( 您好!臺灣時間:2021/03/05 00:12
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Li, Kuan-Hung
論文名稱(外文):On the Study of Flexural Strength and Bending Fatigue Life of Ultra-thin Glass Substrate
指導教授(外文):Chen, Wen-HwaCheng, Hsien-Chie
口試委員(外文):Liu, De-ShinShih, Cheng-Yi
外文關鍵詞:Ultra-thin glassFlexural strengthFatigue lifeS-N curve
  • 被引用被引用:1
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  In recent years, consumers’ eager demand of flexible products with great lightweight, miniaturization and flexible feature has nowadays driven the characteristic of ultra-thin glass substrate toward high thinning and flexibility. Ultra-thin glass holds many advantages over other flexible substrate materials for flexible electronics or printed electronics, including excellent chemical stability, hermeticity, moisture resistance, high optical transmission, low surface roughness and long-term stability. It has increasingly become a ideal substitute of substrate material in various microelectronics applications. With the advances in printed electronics technology, if ultra-thin glass can apply in roll-to-roll gravure offset printing process, which will useful in continuous mass production and reduce the manufacturing costs. Despite of the great flexibility capacity of ultra-thin glass, glass itself is generally a brittle and fragile material. Thus, to explore its ultimate flexural strength and flexural fatigue life is essential, they also are the main target in this thesis.
  Firstly, the ultra-thin glass substrate with thicknesses of 50μm and 100μm are cut by three kinds of cutting processes, namely mechanical dicing, pico-second laser dicing and wet etching. To measure and caculate the ultimate flexural strength of an ultra-thin glass substrate under different cutting processes by two-point / three-point bending test and bending strength formula. Compare the ultimate bending strength of ultra-thin glass substrate with different thickness between each cutting process to find the suitable thickness and cutting process for ultra-thin glass substrate.
  Then, in order to improve the bending strength of the ultra-thin glass substrate, the quality of the cutting edges and cross-sections of the glass cutting are observed and analyzed by optical microscope and field emission scanning electron microscope to investigate the reasons for impact of the ultimate bending strength. And the laser peeling proposed by Industry Technology Research Institute, Taiwan, is further applied for eliminating micro edge cracks/flaws of the ultra-thin glass substrate.
  Finally, this thesis cut the ultra-thin glass substrate which is printed with metal electrode and using a self-designed two-point tester for fatigue experiments, to explore the effects of different radius of curvature, temperature and frequency on fatigue life and its damage mechanism. The finite element analysis software ANSYS is used to bending stress analysis of ultra-thin glass specimens. The S-N curve is constructed by the fatigue test results of the self-designed two-point tester and the results of the finite element analysis
  The results of this paper will help to understand the ultimate bending strength of ultra-thin glass substrate under different cutting processes with different thicknesses and provide the reference for the flexible products design when evaluate its bending life.
摘要 I
目錄 V
表目錄 IX
圖目錄 X
第一章、 導論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究目標 7
第二章、 含金屬電極之超薄玻璃基板 9
2.1 卷對卷凹版轉印簡介 9
2.2 切割製程介紹 10
2.2.1 機械切割 10
2.2.2 化學濕蝕刻切割 11
2.2.3 皮秒雷射切割 12
2.2.4 雷射劈裂修補 13
第三章、 研究方法 14
3.1 彎曲強度分析 14
3.1.1 三點彎曲 14
3.1.2 兩點彎曲 14
3.2 有限單元法接觸分析 15
3.3 疲勞理論 16
3.3.1 S-N曲線 17
3.4 Chauvenet準則 17
第四章、 實驗方法 19
4.1 實驗設備 19
4.1.1 微拉力萬用測試儀 19
4.1.2 光學顯微鏡 19
4.1.3 兩點彎曲疲勞測試平台 19
4.1.4 掃描式電子顯微鏡 21
4.2 實驗流程 21
4.2.1 三點彎曲實驗 22
4.2.2 兩點彎曲實驗 23
4.2.3 彎曲疲勞實驗 23
4.3 有限單元分析模型 24
4.3.1 三點彎曲 24
4.3.2 兩點彎曲 25
第五章、 結果與討論 26
5.1 各切割製程下之斷面 26
5.2 極限彎曲強度 27
5.2.1 三點彎曲 27
5.2.2 兩點彎曲 30
5.3 雷射劈裂 30
5.3.1 雷射劈裂之斷面 31
5.3.2 雷射劈裂之極限彎曲強度 32
5.4 有限單元分析 32
5.4.1 三點彎曲 32
5.4.2 兩點彎曲 33
5.5 彎曲疲勞實驗 33
5.5.1 100μm之超薄玻璃基板試片 34
5.5.2 50μm之超薄玻璃基板試片 35
5.5.3 頻率與溫度對疲勞壽命之影響 36
5.5.4 線寬之影響 37
第六章、 結論與未來展望 39
參考文獻 42
附表 47
附圖 51
[1] Allaire, R. A. and Lapp, J. C. (2004): Scoring of AMLCD Glass. Corning Technical Information Paper, TIP 302, pp.1-2.
[2] Alzoubi, K.; Lu, S. and Sammakia, B. (2011a): Experimental and Analytical Studies on the High Cycle Fatigue of Thin Film Metal on PET Substrate for Flexible Electronics Applications. IEEE Trans. Components Package, Vol. 1, No. 1, pp. 43-51.
[3] Alzoubi, K.; Hamasha, M. M.; Schadt, M.; Lu, S.; Sammakia, B. and Poliks, M. (2011b): Effect of lamination on the bending fatigue life of copper coated PET substrate. Proceeding of Society of Photographic Instrumentation Engineers (SPIE), San Francisco, California, USA, Jan. 21-27, pp. 1-9.
[4] Alzoubi, K.; Hamasha, M. M.; Lu, S. and Sammakia, B. S. (2011c): Bending Fatigue Study of Sputtered ITO on Flexible Substrate. Journal of Display Technology, Vol.7, No. 11, pp. 593-600.
[5] Chen, J. and Wu, Z. (2013): Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect. Proceedings of SPIE, Vol. 8786, pp. 87860E.
[6] Chen, K. S.; Yang, T. S.; Hong, R. C.; Chiu, T. C.; Wen, A. C.; Li, C. H.; Huang, C. J.; Chen, K. T. and Lin, M. C. (2016): Thermo-mechanical analysis of laser peeling of ultrathin glass for removing edge flaws in web processing applications. In: Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2016 Symposium on, IEEE, pp. 1-6.
[7] Chen, Q.; Xu, L.; Jing, C.; Xue, T. and Salo, A. (2008): Flexible Device and Component Reliability Study Using Simulations. International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, Freiburg-im-Breisgau, Germany, Apr. 20-23, pp. 303-307.
[8] Crawford, G. P. (2005): Flexible Flat Panel Displays. John Wiley & Sons, Ltd.
[9] Draper, N. R. and Smith, H. (1981): Applied Regression Analysis, John Wiley & Sons.
[10] Garner, S.; Glaesemann, S. and Li, X. (2014): Ultra-slim flexible glass for roll-to-roll electronic device fabrication. Applied Physics A: Materials Science & Processing, Vol. 116, No. 2, pp. 403-407.
[11] Griffith, A. A. (1921): The Phenomena of Rupture and Flow in Solid. Philosophical Transactions of the Royal Society of London, Series A, containing papers of a mathematical or physical character 221, pp. 163-198.
[12] Grego, S.; Lewis, J.; Vick, E. and Temple, D. (2005): Development and Evaluation of Bend-testing Techniques for flexible-Display Applications. Journal of the Society for Information Display, Vol. 13, No. 7, pp. 575-581.
[13] Gulati, S. T.; Westbrook, J.; Carley, S.; Vepakomma, H. and Ono, T. (2011): Two Point Bending of Thin Glass Substrate. SID Symposium Digest of Technical Papers, Vol. 42, No. 1, pp. 652-654.
[14] Hrehorova, E.; Rebros, M.; Pekarovicova, A.; Bazuin, B. and Ranganathan, A. (2011): Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics. Journal of Display Technology, Vol. 7, No. 6, pp.318-324.
[15] Huang, C. S.; Lin, H. T.; Huang, G. S.; Hu, J. P.; Lu, S. T. and Liu, C. T. (2013): Roll-to-roll Process on Ultra-thin Flexible Glass for Manufacturing the Multi-Touch Sensor Panel. Journal of the Society for Information Display, Vol. 44, No. 1, pp. 807-809.
[16] Lee, S. K. and Lee, J. U. (2003): The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates. Transactions on electrical and electronic materials, Vol. 4, No. 6, pp. 5-8.
[17] Leterrier, Y.; Fischer, C.; Médico, L.; Demarco, F.; Månson, J. A. E.; Bouten, P.; DeGoede, J. and Nairn, J. A. (2003): Mechanical Properties of Transparent Functional Thin Films for Flexible Displays. Society of Vacuum Coaters 46th Annual Technical Conference Proceedings, San Francisco, California USA, May 3-8, pp. 169-174.
[18] Li, T. C.; Han, C. F.; Chen, K. T. and Lin, J. F. (2013): Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain Via Cyclic Bending Tests. Journal of Display Technology, Vol. 9, No. 7, pp. 577-585.
[19] Li, X. and Garner, S. (2014): Laser cutting of flexible glass. Symposium on Laser Processing for consumer Electronics II, CLEO: Applications and Technology, San Jose, U.S.A., pp. ATu3L-1.
[20] Liu, X.; Liu, Z.; Bao, Y.; Sun, Y.; Wan, D. and Li, K. (2016): Thickness effect of glass bending strength and test technology for bending strength of ultrathin glass. Journal of Chinese Ceramic Society, Vol. 44, No. 11, pp. 1641-1645.
[21] Lumley, R. M. (1969): Controlled separation of brittle materials using a laser. American Ceramic Society Bulletin, Vol. 48, pp. 850-854.
[22] Matthewson, M. J.; Kurkjian, C. R. and Gulati, S. T. (1986): Strength Measurement of Optical Fibers by Bending. Journal of the American Ceramic Society, Vol. 69, No. 11, pp. 815-821.
[23] Nippon Electric Glass, At the Forefront of Glass Technology: http://www.neg.co.jp/glass_en/03.html
[24] Nippon Electric Glass Co., Ltd., Product Guide for Information Display, 2012.
[25] Oh, J. S.; Cho, Y. R.; Cheon, K. E.; Karim, Md. A. and Jung, S. J. (2007): Failure Mechanism of Patterned ITO Electrodes on Flexible Substrate under Static and Dynamic Mechanical Stresses. Solid State Phenomena, Vol. 124-126, pp. 411-414.
[26] Ono, T. and Allaire, R. A. (2000): Fracture Analysis, a Basic Tool to Solve Breakage Issues. Taiwan FPD Expo 2000, pp. 2-8.
[27] Plichta, A.; Weber, A. and Habeck, A. (2003): Ultra thin flexible glass substrates. Materials Research Society Online Proceedings Library Archive, Vol. 769, pp. 1-10.
[28] Shen, Y. H.; Cheng, H. C.; Chen, Y. W.; Lu, S. T.; Lin, S. M. and Chen, W. H. (2017): Temperature effects on ink transfer performance of gravure offset printing for fine-line circuitry. In Electronics Packaging (ICEP), 2017 International Conference on, IEEE, pp. 475-478.
[29] Tsai, C. H. and Liou, C. S. (2003): Fracture mechanism of laser cutting with controlled fracture. ASME Journal of Manufacturing Science and Engineering, Vol. 125, pp. 519-528.
[30] Wang, L. and Chen, X. W. (2011): Calculation and Program Processing of Doubtful Values in Material Fatigue Test Data. Physical Testing and Chemical Analysis (Part A: Physical Testing), Vol. 47, No. 5, pp. 295-297.
[31] Weisstein, E. W. (1999): Radius of Curvature. MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/RadiusofCurvature. html
[32] Wöhler, A. (1870): Über die Festigkeits-versuche mit Eisen und Stahl. Zeitschrift Bauwesen, Vol. 20, pp. 73–106.
[33] Zheng, H. Y. and Lee, T. (2005): Studies of CO2 Laser Peeling of Glass Substrates, IOP Journal of Micromechanics and Microengineering. Vol. 15, pp. 2093-2097.
[34] 吳崇銘、王凱駿、王裕銘 (2012):精密凹版轉印技術與應用,機械工業雜誌,第354期,第58-66頁
[35] 陳坤坐、古淳仁、李閔凱、邱慶龍 (2014):次世代玻璃基板切割與邊緣加工,工研院南分院積層製造與雷射應用中心,雷射光谷推動促進網,第1-3頁
[36] 工業技術研究院,創新應用-雷射無痕玻璃削整技術,https://www.youtube.com/watch?v=QbX5_stCBTk
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔