zhao, Q. Wu, Z. Liang, L. H. Zhang, X. J. Peng, Y. K. Zhang, “ Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion” J. Chromatogr. A, vol. 1254, pp. 8-13, 2012.
[94] H. Razmi, R. Mohammad-Rezaei, “Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination,” Biosens. Bioelectron., vol. 41, no. 1, pp. 498-504, 2013.
[95] M. J. A. Shiddiky, S. Rauf, P. H. Kithva, and M. Trau, “Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers,” Biosens. Bioelectron., vol. 35, no. 1, pp. 251–257, 2012.
[96] S. Srivastava, V. Kumar, M. A. Ali, P. R. Solanki, A. Srivastava, G. Sumana, P. S. Saxena, A. G. Joshi, and B. D. Malhotra, “Electrophoretically deposited reduced graphene oxide platform for food toxin detection.,” Nanoscale, vol. 5, no. 7, pp. 3043–51, 2013.
[97] A. B. Lowe and C. L. McCormick, “Water-soluble polymers. 84. controlled polymerization in aqueous media of anionic acrylamido monomers via RAFT,” Macromolecules, vol. 34, no. 19, pp. 6561-6564, 2001.
[98] H. J. van der Linden, S. Herber, W. Olthuis, and P. Bergveld, “Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis,” Analyst, vol. 128, no. 4, pp. 325–331, 2003.
[99] J. Qi, W. Lv, G. Zhang, F. Zhang, and X. Fan, “Poly(N-isopropylacrylamide) on two-dimensional graphene oxide surfaces,” Polym. Chem., vol. 3, no. 3, pp. 621-624, 2012.
[100] H. Yang, H. Zhu, M. M. R. M. Hendrix, N. J. H. G. M. Lousberg, G. DeWith, A. C. C. Esteves, and J. H. Xin, “Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric,” Adv. Mater., vol. 25, no. 8, pp. 1150–1154, 2013.
[101] Y. Xiang, Z. Peng, and D. Chen, “A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties,” Eur. Polym. J., vol. 42, no. 9, pp. 2125–2132, 2006.
[102] T. Tadros, “Encyclopedia of Colloid and Interface Science,” Berlin-Iteidelberg: Springer, NewYork, 2013 (ebook).
[103] A. C. Kumar, H. B. Bohidar, and A. K. Mishra, “The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM,” Colloid Surf. B-Biointerfaces, vol. 70, no. 1, pp. 60–67, 2009.
[104] M. A. Molina, C. R. Rivarola, M. F. Broglia, D. F. Acevedo, and C. A. Barbero, “Smart surfaces: reversible switching of a polymeric hydrogel topography,” Soft Matter, vol. 8, no. 2, pp. 307–310, 2012.
[105] Z. Liu, W. Wang, R. Xie, X. J. Ju, and L. Y. Chu, “Stimuli-responsive smart gating membranes.,” Chem. Soc. Rev., vol. 45, no. 3, pp. 460–75, 2016.
[106] W. Minghong, B. Bao, J. Chen, Y. Xu, S. Zhou, and Z. T. Ma, “Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off switching for controlled release of drugs,” Radiat. Phys. Chem., vol. 56, no. 3, pp. 341–346, 1999.
[107] C. Geismann, A. Yaroshchuk, and M. Ulbricht, “Permeability and electrokinetic characterization of poly(ethylene terephthalate) capillary pore membranes with grafted temperature-responsive polymers,” Langmuir, vol. 23, no. 1, pp. 76–83, 2007.
[108] L. Liang, M. Shi, V. V. Viswanathan, L. M. Peurrung, and J. S. Young, “Temperature- sensitive polypropylene membranes prepared by plasma polymerization,” J. Memb. Sci., vol. 177, no. 1–2, pp. 97–108, 2000.
[109] M. Hesampour, T. Huuhilo, K. Mäkinen, M. Mänttäri, and M. Nyström, “Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes,” J. Memb. Sci., vol. 310, no. 1–2, pp. 85–92, 2008.
[110] D. Menne, F. Pitsch, J. E.Wong, A. Pich, and M. Wessling, “Temperature-modulated water filtration using microgel-functionalized hollow-fiber membranes,” Angew. Chemie - Int. Ed., vol. 53, no. 22, pp. 5706–5710, 2014.
[111] J. I.Clodt, V. Filiz, S. Rangou, K. Buhr, C. Abetz, D. Höche, J. Hahn, A. Jung, and V. Abetz, “Double stimuli-responsive isoporous membranes via post-modification of ph-sensitive self-assembled diblock copolymer membranes,” Adv. Funct. Mater., vol. 23, no. 6, pp. 731–738, 2013.
[112] Z. Ma, X. Jia, J. Hu, Z. Liu, H. Wang, and F. Zhou, “Mussel-inspired thermosensitive polydopamine- graft -poly(N -isopropylacrylamide) coating for controlled-release fertilizer,” J. Agric. Food Chem., vol. 61, no. 50, pp. 12232–12237, 2013.
[113] Y. Liu, K. Ai, and L. Lu, “Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields,” Chemical Reviews, vol. 114, no. 9. pp. 5057–5115, 2014.
[114] I. You, Y. C. Seo, and H. Lee, “Material-independent fabrication of superhydrophobic surfaces by mussel-inspired polydopamine,” RSC Adv., vol. 4, no. 20, p. 10330, 2014.
[115] D. Zhong, Q. Yang, L. Guo, S. Dou, K. Liu, and L. Jiang, “Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration,” Nanoscale, vol. 5, no. 13, pp. 5758–64, 2013.
[116] B. P. Tripathi, N. C. Dubey, F. Simon, and M. Stamm, “Thermo responsive ultrafiltration membranes of grafted poly(N-isopropyl acrylamide) via polydopamine,” RSC Adv., vol. 4, no. 64, pp. 34073–34083, 2014.
[117] Y. Chen, Y. Bai, S. Chen, J. Ju, Y. Li, T. Wang, and Q. Wang, “Stimuli-responsive composite particles as solid-stabilizers for effective oil harvesting,” ACS Appl. Mater. Interfaces, vol. 6, no. 16, pp. 13334–13338, 2014.
[118] R. Ou, J. Wei, L. Jiang, G. P. Simon, and H. Wang, “Robust thermoresponsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation,” Environ. Sci. Technol., vol. 50, no. 2, pp. 906–914, 2016.
[119] D. Schmaljohann, “Thermo- and pH-responsive polymers in drug delivery,” Adv. Drug Deliv. Rev., vol. 58, no. 15. pp. 1655–1670, 2006.
[120] Y. Kumashiro, M. Yamato, and T. Okano, “Cell attachment-detachment control on temperature-responsive thin surfaces for novel tissue engineering,” Ann. Biomed. Eng., vol. 38, no. 6, pp. 1977–1988, 2010.
[121] X. Zhang, C. L. Pint, M. H. Lee, B. E. Schubert, A. Jamshidi, K. Takei, H. Ko, A. Gillies, R. Bardhan, J. J. Urban, M. Wu, R. Fearing, and A. Javey, “Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites,” Nano Lett., vol. 11, no. 8, pp. 3239–3244, 2011.
[122] L. Y. Chu, T. Niitsuma, T. Yamaguchi, and S. Nakao, “Thermoresponsive transport through porous membranes with grafted PNIPAM gates,” AICHE J., vol. 49, no. 4, pp. 896–909, 2003.
[123] R. Xie, Y. Li, and L. Y. Chu, “Preparation of thermo-responsive gating membranes with controllable response temperature,” J. Memb. Sci., vol. 289, no. 1–2, pp. 76–85, 2007.
[124] C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater., vol. 11, no. 1–2, pp. 1–27, 1984.
[125] A. Seeboth, R. Ruhmann, and O. Mühling, “Thermotropic and thermochromic polymer based materials for adaptive solar control,” Materials, vol. 3, no. 12, pp. 5143–5168, 2010.
[126] H. Watanabe, “Intelligent window using a hydrogel layer for energy efficiency,” Sol. Energy Mater. Sol. Cells, vol. 54, no. 1–4, pp. 203–211, 1998.
[127] M. Zrínyi, A. Szilágyi, G. Filipcsei, J. Fehér, J. Szalma, and G. Móczár, “Smart gel-glass based on the responsive properties of polymer gels,” Polym. Adv. Technol., vol. 12, no. 9, pp. 501–505, 2001.
[128] T. Fischer, R. Lange, and A. Seeboth, “Hybrid solar and electrically controlled transmission of light filters,” Sol. Energy Mater. Sol. Cells, vol. 64, no. 4, pp. 321–331, 2000.
[129] H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep., vol. 5, no. 11773, 2015.
[130] E. Zhang, T. Wang, C. Lian, W. Sun, X. Liu, and Z. Tong, “Robust and thermo-response graphene-PNIPAm hybrid hydrogels reinforced by hectorite clay,” Carbon, vol. 62, pp. 117–126, 2013.
[131] S. Huang, J. Shen, N. Li, and M. Ye, “Dual pH- and temperature-responsive hydrogels with extraordinary swelling/deswelling behavior and enhanced mechanical performances,” J. Appl. Polym. Sci., vol. 132, no. 9, pp. 41530, 2015.
[132] Z. Li, J. Shen, H. Ma, X. Lu, M. Shi, N. Li, and M. Ye, “Preparation and characterization of pH- and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker,” Soft Matter, vol. 8, no. 11, p. 3139-3145, 2012
[133] C. Hou, Q. Zhang, M. Zhu, Y. Li, and H. Wang, “One-step synthesis of magnetically- functionalized reduced graphite sheets and their use in hydrogels,” Carbon, vol. 49, no. 1, pp. 47–53, 2011.
[134] D. Y. Lee, S. Yoon, Y. J. Oh, S. Y. Park, and I. In, “Thermo-responsive assembly of chemically reduced graphene and poly(N-isopropylacrylamide),” Macromol. Chem. Phys., vol. 212, no. 4, pp. 336–341, 2011.
[135] X. Ma, Y. Li, W. Wang, Q. Ji, and Y. Xia, “Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior,” Eur. Polym. J., vol. 49, no. 2, pp. 389–396, 2013.
[136] C. Hou, Q. Zhang, H. Wang, and Y. Li, “Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials,” J. Mater. Chem., vol. 21, no. 28, p. 10512-10517, 2011.
[137] Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, “Graphene and graphene oxide: Biofunctionalization and applications in biotechnology,” Trends Biotechnol., vol. 29, no. 5. pp. 205–212, 2011.
[138] J. Liu, L. Cui, and D. Losic, “Graphene and graphene oxide as new nanocarriers for drug delivery applications,” Acta Biomater., vol. 9, no. 12. pp. 9243–9257, 2013.
[139] S. Zhu, J. Li, Y. Chen, Z. Chen, C. Chen, Y. Li, Z. Cui, and D. Zhang, “Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release,” J. Nanoparticle Res., vol. 14, no. 9, 2012.
[140] C.W. Lo, D. F. Zhu, and H. R. Jiang, “An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite,” Soft Matter, vol. 7, no. 12, pp. 5604-5609, 2011.
[141] D. Kim, H. S. Lee, and J. Yoon, “Remote control of volume phase transition of hydrogels containing graphene oxide by visible light irradiation,” Rsc Adv., vol. 4, no. 48, pp. 25379–25383, 2014.
[142] J. Wu, Y. Ren, J. Sun, and L. Feng, “Carbon nanotube-coated macroporous Poly(N -isopropylacrylamide) hydrogel and its electrosensitivity,” ACS Appl. Mater. Interfaces, vol. 5, no. 9, pp. 3519–3523, 2013.
[143] Y. J. Chen, Y. Li, M. C. Yip, and N. H. Tai, “Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles,” Compos. Sci. Technol., vol. 80, pp. 80–86, 2013.
[144] Z. Xu, H. Y. Sun, X. L. Zhao, C. Gao,“ Ultrastrong fibers assembled from giant graphene oxide sheets,” Adv. Mater., vol. 25, no. 2, pp. 188-193, 2013.
[145] Z. Liu, L. Jiang, F. Galli, I. Nederlof, R. C. L. Olsthoorn, G. E. M. Lamers, T. H. Oosterkamp, and J. P. Abrahams, “A graphene oxide·streptavidin complex for biorecognition - Towards affinity purification,” Adv. Funct. Mater., vol. 20, no. 17, pp. 2857–2865, 2010.
[146] Y. A. Li, Y. J. Chen, and N. H. Tai, “Fast process to decorate silver nanoparticles on carbon nanomaterials for preparing high-performance flexible transparent conductive films,” Langmuir, vol. 29, no. 26, pp. 8433–8439, 2013.
[147] H. T. Chou, T. P. Wang, C. Y. Lee, N. H. Tai, and H. Y. Chang, “Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells,” Mater. Sci. Eng. C, vol. 33, no. 2, pp. 989–995, 2013.
[148] Y. J. Chen, Y. A. Li, B. T. T. Chu, I. T. Kuo, M. Yip, and N.H. Tai, “Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding,” Compos. Part B Eng., vol. 70, pp. 231–237, 2015.
[149] C. M. Werner, K. P. Katuri, A. R. Hari, W. Chen, Z. P. Lai, B. E. Logan, G. L. Amy, P. E. Saikaly,“ Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors - effect of configuration and pplied voltage on performance and membrane fouling,” Environ. Sci. Technol., vol. 50, no. 8, pp. 4439-4447, 2016.
[150] W. W. Li and G. P. Sheng, “Microbial fuel cells in power generation and extended applications,” Advances in Biochemical Engineering/Biotechnology, vol. 128. pp. 165–197, 2012.
[151] R. E. Griffith, and K. L., Wolf, “Measuring beta-Galactosidase Activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays,” Biochem. Biophys. Res. Commun., vol. 290, pp. 397–402, 2002.
[152] N. Liao, Y. Zhuo, Y. Q. Chai, Y. Xiang, J. Han, and R. Yuan, “Reagentless electrochemiluminescent detection of protein biomarker using graphene-based magnetic nanoprobes and poly-l-lysine as co-reactant,” Biosens. Bioelectron., vol. 45, no. 1, pp. 189–194, 2013.
[153] Y. T. Li, L. L.Qu, D. W. Li, Q. X. Song, F. Fathi, and Y. T. Long, “Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy,” Biosens. Bioelectron., vol. 43, no. 1, pp. 94–100, 2013.
[154] Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem., vol. 83, no. 3, pp. 648–653, 2011.
[155] L. Wu, J. Wang, J. Ren, W. Li, and X. Qu, “Highly sensitive electrochemiluminescent cytosensing using carbon nanodot@Ag hybrid material and graphene for dual signal amplification.,” Chem. Commun., vol. 49, no. 50, pp. 5675–7, 2013.
[156] H. Zhang, M. Wu, J. Xu, and H. Chen, “Signal-on dual-potential electrochemiluminescence based on luminol-Au bifunctional nanoparticles for telomerase detection,” Anal. Chem., vol. 86, pp. 3834–40, 2014.
[157] J. Qian, K. Wang, Y. Jin, X. Yang, L. Jiang, Y. Yan, X. Dong, H. Li, and B. Qiu, “Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)32+ for sensitive magneto-controlled electrochemiluminescence sensor and its application in biosensing,” Biosens. Bioelectron., vol. 57, pp. 149–156, 2014.
[158] Z. Li, Y. Wang, W. Kong, C. Li, Z. Wang, and Z. Fu, “Highly sensitive near-simultaneous assay of multiple ‘lean meat agent’ residues in swine urine using a disposable electrochemiluminescent immunosensors array,” Biosens. Bioelectron., vol. 39, no. 1, pp. 311–314, 2013.
[159] X. Yang, R. Yuan, Y. Chai, Y. Zhuo, L. Mao, and S. Yuan, “Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor,” Biosens. Bioelectron., vol. 25, no. 7, pp. 1851–1855, 2010.
[160] Q. Zhang, X. Chen, F. Tu, and C. Yao, “Ultrasensitive enzyme-free electrochemical immunoassay for free thyroxine based on three dimensionally ordered macroporous chitosan-Au nanoparticles hybrid film,” Biosens. Bioelectron., vol. 59, pp. 377–383, 2014.
[161] R. I. Stefan, J. F. VanStaden, and H. Y. Aboul-Enein, “Simultaneous determination of L-thyroxine (L-T4), D-thyroxine (D-T4), and L-triiodothyronine (L-T3) using a sensors/sequential injection analysis system,” Talanta, 2004, vol. 64, no. 1, pp. 151–155.
[162] J. Han, Y. Zhuo, Y. Chai, Y. Yu, N. Liao, and R. Yuan, “Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag,” Anal. Chem. Acta, vol. 790, pp. 24–30, 2013.
[163] H. Martin, C. Murray, J. Christeller, and T. McGhie, “A fluorescence polarization assay to quantify biotin and biotin-binding proteins in whole plant extracts using Alexa-Fluor 594 biocytin,” Anal. Biochem., vol. 381, no. 1, pp. 107–112, 2008.
[164] J. Zhao, G. Chen, W. Zhang, P. Li, L. Wang, Q. Yue, H. Wang, R. Dong, X. Yan, and J. Liu, “High-resolution separation of graphene oxide by capillary electrophoresis,” Anal. Chem., vol. 83, no. 23, pp. 9100–9106, 2011.
[165] A. C. C. Rotzetter, C. M. Schumacher, S. B. Bubenhofer, R. N. Grass, L. C. Gerber, M. Zeltner, and W. J. Stark, “Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings,” Adv. Mater., vol. 24, no. 39, pp. 5352–5356, 2012.
[166] D. H. W. Li, J. C. Lam, C. C. S. Lau, and T. W. Huan, “Lighting and energy performance of solar film coating in air-conditioned cellular offices,” Renew. Energy, vol. 29, no. 6, pp. 921–937, 2004.
[167] R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 2. pp. 87–105, 2010.
[168] D. Cupelli, F. P. Nicoletta, S. Manfredi, G. DeFilpo, and G. Chidichimo, “Electrically switchable chromogenic materials for external glazing,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 3, pp. 329–333, 2009.
[169] R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, R. L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A. I. Minett, J. M. Razal, and G. G. Wallace, “Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles,” Adv. Funct. Mater., vol. 23, no. 43, pp. 5345–5354, 2013.
[170] Y. Yang, X. Song, L. Yuan, M. Li, J. Liu, R. Ji, and H. Zhao, “Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 50, no. 2, pp. 329–337, 2012.
[171] L. Kan, Z. Xu, and C. Gao, “General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization,” Macromolecules, vol. 44, no. 3, pp. 444–452, 2011.K. S. Novoselov, A. K.Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[172] T. Gyenes, A. Szilagyi, T. Lohonyai, M. Zrinyi “Electrically adjustable thermotropic
windows based on polymer gels,” Polymer. Adv. Tech., vol. 14, no. 11, pp. 757–762, 2003.
[173] Y. Wang, L. Zhang, J. Wu, M. N. Hedhili, and P. Wang, “A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting,” J. Mater. Chem. A, vol. 3, no. 37, pp. 18963–18969, 2015.
[174] Y. G. Shi, M.Y. Liu, K. Wang, F.J. Deng, Q. Wan, Q. Huang, L.H. Fu, X.Y. Zhang, Y. Wei, “Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution,” Polym. Chem., vol. 6, pp. 5876–5883, 2015.
[175] N. Graf , E. Yegen, T. Gross, A. Lippitz, W. Weigel, S. Krakert, A. Terfort, and W. E. S. Unger, “XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces,” Surf. Sci., vol. 603, pp. 2849–2860, 2009.
[176] H. Zhu, Z. Guo, and W. Liu, “Biomimetic water-collecting materials inspired by nature,” Chem. Commun., vol. 52, no. 20, pp. 3863–3879, 2016.
[177] B. Bhushan and Y. C. Jung, “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction,” Prog. Mater. Sci., vol. 56, no. 1, pp. 1–108, 2011.
[178] H. Zeng, N. Pesika, Y. Tian, B. Zhao, Y. Chen, M. Tirrell, K. L. Turner, and J. N.Israelachvili, “Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems,” Langmuir, vol. 25, no. 13, pp. 7486–7495, 2009.
[179] L. Zhang, J. Wu, M. N. Hedhili, X. Yang, and P. Wang, “Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces,” J. Mater. Chem. A, vol. 3, no. 6, pp. 2844–2852, 2015.
[180] P. F. Li, X. J. Ju, L. Y. Chu, and R. Xie, “Thermo-responsive membranes with cross-linked poly(N-isopropylacrylamide) hydrogels inside porous substrates,” Chem. Eng. Technol., vol. 29, no. 11, pp. 1333–1339, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔