[1] 維基百科, 台灣食品安全事件列表,
[2] Z. Zhang, M. J. Yang, and J. Pawliszyn, Solid-phase microextraction. A solvent-free alternative for sample preparation, Analytical Chemistry, 1994, 66, P:844-853.
[3] W. E. Bleidner, H. M. Baker, Michael. Levitsky, and W. K. Lowen, Determination of 3-(p-c hlorop henyl)-l,l -dimethylurea in soils and plant tissue, Agricultural and Food Chemistry, 1954, 2, P:476-479.
[4] F.R. van de Voort, Fourier transform infrared spectroscopy applied to food analysis, Food Research International, 1992, 25, P:397-403.
[5] 昌增益(譯) 弗鲁頓, 蛋白質、酶和基因: 化學與生物學的交互作用, 清華大學出版社, 2005, 1,
[6] 中華民國環署檢, 字第 1030074114 號公告, 2014, 9, 5,
[7] W. R. Eberlein, and A. M. Bongiovanni, New solvent systems for the resolution of corticosteroids by paper chromatography, Archives of Biochemistry and Biophysics, 1955, 59, P:90-96.
[8] H. Li, T. Qiu, Y. Cao, et al, Pre-staining paper chromatography method for quantification of -aminobutyric acid, Journal of Chromatography A, 2009, 1216, P:5057-5060.
[9] J. C. Touchstone, Improved separation of phospholipids in thin layer chromatography, Lipids, 1980, 15, P:61-62.
[10] G. J. Van Berkel, M. J. Ford, and M. A. Deibel, Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization, Analytical Chemistry, 2005, 77, P:1207-1215.
[11] 國立臺灣大學化學系, 大學有機化學實驗, 國立台灣大學出版中心, 2006, 8
[12] J. J. Kirkland, High-performance ultraviolet photometric detector for use with efficient liquid chromatographic columns, Analytical Chemistry, 1968, 40, P:391-396.
[13] Nobel Lectures, Physics, Elsevier Publishing Company, 1967, 1901-21.
[14] 何國榮, 科學月刊, 2011, 498
[15] R. S. Gohlke, Time-of-flight mass spectrometry and gas-liquid partition chromatography., Analytical Chemistry, 1959, 31, P:535-545.
[16] R. S. Gohlke, and F. W. McLafferty, Early gas chromatography/mass spectrometry., Journal of the American Society for Mass Spectrometry, 1993, 4, P:367-371.
[17] K. Hirayama, S. Akashi, M. Furuya, and K. Fukuhara, Rapid confirmation and revision of the primary structure of bovine serum albumin by esims and frit-fab lc/ms, Biochemical and Biophysical Research Communications, 1990, 173, P:639-646.
[18] M. J. Huddleston, M. F. Bean, and S. A. Carr, Collisional fragmentation of glycopeptides by electrospray ionization lcims and lcimsims: Methods for selective detection of glycopeptides in protein digests, Analytical Chemistry, 1993, 65, P:877-884.
[19] F. A. Ayaz, S. Hayirlioglu-Ayaz, J. Gruz, et al, Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (vaccinium rctostaphylos l.) fruit by hplc-ms, Journal of Agricultural and Food Chemistry, 2005, 53, P:8116-8122.
[20] 謝玉貞.蔣慕琰, 農藥免疫檢測技術開發與應用, 農政與農情, 2007, 186[21] I. Uto, T. Ishimatsu, H. Hirayama, et al, Determination of urinary tamm-horsfall protein by elisa using a maleimide method for enzyme-antibody conjugation, Journal of Immunological Methods, 1991, 138, P:87-94.
[22] 林毓芬, 洪紹文, 陳柏叡, et al, Ciprofloxacin 藥物酵素連結免疫吸附法殘留檢驗試劑之開發, 生物學報, 2007, 42, P:73-80.
[23] P. Tijissen, Practice and theory of enzyme immunoassays Elsevier Publishing Company, 1985, P:279-281.
[24] C. K. Holtzapple, S. A. Buckley, and L. H. Stanker, Production and characterization of monoclonal antibodies against sarafloxacin and cross-reactivity studies of related fluoroquinolones, Journal of Agricultural and Food Chemistry, 1997, 45, P:1984-1990.
[25] H. Watanabe, A. Satake, Y. Kido, and A. Tsuji, Monoclonal-based enzyme-linked immunosorbent assay and immunochromatographic assay for enrofloxacin in biological matrices, Analyst, 2002, 127, P:98-103.
[26] R. Narayanaswamy, and O.S. Wolfbeis, Optical sensors, Springer, 2004,
[27] S. Subrahmanyam, S. A. Piletsky, and A. P. F. Turner, Application of natural receptors in sensors and assays, Analytical Chemistry, 2002, 74, P:3942-3951.
[28] 張育維 黃遠東, 生醫電子, 科學發展, 2010, 451, P:40-45.
[29] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins Journal of Colloid and Interface Science, 1991, 143, P:513-526.
[30] K. Campbel, S. A. Haughey, H. Top, et al, Single laboratory validation of a surface plasmon resonance biosensor screening method for paralytic shellfish poisoning toxins, Analytical Chemistry, 2010, 82, P:2977-2988.
[31] V.V.R. Sai, T. Kundu, C. Deshmukh, et al, Label-free fiber optic biosensor based on evanescent wave absorbance at 280 nm, Sensors and Actuators B: Chemical, 2010, 143, P:724-730.
[32] C. C. Hong. et al, P. H. Chang, C. C. Lin, and C. L. Hong, A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol, Biosensors and Bioelectronics, 2010, 25, P:2058-2064.
[33] N. Yildirim, F. Long, C. Gao, et al, Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples, Environmental Science & Technology, 2012, 46, P:3288-3294.
[34] L. C. Clark, and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery Annals New York Academy of Sciences 1962, 102, P:29-45.
[35] G.G. Guilbault, and G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose, Analytica Chimica Acta, 1973, 64, P:439-455.
[36] J. C. Vidal, E. Garcia, and J. R. Castillo, Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: Influence of the operating conditions on analytical performance, Biosensors and Bioelectronics, 1998, 13, P:371-382.
[37] L. V. Lukachova, A. A. Karyakin, Y. N. Ivanova, et al, Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor, Analyst, 1998, 123, P:1981-1985.
[38] J. Wang, A. N. Kawde, and M. Musameh, Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization, Analyst, 2003, 128, P:912-916.
[39] F. Patolsky, Y. Weizmann, and I. Willner, Long-range electrical contacting of redox enzymes by swcnt connectors, Angewandte Chemie, 2004, 43, P:2113-2117.
[40] M. Mehrvar, and M. Abdi, Recent developments, characteristics, and potential applications of electrochemical biosensors, Analytical Sciences, 2004, 20, P:1113-1126.
[41] O. A. Sadik, H. Xu, E. Gheorghiu, et al, Differential impedance spectroscopy for monitoring protein immobilization and antibody-antigen reactions, Analytical Chemistry, 2002, 74, P:3142-3150.
[42] L. Yang, Y. Li, and G. F. Erf, Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of escherichia coli o157:H7, Analytical Chemistry, 2004, 76, P:1107-1113.
[43] F. Yan, and O. A. Sadik, Enzyme-modulated cleavage of dsdna for studying interfacial biomolecular interactions, American Chemical Society, 2001, 123, P:11335-11340.
[44] W. Liaoa, and X. T. Cui, Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine pdgf, Biosensors and Bioelectronics, 2007, 23, P:218-224.
[45] Y. Fu, R. Yuan, L. Xu, et al, Indicator free DNA hybridization detection via eis based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate, Biochemical Engineering Journal, 2005, 23, P:37-44.
[46] Z. S. Wu, J. S. Li, M. H. Luo, et al, A novel capacitive immunosensor based on gold colloid monolayers associated with a sol–gel matrix Analytica Chimica Acta, 2005, 528, P:235-242.
[47] M. Rodahl, F. Höök, and B. Kasemo, Qcm operation in liquids: An explanation of measured variations in frequency and q factor with liquid conductivity, Analytical Chemistry, 1996, 68, P:2219-2227.
[48] F. Höök, M. Rodahl, P. Brzezinsk, and B. Kasemo, Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance, Langmuir, 1998, 14, P:729-734.
[49] K. A. Marx, Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules, 2003, 4, P:1109-1120.
[50] N. Kim, D. K. Kim, and Y. J. Cho, Development of indirect-competitive quartz crystal microbalance immunosensor for c-reactive protein, Sensors and Actuators B: Chemical, 2009, 143, P:444-448.
[51] H. Muramatsu, J. M. Dicks, E. Tamiya, and I. Karube, Piezoelectric crystal biosensor modified with protein a for determination of immunoglobulins, Analytical Chemistry, 1987, 59, P:2760-2763.
[52] G. G. Guilbault, Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector, Analytical Chemistry, 1989, 55, P:1682-1684.
[53] K. Haupt, K. Noworyta, and W. Kutner, Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance, Analytical Communications, 1999, 36, P:391-393.
[54] W. P. Mason, Electromechanical transducers and wave filters, New York, 1948.
[55] G. Bradfield, Ultrasonic transducers Ultrasonics, 1970, P:112-123.
[56] D.W. Schinde, D.A. Hutchins, L. Zou, and M. Sayer, The design and characterization of micromachined air-coupled capacitance transducers, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1995, 42, P:42-50.
[57] B. W. Drinkwater, and P. D. Wilcox, Ultrasonic arrays for non-destructive evaluation a review, NDT & E International 2006, 39, P:525-541.
[58] B. T. Khuri-Yakub, and Ö. Oralkan, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, Journal of Micromechanics and Microengineering, 2011, 21, P:1-11.
[59] A. Carullo, and M. Parvis, An ultrasonic sensor for distance measurement in automotive applications, IEEE Sensors Journal, 20014, 1, P:143-147.
[60] M. I. Haller, and B. T. Khuri-Yakub, A surface micromachined electrostatic ultrasonic air transducer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1994, 43, P:1-6.
[61] X. Jin, I. Ladabaum, F.L. Degertekin, et al, Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers, IEEE Journal of Microelectromechanical Systems, 1999, 8, P:100-114.
[62] I. O. Wygant, N. S. Jamal, H. J. Lee, et al, An integrated circuit with transmit beamforming flip-chip bonded to a 2-d cmut array for 3-d ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, P:2145-2156.
[63] X.B. Wang, C. Song, D.M. Li, et al, The influence of different doping elements on microstructure,piezoelectric coefficient and resistivity of sputtered zno film, Applied Surface Science, 2006, 253, P:1639-1643.
[64] S. C. Ko, Y. C. Kim, S. S. Lee, et al, Micromachined piezoelectric membrane acoustic device, Sensors and Actuators A 2003, 103, P:130-134.
[65] J. S. Dodds, F. N. Meyers, and K. J. Loh, Piezoelectric characterization of pvdf-trfe thin films enhanced with zno nanoparticles, IEEE Sensors Journal, 2012, 12, P:1889-1890.
[66] K. Ozaki, A. Matin, Y. Numata, et al, Fabrication and characterization of a smart epitaxial piezoelectric micromachined ultrasonic transducer, Materials Science and Engineering B, 2014, 190, P:41-46.
[67] Z. Wang, W. Zhu, J. Miao, et al, Micromachined thick film piezoelectric ultrasonic transducer array, Sensors and Actuators A: Physical, 2006, P:485-490.
[68] K. Yamashita, H. Katata, M. Okuyama, et al, Arrayed ultrasonic microsensors with high directivity for in-air use using pzt thin film on silicon diaphragms, Sensors and Actuators A: Physical, 2002, P:302-307.
[69] Y. Qiu, J. V. Gigliotti, M. Wallace, et al, Piezoelectric micromachined ultrasound transducer (pmut) arrays for integrated sensing, actuation and imaging, Sensors 2015, 15, P:8020-8041.
[70] 莊克士, 醫學影像物理學, 合記圖書出版社, 1998,
[71] J. J. Bernstein, S. L. Finberg, K. Houston, et al, Micromachined high frequency ferroelectric sonar transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, P:960-969.
[72] H. Jaffe, and D. A. Berlincourt, Piezoelectric transducer materials, Proceedings of the IEEE, 1965, 53, P:1372-1386.
[73] K. W. Chen, Development and investigation of micropatterning piezoelectric polymer thin films and their applications to ultrasonic transceivers 2014, Master thesis, National Tsing Hua University, Hsinchu, Taiwan,
[74] 白明憲, 工程聲學, 全華圖書股份有限公司, 2014, 6
[75] G. L. Chen, K. W. Chen, and C.C. Hong, Sticker microfluidic chips with on-chip piezoelectric ultrasonic transceiver array for highly-sensitive detection of antibiotic drug, 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences (microTAS 2015), 2015: Gyeongju, Koera.
[76] P. Curie, and J. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces, Bull. Soc. Fr. Mineral., 1880, 3, P:90-102.
[77] R. Belouadah, D. Kendil, E. Bousbiat, et al, Electrical properties of two-dimensional thin films of the ferroelectric material polyvinylidene fluoride as a function of electric field, Physica B: Condensed Matter, 2009, 404, P:1746-1751.
[78] M. M. Costa, and J. A. Giacometti, Electric‐field‐induced phase changes in polyvinylidene fluoride effects from corona polarity and moisture, Applied Physics Letters, 1993, 62, P:1091-1093.
[79] S. J. Kang, Y. J. Park, I. Bae, et al, Printable ferroelectric pvdf/pmma blend films with ultralow roughness for low voltage non-volatile polymer memory., Advanced Functional Materials, 2009, 19, P:2812-2818.
[80] S. J. Kang, Y. J. Park, J. Y. Hwang, et al, Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting., Advanced Materials, 2007, 19, P:581-586.
[81] H. Ohigashi, Piezoelectric polymers—materials and manufacture, Japanese Journal of Applied Physics, 1985, 24, P:23-27.
[82] A. Pecora, L. Maiolo, F. Maita, and A. Minotti, Flexible pvdf-trfe pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate Sensors and Actuators A: Physical, 2012, 185, P:39-43.
[83] Y. Jeon, J. Chung, and K. No, Fabrication of pzt thick films on silicon substrates for piezoelectric actuator, Journal of Electroceramics, 2000, 4, P:195-199.
[84] M. Koch, N. Harris, A.G.R. Evan, et al, A novel micromachined pump based on thick-film piezoelectric actuation, Sensors and Actuators A: Physical, 1998, 70, P:98-103.
[85] B. Morten, G. De Cicco, and M. Prudenziati, Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films, Sensors and Actuators A: Physical, 1992, 31, P:153-158.
[86] R.A. Dorey, S.B. Stringfellow, and R.W. Whatmore, Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a pzt composite thick film, Journal of the European Ceramic Society, 2002, 22, P:2921-2926.
[87] A. Schroth, R. Maeda, J. Akedo, and M. Ichiki, Application of gas jet deposition method to piezoelectric thick film miniature actuator, Japanese Journal of Applied Physics, 1998, 37, P:5342-5344.
[88] V. Ferrari, D. Marioli, and A. Taroni, Thick-film resonant piezo-layers as new gravimetric sensors, Measurement Science and Technology, 1997, 8, P:42-48.
[89] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, et al, Fully transparent zno thin-film transistor produced at room temperature., Advanced Materials, 2005, 17, P:590-594.
[90] J. Wang, H. Li, J. Liu, et al, On the α→β transition of carbon-coated highly oriented pvdfultrathin film induced by melt recrystallization., Journal of the American Chemical Society, 2003, 125, P:1496-1497.
[91] N. Fujitsuka, J. Sakata, Y. Miyachi, et al, Monolithic pyroelectric infrared image sensor using pvdf thin film, Sensors and Actuators A: Physical, 1998, 66, P:237-243.
[92] S. J. Kang, Y. J. Park, J. Sung, et al, Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing., Applied Physics Letters, 2008, 92, P:012923-012921.
[93] P. Gao, K. Yao, X. Tang, et al, A piezoelectric micro-actuator with three dimensional structure and its micro-fabrication, Sensors and Actuators A: Physical, 2006, 130-131, P:491-496.
[94] B. Xu, F. Arias, and G. M. Whitesides, Making honeycomb microcomposites by soft lithography., Advanced Materials, 1999, 11, P:492-495.
[95] Y. J. Shin, S. J. Kang, H. J. Jung, et al, Chemically cross-linked thin poly(vinylidene fluoride-co-trifluoroethylene) films for nonvolatile ferroelectric polymer memory., ACS Applied Materials & Interfaces, 2011, 3, P:582-589.
[96] O. Pabst, J. Perelaer, E. Beckert, et al, All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. , Organic Electronics, 2013, 14, P:3423-3429.
[97] L. Besra, and M. Liub, A review on fundamentals and applications of electrophoretic deposition (epd), Progress in Materials Science, 2007, 52, P:1-64.
[98] S. N. Heavens, Electrophoretic deposition as a processing route for ceramics., Advanced Ceramic Processing and Technology, 1990, 1, P:255-283.
[99] J. D. Foster, and R. M. White, Electrophoretic deposition of the piezoelectric polymer p(vdf-trfe), 201st Meeting of The Electrochemical Society (Microfabricated Systems and MEMS VI), 2002: Philadelphia, PA, USA.
[100] T. D. Nguyen, J. M. Nagarah, Y. Qi, et al, Wafer-scale nanopatterning and translation into high-performance piezoelectric nanowires., Nano Letters, 2010, 10, P:4595-4599.
[101] M. M. Costa, and J. A. Giacometti, Electric‐field‐induced phase changes in polyvinylidene fluoride effects from corona polarity and moisture., Applied Physics Letters, 1993, 62, P:1091- 1093.
[102] R. S. Dahiya, M. Valle, G. Metta, et al, Deposition, processing and characterization of p(vdf-trfe) thin films for sensing applications, 2008 IEEE, 2008, P:490-493.
[103] Y. R. Wang, J. M. Zheng, G. Y. Ren, et al, A flexible piezoelectric force sensor based on pvdf fabrics, Smart Materials and Structures, 2011, 20, P:045009-0450015.
[104] F. Guan, J. Pan, J. Wang, et al, Crystal orientation effect on electric energy storage in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers, Macromolecules, 2010, 43, P:384-392.
[105] S. H. Bae, O. Kahya, B. K.. Sharma, et al, Graphene-p(vdf-trfe) multilayer film for flexible applications, ACS Nano, 2013, 7, P:3130-3138.
[106] A. Chen, Fabrication of piezoelecric polymer thin films based on non-electrical polarization process and its applications to flexible nanostructured tactile sensor array, 2012, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[107] C. Zhou, T. Wang, J. Liu, et al, Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol, Analyst, 2012, 137, P:4469-4477.
[108] X. Lin, Y. Ni, and S. Kokot, A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue k)/graphene oxide-nafion/glassy carbon electrode, Journal of Hazardous Materials, 2013, 260, P:508-517.
[109] M. Y. Wang, W. Zhu, L. Ma, et al, Enhanced simultaneous detection of ractopamine and salbutamol –via electrochemical-facial deposition of mno 2 nanoflowers onto 3d rgo/ni foam templates, Biosensors and Bioelectronics, 2016, 76, P:259-266.
[110] S. Chen, D. Pan, N Gan, et al, A qcm immunosensor to rapidly detect ractopamine using bio-polymer conjugate and magnetic β-cyclodextrins Sensors and Actuators B: Chemical, 2015, 211, P:523-530.
[111] P. H. Chang, An optofluidic lab-on-a-chip using bionic technologies and its application in biomedical microinstrumentation, 2010, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[112] L. Wu, W. Yuan, N. Hu, et al, Improved piezoelectricity of pvdf-hfp/carbon black composite films, Journal of Physics D: Applied Physics, 2014, 47, P:135302-135310.
[113] V. Bhavanasi, V. Kumar, K. Parida, et al, Enhanced piezoelectric energy harvesting performance of flexible pvdf-trfe bilayer films with graphene oxide, ACS Applied Materials & Interfaces, 2016, 8, P:521-529.
[114] H. J. Chen, S. Han, C. Liu, et al, Investigation of pvdf-trfe composite with nanofillers for sensitivity improvement Sensors and Actuators A: Physical, 2016, 245, P:135-139.
[115] C. C. Hong, S. U. Huang, J. Shieh, and S. H. Chen, Enhanced piezoelectricity of nanoimprinted sub-20 nm poly(vinylidene fluoride-trifluoroethylene) copolymer nanograss, Macromolecules, 2012, 45, P:1580-1586.
[116] D. Chen, T. Sharma, and J. X. J. Zhang, Mesoporous surface control of pvdf thin films for enhanced piezoelectric energy generation Sensors and Actuators A: Physical, 216, P:196-201.
[117] D. B. Wallace, and R. E. Marusak, Controlling depoling and aging of piezoelectric transducers United States Patent 5643353, May, 31, 1994,
[118] F. J. Gruhl, and K. Länge, Surface acoustic wave (saw) biosensor for rapid and label-free detection of penicillin g in milk, Food Analytical Methods, 2014, P:430-437.
[119] S. Y. Huang, Nanoimprint of piezoelectric polymer films and investigation of their morphology and piezoelectricity, 2011, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[120] K. L. Lin, Development and investigation of hybrid piezoelectric/conducting polymers and their applications in power nanogenerators, 2013, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[121] N. Levi, R. Czerw, S. Xing, et al, Properties of polyvinylidene difluoride−carbon nanotube blends, Nano Letters, 2004, 7, P:1267-1271.
[122] T. Siponkoski, M. Nelo, J. Palosaari, et al, Electromechanical properties of pzt/p(vdf-trfe) composite ink printed on a flexible organic substrate, Composites Part B, 2015, 80, P:217-222.
[123] H. J. Hwang, J. H. Yang, S. C. Kang, et al, Novel multi-bit memory device using metal/pvdf–trfe/graphene stack, Microelectronic Engineering, 2013, 109, P:87-89.