(3.235.108.188) 您好!臺灣時間:2021/03/03 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠霖
研究生(外文):Chen, Guan Lin
論文名稱:壓電高分子聲波微收發傳感器 及其應用於食品藥物殘留快篩檢測
論文名稱(外文):Piezoelectric Polymer Micromachined Acoustic Transducers and Their Applications to Rapid Screening of Drug Residue in Foods
指導教授:洪健中
指導教授(外文):Hong, Chien Chong
口試委員:黃國柱劉通敏
口試日期:2016-11-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:176
中文關鍵詞:食品安全動物用藥殘留壓電式聲波微收發器高靈敏微量檢測
外文關鍵詞:food safetyanimal drugs residuepiezoelectric acoustic transceiverhigh-sensitivity detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微量分子檢測上,傳統檢測技術不僅成本昂貴,測試時間久且需要專業的人員進行操作,不利於現場立即檢測。本論文提出改進電沉積壓電高分子製程,進而設計出高精密度且可全整合於晶片之聲波微收發傳感器並探討其感測特性,最後將此晶片應用於食品安全動物用藥殘留之檢測。
本論文設計出不同面積比例的壓電薄膜,延續過去學長的液滴電沉積方式,探討參數包含沉積時間、液滴體積、沉積電壓與金電極表面相對濕度預處理之最佳參數。在聲波測試方面,新開發之聲波收發元件在輸出功率上可達86.31 μW (10 kHz),相較過去研究,在訊號強度上提升了62 % (10 kHz);功率輸出上提升了37 %,能量轉換效能也提升了2.2 倍。而在聲波微收發器的性能可藉由預振預處理,可將每組晶片的訊號變異係數從17.79 % 降低至0.38 %。
其次,將其最佳化製程與預振預處理後的聲波微收發器應用於動物用藥殘留檢測。綜合聲波性能量測的結果,檢測頻率為10 kHz,檢測藥品為Ractopamine、Benzylpenicillin、Doxycycline,於60 μm微流道中之反應時間(流體擾動時間與穩定時間)為80 秒,穩態訊號SNR最高可達29.03 dB,線性檢測區間為0 ~ 100 ppb,對於純藥物檢測靈敏度最高可達2.4 mV/ppb,最低檢測極限為2.06 ppb (3 dB)。最後本論文將所開發之聲波微收發器結合分子拓印薄膜,整合於微流道晶片上,並將其應用於20 ppb 豬肉肉汁樣本實測,檢測結果可達 23.7±1.15 ppb,整體檢測時間(包含流體操控時間與訊號量測時間)共4分鐘。
本研究中所提出之高靈敏壓電式聲波微收發器檢測晶片,除了減少成本外,也簡化了操作的步驟、縮小體積易於與其他系統進行整合,未來除了應用在藥品殘留之外亦可用於其他微量生醫感測器中。
In recent years, people pay more attention to food safety. Traditional detection technology is expensive, complicated and time-consuming, so that it is impossible to do the real-time and on-site detection for the irregular additives in food samples. This study further investigate and improve the droplet-based piezoelectric polymer deposition. In addition, the deposited piezoelectric polymer deivces are integrated on a biochip for rapid detection of drug residue in foods.
First, we changed the wire width of electrode to design and choose different area ratio of P(VDF-TrFE). In the electrodeposition process, we discussed the optimization parameter, including electrodeposition time, volume of droplet, supplying voltage, and the pre-treatment of relative humidity. In the examination of acoustic property, the maximum output power was 86.31 μW (10 kHz). Compare of past study, the signal strengthen was enhanced by 62 % (10 kHz), the output power was enhanced by 37 %, the efficiency was enhanced by 220 %. In the property of acoustic transceiver, the signal coefficient of variation was reduced to 0.38 % from 17.79 % by the pre-tunable treatment.
The developed acoustic transceiver was applied to the detection of animal drugs residue in meat samples after the optimization process and pre-tunable treatment. The detection frequency was 10 kHz, and the target drugs were ractopamine、benzylpenicillin、doxycycline. The response, including fluid disturbance and steady tim) was 80 sec, and the SNR of steady signal was up to 29.03 dB. Linear range was 0 ~ 100 ppb, and sensitivity was up to 2.4 mV/ppb and the detection limit was 2.06 ppb (3 dB). Finally, the acoustic transceiver was integrated with MIP films on microfluidic chip, and 20 ppb pork sample was applied to our chip for drugs residue detection. The detection result was up to 23.7±1.15 ppb. The detection time was 4 min, including fluid operation and dynamic signal measurement.
In this study, the developed high-sensitivity piezoelectric acoustic transceiver presented the advantages of low cost, simple steps and high integration. Besides the drugs residue detection, it also was applied as others biosensor in the future.
摘要 i
Abstract ii
目錄 iv
表目錄 xi
第一章 緒論 1
1.1 食品安全檢測 1
1.2 傳統檢測技術 2
1.2.1 液相層析技術 3
1.2.2 質譜儀檢測技術 7
1.2.3 酵素免疫檢測技術 9
1.3 生醫感測器 10
1.3.1 光學生醫感測器 11
1.3.2 電化學生醫感測器 14
1.3.3 電阻抗生醫感測器 15
1.3.4 壓電石英晶體生醫感測器 17
1.4 超音波傳感器 18
1.4.1 超音波傳感器之發展與應用 19
1.4.2 電容式超音波微傳感器 20
1.4.3 壓電式超音波微傳感器 22
1.4.4 壓電式超音波微收發器 25
1.5 研究動機 28
1.6 研究目的與方法 30
1.7 論文研究架構 31
第二章 聲波檢測原理及聲波微電極設計 33
2.1 聲波傳遞理論 33
2.1.1 波動方程式 33
2.1.2 格林函數 35
2.1.3 屏障活塞 36
2.1.4 平面波與空間解析度 37
2.2 聲波微收發器設計 38
2.3表面吸附分子感測之物性與化性原理 40
2.3.1壓電式聲波檢測原理 40
2.3.2表面鍵結與分子吸附原理 42
第三章 壓電高分子製程與聲波性能量測 44
3.1 壓電高分子材料 44
3.2 壓電高分子製程 46
3.3 壓電高分子電沉積製程開發改善 52
3.3.1沉積時間與沉積厚度關係探討 53
3.3.2微液滴量與壓電高分子薄膜厚度實驗 54
3.3.3電壓參數與壓電高分子薄膜厚度實驗 57
3.3.4濕度預處理與壓電薄膜沉積效果最佳化 60
3.3.5壓電力顯微鏡(PFM)壓電薄膜極化量測 61
3.3.6熱極化處理對於聚合後壓電薄膜性能之影響 68
3.3.7最佳製程參數與討論 69
3.4 波微收發器性能量測 69
3.4.1聲波微收發器實驗與動物用藥動態檢測實驗架構 69
3.4.2聲波微收發器面積與壓電薄膜電極響應結果 72
3.4.3聲波微收發器面積與頻率功率及轉換效率測試圖 73
3.4.4聲波微收發器致動(驅動)次數影響與以預振調整性能 75
3.4.5聲波微收發器動態訊號分析 78
3.4.6聲波微收發器動態訊號處理 94
3.4.7預振前處理對於藥物檢測精準度比較 97
3.4.8聲波微收發器存放安定性測試 99
3.5 結論 100
第四章 聲波微收發器應用於食品藥物殘留快篩檢測 101
4.1 感測器於食品安全之應用 101
4.2 動物用藥殘留檢測項目 103
4.3結合分子拓印薄之聲波微收發器應用於動物用藥殘留晶片 105
4.4 動物用藥藥品檢量線檢測結果 109
4.5 動物用藥殘留檢測之肉類樣本備製 119
4.6結合分子拓印薄膜應用於動物用藥殘留檢測 119
4.6 結論 124
第五章 總結與研究成果 125
5.1 總結 125
5.2 研究成果 126
5.3研究創新 129
5.4 學術貢獻 131
5.4 未來研究建議 138
附錄 142
參考資料 164
作者簡介 174
著作發表 176
[1] 維基百科, 台灣食品安全事件列表,
[2] Z. Zhang, M. J. Yang, and J. Pawliszyn, Solid-phase microextraction. A solvent-free alternative for sample preparation, Analytical Chemistry, 1994, 66, P:844-853.
[3] W. E. Bleidner, H. M. Baker, Michael. Levitsky, and W. K. Lowen, Determination of 3-(p-c hlorop henyl)-l,l -dimethylurea in soils and plant tissue, Agricultural and Food Chemistry, 1954, 2, P:476-479.
[4] F.R. van de Voort, Fourier transform infrared spectroscopy applied to food analysis, Food Research International, 1992, 25, P:397-403.
[5] 昌增益(譯) 弗鲁頓, 蛋白質、酶和基因: 化學與生物學的交互作用, 清華大學出版社, 2005, 1,
[6] 中華民國環署檢, 字第 1030074114 號公告, 2014, 9, 5,
[7] W. R. Eberlein, and A. M. Bongiovanni, New solvent systems for the resolution of corticosteroids by paper chromatography, Archives of Biochemistry and Biophysics, 1955, 59, P:90-96.
[8] H. Li, T. Qiu, Y. Cao, et al, Pre-staining paper chromatography method for quantification of -aminobutyric acid, Journal of Chromatography A, 2009, 1216, P:5057-5060.
[9] J. C. Touchstone, Improved separation of phospholipids in thin layer chromatography, Lipids, 1980, 15, P:61-62.
[10] G. J. Van Berkel, M. J. Ford, and M. A. Deibel, Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization, Analytical Chemistry, 2005, 77, P:1207-1215.
[11] 國立臺灣大學化學系, 大學有機化學實驗, 國立台灣大學出版中心, 2006, 8
[12] J. J. Kirkland, High-performance ultraviolet photometric detector for use with efficient liquid chromatographic columns, Analytical Chemistry, 1968, 40, P:391-396.
[13] Nobel Lectures, Physics, Elsevier Publishing Company, 1967, 1901-21.
[14] 何國榮, 科學月刊, 2011, 498
[15] R. S. Gohlke, Time-of-flight mass spectrometry and gas-liquid partition chromatography., Analytical Chemistry, 1959, 31, P:535-545.
[16] R. S. Gohlke, and F. W. McLafferty, Early gas chromatography/mass spectrometry., Journal of the American Society for Mass Spectrometry, 1993, 4, P:367-371.
[17] K. Hirayama, S. Akashi, M. Furuya, and K. Fukuhara, Rapid confirmation and revision of the primary structure of bovine serum albumin by esims and frit-fab lc/ms, Biochemical and Biophysical Research Communications, 1990, 173, P:639-646.
[18] M. J. Huddleston, M. F. Bean, and S. A. Carr, Collisional fragmentation of glycopeptides by electrospray ionization lcims and lcimsims: Methods for selective detection of glycopeptides in protein digests, Analytical Chemistry, 1993, 65, P:877-884.
[19] F. A. Ayaz, S. Hayirlioglu-Ayaz, J. Gruz, et al, Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (vaccinium rctostaphylos l.) fruit by hplc-ms, Journal of Agricultural and Food Chemistry, 2005, 53, P:8116-8122.
[20] 謝玉貞.蔣慕琰, 農藥免疫檢測技術開發與應用, 農政與農情, 2007, 186
[21] I. Uto, T. Ishimatsu, H. Hirayama, et al, Determination of urinary tamm-horsfall protein by elisa using a maleimide method for enzyme-antibody conjugation, Journal of Immunological Methods, 1991, 138, P:87-94.
[22] 林毓芬, 洪紹文, 陳柏叡, et al, Ciprofloxacin 藥物酵素連結免疫吸附法殘留檢驗試劑之開發, 生物學報, 2007, 42, P:73-80.
[23] P. Tijissen, Practice and theory of enzyme immunoassays Elsevier Publishing Company, 1985, P:279-281.
[24] C. K. Holtzapple, S. A. Buckley, and L. H. Stanker, Production and characterization of monoclonal antibodies against sarafloxacin and cross-reactivity studies of related fluoroquinolones, Journal of Agricultural and Food Chemistry, 1997, 45, P:1984-1990.
[25] H. Watanabe, A. Satake, Y. Kido, and A. Tsuji, Monoclonal-based enzyme-linked immunosorbent assay and immunochromatographic assay for enrofloxacin in biological matrices, Analyst, 2002, 127, P:98-103.
[26] R. Narayanaswamy, and O.S. Wolfbeis, Optical sensors, Springer, 2004,
[27] S. Subrahmanyam, S. A. Piletsky, and A. P. F. Turner, Application of natural receptors in sensors and assays, Analytical Chemistry, 2002, 74, P:3942-3951.
[28] 張育維 黃遠東, 生醫電子, 科學發展, 2010, 451, P:40-45.
[29] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins Journal of Colloid and Interface Science, 1991, 143, P:513-526.
[30] K. Campbel, S. A. Haughey, H. Top, et al, Single laboratory validation of a surface plasmon resonance biosensor screening method for paralytic shellfish poisoning toxins, Analytical Chemistry, 2010, 82, P:2977-2988.
[31] V.V.R. Sai, T. Kundu, C. Deshmukh, et al, Label-free fiber optic biosensor based on evanescent wave absorbance at 280 nm, Sensors and Actuators B: Chemical, 2010, 143, P:724-730.
[32] C. C. Hong. et al, P. H. Chang, C. C. Lin, and C. L. Hong, A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol, Biosensors and Bioelectronics, 2010, 25, P:2058-2064.
[33] N. Yildirim, F. Long, C. Gao, et al, Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples, Environmental Science & Technology, 2012, 46, P:3288-3294.
[34] L. C. Clark, and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery Annals New York Academy of Sciences 1962, 102, P:29-45.
[35] G.G. Guilbault, and G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose, Analytica Chimica Acta, 1973, 64, P:439-455.
[36] J. C. Vidal, E. Garcia, and J. R. Castillo, Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: Influence of the operating conditions on analytical performance, Biosensors and Bioelectronics, 1998, 13, P:371-382.
[37] L. V. Lukachova, A. A. Karyakin, Y. N. Ivanova, et al, Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor, Analyst, 1998, 123, P:1981-1985.
[38] J. Wang, A. N. Kawde, and M. Musameh, Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization, Analyst, 2003, 128, P:912-916.
[39] F. Patolsky, Y. Weizmann, and I. Willner, Long-range electrical contacting of redox enzymes by swcnt connectors, Angewandte Chemie, 2004, 43, P:2113-2117.
[40] M. Mehrvar, and M. Abdi, Recent developments, characteristics, and potential applications of electrochemical biosensors, Analytical Sciences, 2004, 20, P:1113-1126.
[41] O. A. Sadik, H. Xu, E. Gheorghiu, et al, Differential impedance spectroscopy for monitoring protein immobilization and antibody-antigen reactions, Analytical Chemistry, 2002, 74, P:3142-3150.
[42] L. Yang, Y. Li, and G. F. Erf, Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of escherichia coli o157:H7, Analytical Chemistry, 2004, 76, P:1107-1113.
[43] F. Yan, and O. A. Sadik, Enzyme-modulated cleavage of dsdna for studying interfacial biomolecular interactions, American Chemical Society, 2001, 123, P:11335-11340.
[44] W. Liaoa, and X. T. Cui, Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine pdgf, Biosensors and Bioelectronics, 2007, 23, P:218-224.
[45] Y. Fu, R. Yuan, L. Xu, et al, Indicator free DNA hybridization detection via eis based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate, Biochemical Engineering Journal, 2005, 23, P:37-44.
[46] Z. S. Wu, J. S. Li, M. H. Luo, et al, A novel capacitive immunosensor based on gold colloid monolayers associated with a sol–gel matrix Analytica Chimica Acta, 2005, 528, P:235-242.
[47] M. Rodahl, F. Höök, and B. Kasemo, Qcm operation in liquids: An explanation of measured variations in frequency and q factor with liquid conductivity, Analytical Chemistry, 1996, 68, P:2219-2227.
[48] F. Höök, M. Rodahl, P. Brzezinsk, and B. Kasemo, Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance, Langmuir, 1998, 14, P:729-734.
[49] K. A. Marx, Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules, 2003, 4, P:1109-1120.
[50] N. Kim, D. K. Kim, and Y. J. Cho, Development of indirect-competitive quartz crystal microbalance immunosensor for c-reactive protein, Sensors and Actuators B: Chemical, 2009, 143, P:444-448.
[51] H. Muramatsu, J. M. Dicks, E. Tamiya, and I. Karube, Piezoelectric crystal biosensor modified with protein a for determination of immunoglobulins, Analytical Chemistry, 1987, 59, P:2760-2763.
[52] G. G. Guilbault, Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector, Analytical Chemistry, 1989, 55, P:1682-1684.
[53] K. Haupt, K. Noworyta, and W. Kutner, Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance, Analytical Communications, 1999, 36, P:391-393.
[54] W. P. Mason, Electromechanical transducers and wave filters, New York, 1948.
[55] G. Bradfield, Ultrasonic transducers Ultrasonics, 1970, P:112-123.
[56] D.W. Schinde, D.A. Hutchins, L. Zou, and M. Sayer, The design and characterization of micromachined air-coupled capacitance transducers, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1995, 42, P:42-50.
[57] B. W. Drinkwater, and P. D. Wilcox, Ultrasonic arrays for non-destructive evaluation a review, NDT & E International 2006, 39, P:525-541.
[58] B. T. Khuri-Yakub, and Ö. Oralkan, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, Journal of Micromechanics and Microengineering, 2011, 21, P:1-11.
[59] A. Carullo, and M. Parvis, An ultrasonic sensor for distance measurement in automotive applications, IEEE Sensors Journal, 20014, 1, P:143-147.
[60] M. I. Haller, and B. T. Khuri-Yakub, A surface micromachined electrostatic ultrasonic air transducer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1994, 43, P:1-6.
[61] X. Jin, I. Ladabaum, F.L. Degertekin, et al, Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers, IEEE Journal of Microelectromechanical Systems, 1999, 8, P:100-114.
[62] I. O. Wygant, N. S. Jamal, H. J. Lee, et al, An integrated circuit with transmit beamforming flip-chip bonded to a 2-d cmut array for 3-d ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, P:2145-2156.
[63] X.B. Wang, C. Song, D.M. Li, et al, The influence of different doping elements on microstructure,piezoelectric coefficient and resistivity of sputtered zno film, Applied Surface Science, 2006, 253, P:1639-1643.
[64] S. C. Ko, Y. C. Kim, S. S. Lee, et al, Micromachined piezoelectric membrane acoustic device, Sensors and Actuators A 2003, 103, P:130-134.
[65] J. S. Dodds, F. N. Meyers, and K. J. Loh, Piezoelectric characterization of pvdf-trfe thin films enhanced with zno nanoparticles, IEEE Sensors Journal, 2012, 12, P:1889-1890.
[66] K. Ozaki, A. Matin, Y. Numata, et al, Fabrication and characterization of a smart epitaxial piezoelectric micromachined ultrasonic transducer, Materials Science and Engineering B, 2014, 190, P:41-46.
[67] Z. Wang, W. Zhu, J. Miao, et al, Micromachined thick film piezoelectric ultrasonic transducer array, Sensors and Actuators A: Physical, 2006, P:485-490.
[68] K. Yamashita, H. Katata, M. Okuyama, et al, Arrayed ultrasonic microsensors with high directivity for in-air use using pzt thin film on silicon diaphragms, Sensors and Actuators A: Physical, 2002, P:302-307.
[69] Y. Qiu, J. V. Gigliotti, M. Wallace, et al, Piezoelectric micromachined ultrasound transducer (pmut) arrays for integrated sensing, actuation and imaging, Sensors 2015, 15, P:8020-8041.
[70] 莊克士, 醫學影像物理學, 合記圖書出版社, 1998,
[71] J. J. Bernstein, S. L. Finberg, K. Houston, et al, Micromachined high frequency ferroelectric sonar transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, P:960-969.
[72] H. Jaffe, and D. A. Berlincourt, Piezoelectric transducer materials, Proceedings of the IEEE, 1965, 53, P:1372-1386.
[73] K. W. Chen, Development and investigation of micropatterning piezoelectric polymer thin films and their applications to ultrasonic transceivers 2014, Master thesis, National Tsing Hua University, Hsinchu, Taiwan,
[74] 白明憲, 工程聲學, 全華圖書股份有限公司, 2014, 6
[75] G. L. Chen, K. W. Chen, and C.C. Hong, Sticker microfluidic chips with on-chip piezoelectric ultrasonic transceiver array for highly-sensitive detection of antibiotic drug, 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences (microTAS 2015), 2015: Gyeongju, Koera.
[76] P. Curie, and J. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces, Bull. Soc. Fr. Mineral., 1880, 3, P:90-102.
[77] R. Belouadah, D. Kendil, E. Bousbiat, et al, Electrical properties of two-dimensional thin films of the ferroelectric material polyvinylidene fluoride as a function of electric field, Physica B: Condensed Matter, 2009, 404, P:1746-1751.
[78] M. M. Costa, and J. A. Giacometti, Electric‐field‐induced phase changes in polyvinylidene fluoride effects from corona polarity and moisture, Applied Physics Letters, 1993, 62, P:1091-1093.
[79] S. J. Kang, Y. J. Park, I. Bae, et al, Printable ferroelectric pvdf/pmma blend films with ultralow roughness for low voltage non-volatile polymer memory., Advanced Functional Materials, 2009, 19, P:2812-2818.
[80] S. J. Kang, Y. J. Park, J. Y. Hwang, et al, Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting., Advanced Materials, 2007, 19, P:581-586.
[81] H. Ohigashi, Piezoelectric polymers—materials and manufacture, Japanese Journal of Applied Physics, 1985, 24, P:23-27.
[82] A. Pecora, L. Maiolo, F. Maita, and A. Minotti, Flexible pvdf-trfe pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate Sensors and Actuators A: Physical, 2012, 185, P:39-43.
[83] Y. Jeon, J. Chung, and K. No, Fabrication of pzt thick films on silicon substrates for piezoelectric actuator, Journal of Electroceramics, 2000, 4, P:195-199.
[84] M. Koch, N. Harris, A.G.R. Evan, et al, A novel micromachined pump based on thick-film piezoelectric actuation, Sensors and Actuators A: Physical, 1998, 70, P:98-103.
[85] B. Morten, G. De Cicco, and M. Prudenziati, Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films, Sensors and Actuators A: Physical, 1992, 31, P:153-158.
[86] R.A. Dorey, S.B. Stringfellow, and R.W. Whatmore, Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a pzt composite thick film, Journal of the European Ceramic Society, 2002, 22, P:2921-2926.
[87] A. Schroth, R. Maeda, J. Akedo, and M. Ichiki, Application of gas jet deposition method to piezoelectric thick film miniature actuator, Japanese Journal of Applied Physics, 1998, 37, P:5342-5344.
[88] V. Ferrari, D. Marioli, and A. Taroni, Thick-film resonant piezo-layers as new gravimetric sensors, Measurement Science and Technology, 1997, 8, P:42-48.
[89] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, et al, Fully transparent zno thin-film transistor produced at room temperature., Advanced Materials, 2005, 17, P:590-594.
[90] J. Wang, H. Li, J. Liu, et al, On the α→β transition of carbon-coated highly oriented pvdfultrathin film induced by melt recrystallization., Journal of the American Chemical Society, 2003, 125, P:1496-1497.
[91] N. Fujitsuka, J. Sakata, Y. Miyachi, et al, Monolithic pyroelectric infrared image sensor using pvdf thin film, Sensors and Actuators A: Physical, 1998, 66, P:237-243.
[92] S. J. Kang, Y. J. Park, J. Sung, et al, Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing., Applied Physics Letters, 2008, 92, P:012923-012921.
[93] P. Gao, K. Yao, X. Tang, et al, A piezoelectric micro-actuator with three dimensional structure and its micro-fabrication, Sensors and Actuators A: Physical, 2006, 130-131, P:491-496.
[94] B. Xu, F. Arias, and G. M. Whitesides, Making honeycomb microcomposites by soft lithography., Advanced Materials, 1999, 11, P:492-495.
[95] Y. J. Shin, S. J. Kang, H. J. Jung, et al, Chemically cross-linked thin poly(vinylidene fluoride-co-trifluoroethylene) films for nonvolatile ferroelectric polymer memory., ACS Applied Materials & Interfaces, 2011, 3, P:582-589.
[96] O. Pabst, J. Perelaer, E. Beckert, et al, All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. , Organic Electronics, 2013, 14, P:3423-3429.
[97] L. Besra, and M. Liub, A review on fundamentals and applications of electrophoretic deposition (epd), Progress in Materials Science, 2007, 52, P:1-64.
[98] S. N. Heavens, Electrophoretic deposition as a processing route for ceramics., Advanced Ceramic Processing and Technology, 1990, 1, P:255-283.
[99] J. D. Foster, and R. M. White, Electrophoretic deposition of the piezoelectric polymer p(vdf-trfe), 201st Meeting of The Electrochemical Society (Microfabricated Systems and MEMS VI), 2002: Philadelphia, PA, USA.
[100] T. D. Nguyen, J. M. Nagarah, Y. Qi, et al, Wafer-scale nanopatterning and translation into high-performance piezoelectric nanowires., Nano Letters, 2010, 10, P:4595-4599.
[101] M. M. Costa, and J. A. Giacometti, Electric‐field‐induced phase changes in polyvinylidene fluoride effects from corona polarity and moisture., Applied Physics Letters, 1993, 62, P:1091- 1093.
[102] R. S. Dahiya, M. Valle, G. Metta, et al, Deposition, processing and characterization of p(vdf-trfe) thin films for sensing applications, 2008 IEEE, 2008, P:490-493.
[103] Y. R. Wang, J. M. Zheng, G. Y. Ren, et al, A flexible piezoelectric force sensor based on pvdf fabrics, Smart Materials and Structures, 2011, 20, P:045009-0450015.
[104] F. Guan, J. Pan, J. Wang, et al, Crystal orientation effect on electric energy storage in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers, Macromolecules, 2010, 43, P:384-392.
[105] S. H. Bae, O. Kahya, B. K.. Sharma, et al, Graphene-p(vdf-trfe) multilayer film for flexible applications, ACS Nano, 2013, 7, P:3130-3138.
[106] A. Chen, Fabrication of piezoelecric polymer thin films based on non-electrical polarization process and its applications to flexible nanostructured tactile sensor array, 2012, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[107] C. Zhou, T. Wang, J. Liu, et al, Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol, Analyst, 2012, 137, P:4469-4477.
[108] X. Lin, Y. Ni, and S. Kokot, A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue k)/graphene oxide-nafion/glassy carbon electrode, Journal of Hazardous Materials, 2013, 260, P:508-517.
[109] M. Y. Wang, W. Zhu, L. Ma, et al, Enhanced simultaneous detection of ractopamine and salbutamol –via electrochemical-facial deposition of mno 2 nanoflowers onto 3d rgo/ni foam templates, Biosensors and Bioelectronics, 2016, 76, P:259-266.
[110] S. Chen, D. Pan, N Gan, et al, A qcm immunosensor to rapidly detect ractopamine using bio-polymer conjugate and magnetic β-cyclodextrins Sensors and Actuators B: Chemical, 2015, 211, P:523-530.
[111] P. H. Chang, An optofluidic lab-on-a-chip using bionic technologies and its application in biomedical microinstrumentation, 2010, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[112] L. Wu, W. Yuan, N. Hu, et al, Improved piezoelectricity of pvdf-hfp/carbon black composite films, Journal of Physics D: Applied Physics, 2014, 47, P:135302-135310.
[113] V. Bhavanasi, V. Kumar, K. Parida, et al, Enhanced piezoelectric energy harvesting performance of flexible pvdf-trfe bilayer films with graphene oxide, ACS Applied Materials & Interfaces, 2016, 8, P:521-529.
[114] H. J. Chen, S. Han, C. Liu, et al, Investigation of pvdf-trfe composite with nanofillers for sensitivity improvement Sensors and Actuators A: Physical, 2016, 245, P:135-139.
[115] C. C. Hong, S. U. Huang, J. Shieh, and S. H. Chen, Enhanced piezoelectricity of nanoimprinted sub-20 nm poly(vinylidene fluoride-trifluoroethylene) copolymer nanograss, Macromolecules, 2012, 45, P:1580-1586.
[116] D. Chen, T. Sharma, and J. X. J. Zhang, Mesoporous surface control of pvdf thin films for enhanced piezoelectric energy generation Sensors and Actuators A: Physical, 216, P:196-201.
[117] D. B. Wallace, and R. E. Marusak, Controlling depoling and aging of piezoelectric transducers United States Patent 5643353, May, 31, 1994,
[118] F. J. Gruhl, and K. Länge, Surface acoustic wave (saw) biosensor for rapid and label-free detection of penicillin g in milk, Food Analytical Methods, 2014, P:430-437.
[119] S. Y. Huang, Nanoimprint of piezoelectric polymer films and investigation of their morphology and piezoelectricity, 2011, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[120] K. L. Lin, Development and investigation of hybrid piezoelectric/conducting polymers and their applications in power nanogenerators, 2013, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[121] N. Levi, R. Czerw, S. Xing, et al, Properties of polyvinylidene difluoride−carbon nanotube blends, Nano Letters, 2004, 7, P:1267-1271.
[122] T. Siponkoski, M. Nelo, J. Palosaari, et al, Electromechanical properties of pzt/p(vdf-trfe) composite ink printed on a flexible organic substrate, Composites Part B, 2015, 80, P:217-222.
[123] H. J. Hwang, J. H. Yang, S. C. Kang, et al, Novel multi-bit memory device using metal/pvdf–trfe/graphene stack, Microelectronic Engineering, 2013, 109, P:87-89.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔