跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫孟揚
研究生(外文):Wen, Meng-Yang
論文名稱:超臨界二氧化碳布雷頓循環之渦輪機設計、分析與模擬
論文名稱(外文):Design, Analysis, and Simulation of a Turbine for Supercritical CO2 Brayton Cycle
指導教授:蔣小偉蔣小偉引用關係
指導教授(外文):Chiang, Hsiao-Wei
口試委員:郭啟榮徐菘蔚
口試委員(外文):Kuo, Chi-RonHsu, Sung-Weu
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:92
中文關鍵詞:超臨界二氧化碳布雷頓循環渦輪廢熱
外文關鍵詞:supercriticalCO2carbon dioxideBrayton Cyclewaste heatturbine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:596
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
sCO2 Brayton Cycle近年來十分熱門的研究主題,相較於傳統上使用空氣作為工作流體的Brayton Cycle, 或是應用於燃煤電廠的Steam Rankine Cycle,SCO2 Brayton Cycle不但能提供更高的效率,在相同發電量下,根據GE研究,sCO2 Brayton Cycle渦輪機的體積甚至能縮小至燃煤電廠使用之Steam Rankine Cycle的1/10,可望能降低其製造和維護的成本。此外,sCO2 Brayton Cycle的熱源非常廣泛,從集中式的太陽能發電、地熱到化石燃料等,皆可做為其熱源。
由於近年來全球暖化問題日益嚴重,和人類大量使用化石燃料絕對脫不了關係,尤其是在發電上,由於發電成本考量,以及無知政客推波助瀾下之不理性之反核聲浪,較高汙染的燃煤發電比例上始終居高不下。其中工業用電佔整體超過50%以上,然而工業的能源有將近一半的能源以廢熱或者其餘無法加以利用之型態的型態排放至空氣中,這是一種非常浪費能源的行為。因此,能夠如何有效利用這些廢熱,成為非常熱門的主題。其中,最著名的大概是本研究室研發多年的Organic Rankine Cycle(ORC),最後也成功商轉。不過,ORC主要適用於低溫廢熱源,其效率在較高溫的廢熱相對低落。因此,能夠用於較高溫廢熱源的sCO2 Brayton Cycle成為極具吸引力的研究主題。
不過,由於在超臨界態的CO2介於液態和氣態的特殊性質,使得渦輪機¬-壓縮機-發電機系統(TAC system,Turbine-Alternator-Compressor system )開發不易,尤其在壓縮機的進口,其溫度和壓力十分接近臨界點,需十分留意防止二氧化碳進入次臨界態,以防止流體性質劇烈變動造成壓縮機效能不彰。
本研究是國家第二期能源計畫(NEPII)--sCO2 Brayton Cycle發電系統開發的子計畫之一,壓縮機和渦輪機的系統開發中,有關渦輪機設計的部分。本計畫將使用大約450 °C作為廢熱源溫度參考。另外,因為超臨界二氧化碳的性質,本研究將採用Radial-Inflow Turbine作為渦輪機的類型。
Radial Inflow Turbine雖在設計上文獻中有許多經驗公式可供參考,但僅能得到建構模型所需之大部分參數,此模型仍須帶入CFD模擬,若未達到預期效率能須修改設計,如此反覆後,若模擬結果達到要求,即可進行加工和實驗測試。
The research of Supercritical CO2 (sCO2) Brayton Cycle has been popular over the past decade, due to its higher efficiency and smaller component size compared with those of steam Rankine cycle and air Brayton Cycle. Studies showed that SCO2 Brayton Cycle can accommodate a wide range of temperature as the heat source, starting from 260°C to 1200 °C. Thus, various research had been investigated to apply sCO2 Brayton Cycle into fields such as concentrated solar power, nuclear power, geothermal power, and waste heat recovery, making it a viable option for renewable energy.
This study is a subproject of SCO2 Brayton Cycle power generation system, a project under the National Energy Program-Phase II in Taiwan, with the objective of designing a power generation system using waste heat as heat source. The temperature of the waste heat is set to be 450°C, conforming to mid-range waste heat. The aim of this subproject is to design a turbine with the inlet total pressure of 14.1 MPa and total temperature of 573K, respectively, and outlet pressure of 8.5 MPa, corresponding to an expansion ratio of 1.658. Due to its small size and low mass flow rate, radial inflow turbine is selected instead of the axial flow turbine.
Some efforts were made by previous member of this lab to modify the existing turbine model to avoid the complexity of designing a turbine model from scratch. The efficiency, however, turned out to be lower the expectation. Therefore, in this study, the previously modified turbine model would be discarded and the new turbine would be built from square one.
This study tried to use Meanline Analysis from the literature as a preliminary design tool. Although most studies devoting to the design of radial inflow turbine were developed for turbine using air as working fluid, recent studies about the design of SCO2 turbine indicated that Meanline Analysis is qualified to be a preliminary design tool.
The simulation result of the Meanline Analysis was shown to be deviate from the design point, as expected. Fortunately, with the aid of CFD, the problem predicted by the simulation could be corrected and the model could be adjusted accordingly. At the end, with some bold assumption, the turbine model close to the expected pressure ratio and power output was devised.
List of Figures ______________________________________________________________ 4
List of tables _______________________________________________________________ 6
Chapter 1 Introduction_______________________________________________________ 7
1.1 Motivation ___________________________________________________________ 7
1.2 Literature Review ______________________________________________________ 9
1.2.1 Supercritical CO2 (sCO2) _____________________________________________ 9
1.2.2 sCO2 Brayton Cycle ________________________________________________ 11
1.2.3 Introduction to Radial Inflow (RIF) Turbine______________________________ 16
1.3 Purpose of the research ________________________________________________ 24
Chapter 2 Theory and governing equations______________________________________ 27
2.1 Velocity Triangle ______________________________________________________ 27
2.2 The governing equations _______________________________________________ 28
2.2.1 Continuity Equation________________________________________________ 29
2.2.2 Euler Turbine Equation _____________________________________________ 29
2.2.3 Energy Equation __________________________________________________ 29
2.3 Dimensionless Parameters ______________________________________________ 31
2.3.1 Specific Speed
_______________________________________________ 31
2.3.2 Specific Diameter______________________________________________ 31
2.4 Turbine Efficiency _____________________________________________________ 33
Isentropic Process________________________________________________________ 34
Chapter 3. Methodology ____________________________________________________ 35
3.1 sCO2 Brayton Cycle State Analysis ________________________________________ 35
3.2 Preliminary Design for RIF Turbine________________________________________ 37
3.2.1 Spouting Velocity ______________________________________________ 39
3.2.2 Velocity ratio and Rotor Tip Velocity ___________________________ 40
3.2.3 Specific Speed _________________________________________________ 412
3.2.4 Total-to-static efficiency− ______________________________________ 41
3.2.5 Rotor inlet absolute angle_______________________________________ 41
3.2.6 Tangential component of rotor inlet absolute velocity ________________ 42
3.2.7 rotor inlet absolute velocity______________________________________ 42
3.2.8 Meridional component of rotor inlet velocity ______________________ 43
3.2.9 Rotor inlet radius ______________________________________________ 43
3.2.10 Rotor inlet relative flow angle ___________________________________ 43
3.2.11 Rotor Leading edge Blade Thickness ______________________________ 44
3.2.12 Rotor Trailing edge Blade Thickness______________________________ 44
3.2.13 Rotor inlet height_____________________________________________ 44
3.2.14 Meridional component of rotor exit absolute velocity ______________ 45
3.2.15 Rotor outlet hub height ______________________________________ 45
3.2.16 Rotor outlet shroud height _____________________________________ 45
3.2.17 Mean Radius at rotor outlet _____________________________________ 46
3.2.18 The Axial Length of the rotor ___________________________________ 46
3.2.19 Mean blade speed at rotor outlet ________________________________ 47
3.2.20 Mean relative velocity at rotor exit ______________________________ 47
3.2.21 Mean relative flow angle at rotor exit _____________________________ 48
3.2.22 Hub and shroud relative flow angle at rotor exit ______________ 48
3.2.23 Number of rotor blades ________________________________________ 49
3.2.24 Stator Outlet Diameter _______________________________________ 50
3.2.25 Stator Inlet Diameter __________________________________________ 51
3.2.26 Number of stator blades ________________________________________ 51
3.3 Flow Simulation ______________________________________________________ 51
3.3.1 ANSYS Bladegen___________________________________________________ 52
3.3.2 ANSYS TurboGrid __________________________________________________ 53
3.3.3 ANSYS CFX _______________________________________________________ 54
Chapter 4 Preliminary Design and its Simulation Results ___________________________ 573
4.1 Result of the preliminary design _________________________________________ 58
4.2 Result of the simulation ________________________________________________ 61
4.2.1 The Turbine model ________________________________________________ 61
4.2.2 Mesh of the rotor and the stator _____________________________________ 62
4.2.3 Settings of boundary conditions ______________________________________ 65
4.2.4 Result of the simulation ____________________________________________ 66
4.2.5 Summary ________________________________________________________ 68
Chapter 5 Modified Design and Simulation ______________________________________ 69
5.1 Modification one _____________________________________________________ 70
5.2 Modification Two _____________________________________________________ 73
5.2.1 Method of modification ____________________________________________ 73
5.2.2 Simulation Results _________________________________________________ 76
5.3 Modification three ____________________________________________________ 78
5.3.1 Method of modification ____________________________________________ 78
5.3.2 Result of the simulation ____________________________________________ 82
Chapter 6 Conclusion and Future Work _________________________________________ 89
References _______________________________________________________________ 90
[1] U.S. Energy Information Administration, "Chapter 7. Industrial sector energy consumption," in International Energy Outlook 2016, Washington, U.S. Energy Information Administration, 2016, p. 113.
[2] Aungier, Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis, New York : ASME Press, 2005.
[3] E. G. Feher, "The supercritical thermodynamic power cycle," Energy Consversion Vol.8, pp. 85-90, 1968.
[4] G. Angelino, "Carbon dioxide condensation cycles for power production," Journal of Engineering for Gas Turbines and Power, vol. 90, pp. 287-295, 1968.
[5] S. A. Wright, R. F. Radel, M. E. Vernon, G. E. Rochau and P. S. Pickard, "Operation and analysis of a supercritical CO2 Brayton cycle," in Sandia Report, No. SAND2010-0171, 2010.
[6] G. Kimzey, "Development of a Brayton Bottoming Cycle using Supercritical Carbon Dioxide as the Working Fluid.".
[7] J. B. Noriega, "Design method for s-CO2 gas turbine power plants: Integration of thermodynamic analysis and components design for advanced applications," TU Delft, Delft University of Technology, 2012.
[8] P. K. a. K. S. P. Garg, "Supercritical carbon dioxide Brayton cycle for concentrated solar power," The Journal of Supercritical Fluids, vol. 76, pp. 54-60, 2013.
[9] 林俋伸, Configuration Design and Performance analysis of Supercritical Carbon Dioxide Closed Brayton cycle, 國立清華大學動力機械工程學系碩士論文, January 2014.
[10] 林柏宏, 超臨界二氧化碳布雷頓循環之渦輪機葉片分析與研究, 國立清華大學動力機械工程學系碩士論文, July 2016.
[11] M. P. Boyce, Gas turbine engineering handbook, Elsevier,, 2012.
[12] M. Utamura, "Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines," in Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air GT2008, Berlin, Germany, Paper No. GT2008-50151.
[13] M. Persichilli, A. Kacludis, E. Zdankiewicz and T. Held, "Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can replace steam," Echogen Power Systems, Pragati Maidan, New Delhi, 2012.
[14] E. Logan, Turbomachinery: basic theory and applications, 2nd ed., rev. and, New York: M. Dekker, 1993.
[15] H. Moustapha , . M. F. Zelesky , N. C. Baines and D. Japikse, Axial and Radial Turbines, White River Junction: Concepts ETI, Inc., 2003.
[16] A. Whitfield and N. C. Baines, Design of radial turbomachines, New York: Longman, 1990.
[17] N. Thirumalai, B. S. Rao and T. Venkatakrishnaiah, "MEAN LINE DESIGN OF RADIAL INFLOW TURBINE FOR sCO2 POWER SYSTEMS," in The 5th International Symposium – Supercritical CO2 Power Cycles, Sant Antonio, Texas, 2016.
[18] A. 1. Whitfield, "The Preliminary Design of Radial Inflow Turbines," Trans. ASME J. Turbomach, vol. 112, no. 1, pp. 50-77, 1990.
[19] Z. Wei, "MEANLINE ANALYSIS OF RADIAL INFLOW TURBINES AT DESIGN AND OFF-DESIGN CONDITION," Department of Mechanical & Aerospace Engineering, Carlton University, Ottawa, Ontario, Canada, 2014.
[20] H. E. Rohlik, "Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency," NASA TN D-4384, 1968.
[21] S. L. D. a. C. A. Hall, Fluid mechanics and thermodynamics of turbomachinery, seventh edition, Amsterdam ; Boston: ButterworthHeinemann is an imprint of Elsevier, 2014, 2014.
[22] H. Chen and N. C. Baines, "The aerodynamic loading of radial and mixed-flow turbines," International Journal of Mechanical Sciences, vol. 36, no. 1, pp. 63-79, 1993.
[23] C. Ventura , . P. Jacobs, A. Rowlands , P. Petrie-Repar and E. Sauret , "Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach," ASME. J. Fluids Eng, vol. 3, p. 134, 2012.
[24] A. J. Glassman, "Computer Program for Design Analysis of Radial Inflow Turbine," NASA, Technical Note No. TN D-8164, 1976.
[25] M. J. D. a. P. H. V. Dostal, "A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors," MIT-ANP-TR-100, Massachusetts Institute of Technology, 2004.
[26] C. R. Geiser, "Performance of a High-Efficiency Radial/Axial Turbine," J. Turbomach, vol. 109, no. 2, p. 151, 1987.
[27] E. A. Baskharone, Principles of Turbomachinery in Air-Breathing Engines, Cambridge: Cambridge University Press, 2006.
[28] E. Balje, Turbomachines: A guide to design selection and theory, New York: John Wiley & Sons, 1981.
[29] Qi, Jianhui, "Supercritical CO2 Radial Turbine Design Performance as a Function of Turbine Size Parameters," in ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.
[30] G. Musgrove and C. J. Wilkes, "Tutorial: Fundamentals of Supercritical CO2," South West Research Institute, Texas, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊