跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉弈玄
研究生(外文):Liu, Yi-Hsuan
論文名稱:允許電荷漲落的t-J模型對單層高溫超導銅氧化物配對強度的探討
論文名稱(外文):Charge transfer model : What is the effect of charge fluctuation in t-J model
指導教授:李定國李定國引用關係
指導教授(外文):Lee, Ting-Kuo
口試委員:牟中瑜仲崇厚
口試委員(外文):Mou, Chung-YuChung, Chung-Hou
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:高溫超導體莫特絕緣體電荷轉移型絕緣體赫伯德模型t-J模型t-J-U模型張-萊斯單重態
外文關鍵詞:High T_c CuprateMott InsulatorCharge Transfer InsulatorHubbard Modelt-J modelt-J-U modelZhang-Rice singlet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
t-J模型是常常用來研究高溫超導的微觀機制的模型,透過投影算符把d軌道電子雙佔據態投影掉, 因此忽略了電子在氧$2p^6$ 與$銅3d^{10}$ 之間的電荷漲落,在電荷轉移能隙大的極限是很好的近似,然而最近的掃描穿隧能譜卻發現了電荷轉移能隙只有大約1到2個電子伏特, 這樣意味著我們必須重新考慮電荷漲落在銅氧化物超導扮演的角色, 我們修改了$t-J$模型,重新引進電荷漲落的電子躍遷, 這導致了雙佔據態的產生與消失, 適當的選擇躍遷強度, 這個模型在電子跳躍強度(hopping amplitude)相同的極限下等效於 $t-J-U$模型。 我們使用了變分蒙地卡羅來研究這個模型,我們的結果也證實了配對序參量與電荷轉移能隙之間存在著反關聯, 更有趣的是, 電荷漲落對配對強度的影響, 在低參雜與過參雜表現的不一樣。 最後,我們希望可以用這個模型給出統一性的超導相圖。
$High-T_c $ Cuprates have been studied quite often as an effective one band $t - J$model that neglects charge fluctuation between oxygen $2p^6$ band and copper$3d^{10}$ band. However, recent Scanning Tunneling Spectra(STS) measurement on underdoped Cuprate shows that charge transfer gap is only of order 1-2eV. This small gap necessitates a re-examination of the charge transfer fluctuation. Here we modify the t-J model by including charge transfer fluctuation. The new model allowing the hopping that forms of doubly occupied sites(doublons) and hopping of doublon. For the same hopping amplitude it is exactly the same with the t-J-U model. This model is studied via variational Monte Carlo method(VMC). The anti-correlation between charge transfer gap and pairing is also confirmed. More interestingly the charge fluctuation is found to affect pairing order parameter in different ways in underdoped and overdoped regions.
Contents
致謝i
中文
[1] Damian Rybicki, Michael Jurkutat, Steven Reichardt, Czesław Kapusta, and Jürgen
Haase. Perspective on the phase diagram of cuprate high-temperature superconductors.
Nature Communications, 7(May 2015):11413, 2016.
[2] J. G. Bednorz and K. A. Müller. Possible highTc superconductivity in the Ba−La
−Cu−O system. Zeitschrift für Physik B Condensed Matter, 64(2):189–193, 1986.
[3] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang,
Y. Q. Wang, and C. W. Chu. Superconductivity at 93 K in a new mixed-phase YBa-
Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58:908–910, Mar
1987.
[4] P. W. ANDERSON. The Resonating Valence Bond State in La2CuO4 and Superconductivity.
Science, 235(4793):1196–1198, 1987.
[5] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Band gaps and electronic structure of
transition-metal compounds. Phys. Rev. Lett., 55:418–421, Jul 1985.
[6] Eduardo Fradkin, Steven A. Kivelson, and John M. Tranquada. Colloquium. Rev.
Mod. Phys., 87:457–482, May 2015.
[7] Wei-Lin Tu and Ting-Kuo Lee. Genesis of charge orders in high temperature superconductors.
Nature Publishing Group, (1):1–5, 2015.
[8] T. Honma and P. H. Hor. Unified electronic phase diagram for hole-doped high-Tc
cuprates. Phys. Rev. B, 77:184520, May 2008.
[9] K. Tanaka, T. Yoshida, A. Fujimori, D. H. Lu, Z. X. Shen, X. J. Zhou, H. Eisaki,
Z. Hussain, S. Uchida, Y. Aiura, K. Ono, T. Sugaya, T. Mizuno, and I. Terasaki.
Effects of next-nearest-neighbor hopping t′ on the electronic structure of cuprate
superconductors. Physical Review B - Condensed Matter and Materials Physics,
70(9):6–9, 2004.
[10] C. T. Shih, T. K. Lee, R. Eder, C.-Y. Mou, and Y. C. Chen. Enhancement of Pairing
Correlation by t
′ in the Two-Dimensional Extended t − J Model. Phys. Rev. Lett.,
92:227002, Jun 2004.
[11] Sandeep Pathak, Vijay B. Shenoy, Mohit Randeria, and Nandini Trivedi. Competition
between antiferromagnetic and superconducting states, electron-hole doping
asymmetry, and fermi-surface topology in high temperature superconductors. Physical
Review Letters, 102(2):1–4, 2009.
[12] Hisatoshi Yokoyama, Masao Ogata, Yukio Tanaka, Kenji Kobayashi, and Hiroki
Tsuchiura. Crossover between BCS superconductor and doped Mott insulator of
d-wave pairing state in two-dimensional Hubbard model. Journal of the Physical
Society of Japan, 82(1):1–27, 2013.
[13] Wei Ruan, Cheng Hu, Jianfa Zhao, Peng Cai, Yingying Peng, Cun Ye, Runze Yu,
Xintong Li, Zhenqi Hao, Changqing Jin, Xingjiang Zhou, Zheng-Yu Weng, and Yayu
Wang. Relationship between the parent charge transfer gap and maximum transition
temperature in cuprates. Science Bulletin, 61(23):1826–1832, 2016.
[14] Peng Cai, Wei Ruan, Yingying Peng, Cun Ye, Xintong Li, Zhenqi Hao, Xingjiang
Zhou, Dung-Hai Lee, and Yayu Wang. Visualizing the evolution from the mott insulator
to a charge-ordered insulator in lightly doped cuprates. Nat Phys, 12(11):
1047–1051, Nov 2016. Letter.
[15] Y. Cao, Q. Xiong, Y. Y. Xue, and C. W. Chu. Pressure effect on the Tc of
HgBa2CuO4+ with 0.070.39. Phys. Rev. B, 52:6854–6857, Sep 1995.
[16] C. W. Chu, Y. Cao, Q. Xiong, and Y. Y. Xue. -Influence on the pressure-effect on
Tc of HgBa2CuO4+ and the inverse parabolic Tc-relation. Journal of Superconductivity,
8(4):393–396, 1995.
[17] Ayako Yamamoto, Nao Takeshita, Chieko Terakura, and Yoshinori Tokura. High
pressure effects revisited for the cuprate superconductor family with highest critical
temperature. Nature Communications, 6:8990, 2015.
[18] F. Hardy, N. J. Hillier, C. Meingast, D. Colson, Y. Li, N. Barišić, G. Yu, X. Zhao,
M. Greven, and J. S. Schilling. Enhancement of the Critical Temperature of
HgBa2CuO4+ by Applying Uniaxial and Hydrostatic Pressure: Implications for
a Universal Trend in Cuprate Superconductors. Phys. Rev. Lett., 105:167002, Oct
2010.
[19] V. J. Emery. Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett.,
58:2794–2797, Jun 1987.
[20] F. C. Zhang and T. M. Rice. Effective Hamiltonian for the superconducting Cu
oxides. Phys. Rev. B, 37:3759–3761, Mar 1988.
[21] F. C. Zhang and T. M. Rice. Validity of the t - J model. Phys. Rev. B, 41:7243–7246,
Apr 1990.
[22] R. B. Laughlin. Gossamer superconductivity, 2002.
[23] F. C. Zhang. Gossamer Superconductor, Mott Insulator, and Resonating Valence
Bond State in Correlated Electron Systems. Phys. Rev. Lett., 90:207002, May 2003.
[24] Takahiro Misawa and Masatoshi Imada. Origin of high-Tc superconductivity in
doped hubbard models and their extensions: Roles of uniform charge fluctuations.
Phys. Rev. B, 90:115137, Sep 2014.
[25] E. Plekhanov, S. Sorella, and M. Fabrizio. Increasing d-wave superconductivity by
on-site repulsion. Phys. Rev. Lett., 90:187004, May 2003.
[26] Yuchuan Wen and Yue Yu. One-band Hubbard model with hopping asymmetry and
the effective theory at finite U: Phase diagram and metal-insulator transition. Phys.
Rev. B, 72:045130, Jul 2005.
[27] Wei-Cheng Lee. Crossover From Strong to Weak Pairing States in t-J-U Model
Studied by A Slave Spin Method, 2016.
[28] J. Y. Gan, F. C. Zhang, and Z. B. Su. Theory of gossamer and resonating valence
bond superconductivity. Phys. Rev. B, 71:014508, Jan 2005.
[29] Feng Yuan, Qingshan Yuan, and C. S. Ting. Gossamer superconductivity and antiferromagnetism
in the t-J-U model. Phys. Rev. B, 71:104505, Mar 2005.
[30] M. Abram, J. Kaczmarczyk, J. Jdrak, and J. Spałek. d-wave superconductivity and
its coexistence with antiferromagnetism in the t–j–u model: Statistically consistent
gutzwiller approach. Phys. Rev. B, 88:094502, Sep 2013.
[31] Bin Liu, Xu Yan, and Feng Yuan. Quasiparticle resonance states induced by a
nonmagnetic impurity in gossamer superconductors. Solid State Communications,
177:123 – 127, 2014.
[32] Liu Fen-Fen, Zhang Yong, Yuan Feng, and Xia Lin-Hua. Effects of the next nearest
neighbor hopping on superconductivity and antiferromagnetism of gossamer superconductivity.
Communications in Theoretical Physics, 57(4):727, 2012.
[33] Khee-Kyun Voo. Order and excitation in partially Gutzwiller projected t−t′ −t′′ −
J − Umodels. Journal of Physics: Condensed Matter, 23(49):495602, 2011.
[34] Marcin Abram, Michał Zegrodnik, and Jozef Spałek. Antiferromagnetism, charge
density wave, and d-wave superconductivity in the t-J-U-V model of correlated
electrons: Role of direct Coulomb interactions, 2016.
[35] S. Daul, D. J. Scalapino, and Steven R. White. Pairing correlations on t − U − J
ladders. Phys. Rev. Lett., 84:4188–4191, May 2000.
[36] Abstracts of papers. Ann. Math. Statist., 20(4):620–624, 12 1949.
[37] Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix. Ann. Math. Statist., 21(1):
124–127, 03 1950.
[38] William H Press; et al. Numerical recipes : the art of scientific computing.
[39] Chung-Pin Chou. Variational monte carlo studies on strong correlated electron system.
PhD.Thesis,National Taiwan university.
[40] Scuola Internazionale, Superiore Di, Studi Avanzati, F O R Advanced, Sandro
Sorella, and Federico Becca. SISSA Lecture notes on Numerical methods for
strongly correlated electrons. 2012.
[41] Sandro Sorella. Generalized lanczos algorithm for variational quantum monte carlo.
Phys. Rev. B, 64:024512, Jun 2001.
[42] Sandro Sorella. Wave function optimization in the variational Monte Carlo method.
Phys. Rev. B, 71:241103, Jun 2005.
[43] S Badoux, W Tabis, F Laliberté, G Grissonnanche, B Vignolle, D Vignolles, J. Béard,
D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, Louis Taillefer, and Cyril
Proust. Change of carrier density at the pseudogap critical point of a cuprate superconductor.
Nature, 531(7593):210–214, 2015.
[44] C. Weber, C. Yee, K. Haule, and G. Kotliar. Scaling of the transition temperature
of hole-doped cuprate superconductors with the charge-transfer energy. EPL (Europhysics
Letters), 100(3):37001, 2012.
[45] Cedric Weber. What controls the critical temperature of high temperature copper
oxide superconductors: insights from scanneling tunnelling microscopy. Science
Bulletin, 62(2):102 – 104, 2017.
[46] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen. Band-
Structure Trend in Hole-Doped Cuprates and Correlation with Tcmax. Phys. Rev.
Lett., 87:047003, Jul 2001.
[47] M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, and N.E. Flower. General trends
in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Physica C:
Superconductivity, 176(1):95 – 105, 1991.
[48] Fu-Chun Zhang, C Gros, T Maurice Rice, and H Shiba. A Renormalized Hamiltonian
Approach to a Resonant Valence Bond Wavefunction. Superconductor Science and
Technology, 1(1):36–46, 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top