|
[1] Damian Rybicki, Michael Jurkutat, Steven Reichardt, Czesław Kapusta, and Jürgen Haase. Perspective on the phase diagram of cuprate high-temperature superconductors. Nature Communications, 7(May 2015):11413, 2016. [2] J. G. Bednorz and K. A. Müller. Possible highTc superconductivity in the Ba−La −Cu−O system. Zeitschrift für Physik B Condensed Matter, 64(2):189–193, 1986. [3] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu. Superconductivity at 93 K in a new mixed-phase YBa- Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58:908–910, Mar 1987. [4] P. W. ANDERSON. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science, 235(4793):1196–1198, 1987. [5] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett., 55:418–421, Jul 1985. [6] Eduardo Fradkin, Steven A. Kivelson, and John M. Tranquada. Colloquium. Rev. Mod. Phys., 87:457–482, May 2015. [7] Wei-Lin Tu and Ting-Kuo Lee. Genesis of charge orders in high temperature superconductors. Nature Publishing Group, (1):1–5, 2015. [8] T. Honma and P. H. Hor. Unified electronic phase diagram for hole-doped high-Tc cuprates. Phys. Rev. B, 77:184520, May 2008. [9] K. Tanaka, T. Yoshida, A. Fujimori, D. H. Lu, Z. X. Shen, X. J. Zhou, H. Eisaki, Z. Hussain, S. Uchida, Y. Aiura, K. Ono, T. Sugaya, T. Mizuno, and I. Terasaki. Effects of next-nearest-neighbor hopping t′ on the electronic structure of cuprate superconductors. Physical Review B - Condensed Matter and Materials Physics, 70(9):6–9, 2004. [10] C. T. Shih, T. K. Lee, R. Eder, C.-Y. Mou, and Y. C. Chen. Enhancement of Pairing Correlation by t ′ in the Two-Dimensional Extended t − J Model. Phys. Rev. Lett., 92:227002, Jun 2004. [11] Sandeep Pathak, Vijay B. Shenoy, Mohit Randeria, and Nandini Trivedi. Competition between antiferromagnetic and superconducting states, electron-hole doping asymmetry, and fermi-surface topology in high temperature superconductors. Physical Review Letters, 102(2):1–4, 2009. [12] Hisatoshi Yokoyama, Masao Ogata, Yukio Tanaka, Kenji Kobayashi, and Hiroki Tsuchiura. Crossover between BCS superconductor and doped Mott insulator of d-wave pairing state in two-dimensional Hubbard model. Journal of the Physical Society of Japan, 82(1):1–27, 2013. [13] Wei Ruan, Cheng Hu, Jianfa Zhao, Peng Cai, Yingying Peng, Cun Ye, Runze Yu, Xintong Li, Zhenqi Hao, Changqing Jin, Xingjiang Zhou, Zheng-Yu Weng, and Yayu Wang. Relationship between the parent charge transfer gap and maximum transition temperature in cuprates. Science Bulletin, 61(23):1826–1832, 2016. [14] Peng Cai, Wei Ruan, Yingying Peng, Cun Ye, Xintong Li, Zhenqi Hao, Xingjiang Zhou, Dung-Hai Lee, and Yayu Wang. Visualizing the evolution from the mott insulator to a charge-ordered insulator in lightly doped cuprates. Nat Phys, 12(11): 1047–1051, Nov 2016. Letter. [15] Y. Cao, Q. Xiong, Y. Y. Xue, and C. W. Chu. Pressure effect on the Tc of HgBa2CuO4+ with 0.070.39. Phys. Rev. B, 52:6854–6857, Sep 1995. [16] C. W. Chu, Y. Cao, Q. Xiong, and Y. Y. Xue. -Influence on the pressure-effect on Tc of HgBa2CuO4+ and the inverse parabolic Tc-relation. Journal of Superconductivity, 8(4):393–396, 1995. [17] Ayako Yamamoto, Nao Takeshita, Chieko Terakura, and Yoshinori Tokura. High pressure effects revisited for the cuprate superconductor family with highest critical temperature. Nature Communications, 6:8990, 2015. [18] F. Hardy, N. J. Hillier, C. Meingast, D. Colson, Y. Li, N. Barišić, G. Yu, X. Zhao, M. Greven, and J. S. Schilling. Enhancement of the Critical Temperature of HgBa2CuO4+ by Applying Uniaxial and Hydrostatic Pressure: Implications for a Universal Trend in Cuprate Superconductors. Phys. Rev. Lett., 105:167002, Oct 2010. [19] V. J. Emery. Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett., 58:2794–2797, Jun 1987. [20] F. C. Zhang and T. M. Rice. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B, 37:3759–3761, Mar 1988. [21] F. C. Zhang and T. M. Rice. Validity of the t - J model. Phys. Rev. B, 41:7243–7246, Apr 1990. [22] R. B. Laughlin. Gossamer superconductivity, 2002. [23] F. C. Zhang. Gossamer Superconductor, Mott Insulator, and Resonating Valence Bond State in Correlated Electron Systems. Phys. Rev. Lett., 90:207002, May 2003. [24] Takahiro Misawa and Masatoshi Imada. Origin of high-Tc superconductivity in doped hubbard models and their extensions: Roles of uniform charge fluctuations. Phys. Rev. B, 90:115137, Sep 2014. [25] E. Plekhanov, S. Sorella, and M. Fabrizio. Increasing d-wave superconductivity by on-site repulsion. Phys. Rev. Lett., 90:187004, May 2003. [26] Yuchuan Wen and Yue Yu. One-band Hubbard model with hopping asymmetry and the effective theory at finite U: Phase diagram and metal-insulator transition. Phys. Rev. B, 72:045130, Jul 2005. [27] Wei-Cheng Lee. Crossover From Strong to Weak Pairing States in t-J-U Model Studied by A Slave Spin Method, 2016. [28] J. Y. Gan, F. C. Zhang, and Z. B. Su. Theory of gossamer and resonating valence bond superconductivity. Phys. Rev. B, 71:014508, Jan 2005. [29] Feng Yuan, Qingshan Yuan, and C. S. Ting. Gossamer superconductivity and antiferromagnetism in the t-J-U model. Phys. Rev. B, 71:104505, Mar 2005. [30] M. Abram, J. Kaczmarczyk, J. Jdrak, and J. Spałek. d-wave superconductivity and its coexistence with antiferromagnetism in the t–j–u model: Statistically consistent gutzwiller approach. Phys. Rev. B, 88:094502, Sep 2013. [31] Bin Liu, Xu Yan, and Feng Yuan. Quasiparticle resonance states induced by a nonmagnetic impurity in gossamer superconductors. Solid State Communications, 177:123 – 127, 2014. [32] Liu Fen-Fen, Zhang Yong, Yuan Feng, and Xia Lin-Hua. Effects of the next nearest neighbor hopping on superconductivity and antiferromagnetism of gossamer superconductivity. Communications in Theoretical Physics, 57(4):727, 2012. [33] Khee-Kyun Voo. Order and excitation in partially Gutzwiller projected t−t′ −t′′ − J − Umodels. Journal of Physics: Condensed Matter, 23(49):495602, 2011. [34] Marcin Abram, Michał Zegrodnik, and Jozef Spałek. Antiferromagnetism, charge density wave, and d-wave superconductivity in the t-J-U-V model of correlated electrons: Role of direct Coulomb interactions, 2016. [35] S. Daul, D. J. Scalapino, and Steven R. White. Pairing correlations on t − U − J ladders. Phys. Rev. Lett., 84:4188–4191, May 2000. [36] Abstracts of papers. Ann. Math. Statist., 20(4):620–624, 12 1949. [37] Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist., 21(1): 124–127, 03 1950. [38] William H Press; et al. Numerical recipes : the art of scientific computing. [39] Chung-Pin Chou. Variational monte carlo studies on strong correlated electron system. PhD.Thesis,National Taiwan university. [40] Scuola Internazionale, Superiore Di, Studi Avanzati, F O R Advanced, Sandro Sorella, and Federico Becca. SISSA Lecture notes on Numerical methods for strongly correlated electrons. 2012. [41] Sandro Sorella. Generalized lanczos algorithm for variational quantum monte carlo. Phys. Rev. B, 64:024512, Jun 2001. [42] Sandro Sorella. Wave function optimization in the variational Monte Carlo method. Phys. Rev. B, 71:241103, Jun 2005. [43] S Badoux, W Tabis, F Laliberté, G Grissonnanche, B Vignolle, D Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, Louis Taillefer, and Cyril Proust. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature, 531(7593):210–214, 2015. [44] C. Weber, C. Yee, K. Haule, and G. Kotliar. Scaling of the transition temperature of hole-doped cuprate superconductors with the charge-transfer energy. EPL (Europhysics Letters), 100(3):37001, 2012. [45] Cedric Weber. What controls the critical temperature of high temperature copper oxide superconductors: insights from scanneling tunnelling microscopy. Science Bulletin, 62(2):102 – 104, 2017. [46] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen. Band- Structure Trend in Hole-Doped Cuprates and Correlation with Tcmax. Phys. Rev. Lett., 87:047003, Jul 2001. [47] M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, and N.E. Flower. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Physica C: Superconductivity, 176(1):95 – 105, 1991. [48] Fu-Chun Zhang, C Gros, T Maurice Rice, and H Shiba. A Renormalized Hamiltonian Approach to a Resonant Valence Bond Wavefunction. Superconductor Science and Technology, 1(1):36–46, 1988.
|