|
1 A.Airola, S.Pyysalo, J.Björne, T.Pahikkala,F.Ginter, and Salakoski T. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC Bioinformatics,vol.9: S2, 2008. 2 A. Moschitti. A study on convolution kernels for shallow semantic parsing. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, pp. 21-26, 2004. 3 A. Moschitti. Efficient convolution kernels for dependency and constituent syntactic trees. In Proceedings of the 17th European Conference on Machine Learning, pp. 318-329, 2006. 4 C. Cooper and A. M. Frieze. The cover time of random regular graphs. SIAM Journal on Discrete Mathematics, vol. 18, pp. 728-740, 2005. 5 C.D. Manning and H. Schütze. Foundations of statistical natural language processing: MIT Press, Cambridge, Massachusetts, 1stedn., 1999. 6 C. Giuliano, A. Lavelli, and L. Romano. Exploiting shallow linguistic information for relation extraction from biomedical literature. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics. pp. 401-408, 2006. 7 C. Nedellec. Learning language in logic-genic interaction extraction challenge. In Proceedings of the Learning Language in Logic 2005 Workshop at the International Conference on Machine Learning, pp. 97-99, 2005. 8 D.C. Comeau, R. Islamaj Dogan, P. Ciccarese, K.B. Cohen, M. Krallinger, F. Leitner, Z. Lu, Y. Peng, F. Rinaldi, M. Torii, A. Valencia, K. Verspoor, T.C. Wiegers, C.H. Wu, and W.J. Wilbur. BioC: A Minimalist Approach to Interoperability for Biomedical Text Processing. Database, 2013: doi: 10.1093/database/bat064. 9 D. Hanisch, K. Fundel, H.T. Mevissen, R. Zimmer, and J. Fluck. Prominer: rule-based protein and gene entity recognition. BMC Bioinformatics, vol.6: S14, 2005. 10 D. Tikk, P. Thomas, P. Palaga, J. Hakenberg, and U. Leser. A Comprehensive Benchmark of Kernel Methods to Extract Protein–Protein Interactions from Literature. PLoS Computational Biology, vol. 6, issue 7, pp.1-19, 2010. 11 E.M. Phizicky and S. Fields. Protein-protein interactions: Methods for detection and analysis. Microbiol Rev, vol. 59, pp. 94-123, 1995. 12 G. Erkan, A. Özgür, and D. R. Radev. Semi-supervised classification for extracting protein interaction sentences using dependency parsing. In Proceedings of the 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 228-237, 2007. 13 I. Xenarios, E. Fernandez, L. Salwinski, X.J. Duan, M.J. Thompson, E.M. Marcotte, and D. Eisenberg. DIP: The database of interacting proteins: 2001 update. Nucleic Acids Research, vol. 29, issue 1, pp. 239 - 241, 2001. 14 J.D. Kim, T. Ohta, S. Pyysalo, Y. Kano, and J. Tsujii. Overview of BioNLP'09 shared task on event extraction, In Proceeding of the Workshop on Current Trends in Biomedical Natural Language Processing: Shared Task, pp. 1-9, 2009. 15 J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd edn., 2011. 16 K. Fundel, R. Ku¨ ffner, and R. Zimmer. RelEx - relation extraction using dependency parse trees. Bioinformatics, issue 23, pp. 365-371, 2007. 17 K.P. Kamune and A. Avinash. Hybrid Approach to Pronominal Anaphora Resolution in English Newspaper Text. International Journal of Intelligent Systems and Applications,7(2):56, 2015. 18 L. Li, R. Guo, Z. Jiang and D. Huang. An Approach to Improve Kernel-Based Protein Protein Interaction Extraction by Learning from Large-Scale Network Data. Methods, 2015. 19 L. Lovász. Random walks on graphs: a survey. Janos Bolyai Mathematical Society, Budapest 2, pp. 1-46, 1993. 20 L. Qian and G. Zhou. Tree kernel-based protein–protein interaction extraction from biomedical literature. Journal of Biomedical Informatics, vol. 45, pp. 535-543, 2012. 21 L.S. Van, Y. Saeys, B. Baets, and Y.V. Peer. Extracting protein-protein interactions from text using rich feature vectors and feature selection. In Proceedings of 3rd International Symposium on Semantic Mining in Biomedicine, pp. 77-84, 2008. 22 M. Collins and N. Duffy. Convolution kernels for natural language. In Proceedings of Annual Conference on Neural Information Processing Systems, pp. 625-632, 2001. 23 M.F. Porter. An algorithm for suffix stripping, in Readings in Information Retrieval, Karen Sparck Jones and Peter Willet (ed), San Francisco: Morgan Kaufmann, 1997. 24 M. Marneffe, B.MacCartney and C.D. Manning. 2006. Generating Typed Dependency Parses from Phrase Structure Parses. In LREC 2006. 25 M. Miwaa, R. Sætre, Y. Miyao, and J. Tsujii, Protein–protein interaction extraction by leveraging multiple kernels and parsers. International Journal of Medical Informatics, vol. 78, issue 12, pp. 39-46, 2009. 26 M. Zhang, G.D. Zhou, and A.T. Aw. Exploring syntactic structured features over parse trees for relation extraction using kernel methods. Information Processing and Management, vol.44, pp. 687-701, 2008. 27 M. Zhang, J. Zhang, J. Su, and G.D. Zhou. A composite kernel to extract relations between entities with both flat and structured features. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 825-832, 2006. 28 N. Cristianini and J.S. Taylor. An introduction to support vector machines and other kernel-based learning methods. New York, USA: Cambridge University Press; 2000. 29 R. Kabiljo, A. Clegg, and A. Shepherd. A realistic assessment of methods for extracting gene/protein interactions from free text. BMC Bioinformatics, vol. 10, pp. 233-245, 2009. 30 R.C.Bunescu, R. Ge, R.J. Kate, E.M.Marcotte, R.J. Mooney, A.K.Ramani, and Y.W. Wong. Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine, vol. 33, issue 2, pp. 39-55, 2005. 31 R. Satre, K. Sagae, and J.Tsujii. Syntactic features for protein-protein interaction extraction. In Proceedings of the 2nd international symposium on languages in biology and medicine, pp. 6.1-6.14, 2007. 32 S. Kim, R. Islamaj Dogan, A. Chatr-aryamontri, M. Tyers, W.J. Wilbur, and D.C. Comeau. BioCreative V BioC Track Overview: Collaborative Biocurator Assistant Task for BioGRID, Database, 2016. 33 S. Pyysalo, A. Airola, J. Heimonen, J. Björne, F. Ginter, and T.Salakoski. Comparative Analysis of Five Protein-protein Interaction Corpora. BMC Bioinformatics, vol. 9: S6, 2008. 34 S. Pyysalo, F. Ginter, J. Heimonen, J. Björne, J. Boberg, J. Järvinen, T. Salakoski. A corpus for information extraction in the biomedical domain. BMC Bioinformatics, vol. 8, issue 50, pp. 50-74, 2007. 35 S.R. Jonnalagadda, D. Li, S. Sohn, S.T. Wu, K. Wagholikar, M. Torii, and H. Liu. Coreference Analysis in Clinical Notes: A Multi-pass Sieve with Alternate Anaphora Resolution Modules. Journal of the American Medical Informatics Association,19(5):867-874, 2012. 36 S.V.N. VishwanathanandA.J. Smola. Fast kernels for string and tree matching. In Proceedings of Neural Information Processing Systems, pp. 569-576, 2002. 37 T. Kuboyama, K. Hirata, H. Kashima, K.F. Aoki-Kinoshita, and H. Yasuda. A spectrum tree kernel. Information and Media Technologies, vol. 2, pp.292-299, 2007. 38 Y. López, K. Nakai, and A. Patil. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species. Database, vol. 2015, 2015. 39 Z. Yang, N. Tang, X. Zhang, H. Lin, Y. Li, and Z. Yang. Multiple kernel learning in protein-protein interaction extraction from biomedical literature. Artificial Intelligence in Medicine, vol. 51, issue 3, pp. 163-73, 2011. 40 T. Mikolov, K. Chen, G. Corrado and J. Dean. Efficient estimation of word representations in vector space. In Proceeding of International Conference on Learning Representations, 2013. 41 C. Ma, Y. Zhang, and M. Zhang. Tree Kernel-based protein-protein interaction extraction considering both governor verb phrases and appositive dependency features. In Proceedings of the 24th International Conference on World Wide Web Companion, pp. 655-660, 2015. 42 Katrin Fundel, Robert Kuffner, and Ralf Zimmer. RelEx–Relation extraction using dependency parse trees. Bioinformatics, 23(3):365–371, 2007. 43 Yun-Nung Chen, Dilek Hakkani-Tur, and Gokan Tur. Deriving local relational surface forms from dependency-based entity embeddings for unsupervised spoken language understanding. In Spoken Language Technology Workshop (SLT), 2014 IEEE, pp. 242–247, 2014. 44 R. Socher, C.D. Manning, and Andrew Y. Ng. Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks. Deep Learning and Unsupervised Feature Learning Workshop – NIPS, 2010. 45 J. F. Gao, X. D He, W. T. Yih, and L. Deng. Learning Continuous Phrase Representations for Translation Modeling. In Proceedings of ACL, 2014. 46 Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin. Classifying relations via long short term memory networks along shortest dependency paths. In Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 1785–1794, 201555. 47 K. Sugiyama, K. Hatano, M. Yoshikawa, and S. Uemura. Extracting information on protein-protein interactions from biological literature based on machine learning approaches. Genome Informatics, vol. 14, pp. 699-700, 2003. 48 T. Mitsumori, M. Murata, Y. Fukuda, K. Doi, and H. Doi. Extracting protein-protein interaction information from biomedical text with SVM. IEICE Transactions on Information and Systems, vol. E89-D (8), pp. 2464-2466, 2006. 49 B. Liu, L. H. Qian, H. L. Wang, and G. D. Zhou. Dependency-driven feature-based learning for extracting protein–protein interactions from biomedical Text. In Proceedings of COLING’2010 (Poster), pp. 757-65, 2010. 50 D. McClosky, S. Riedel, M. Surdeanu, A. McCallum, and C. D. Manning. Combining joint models for biomedical event extraction. BMC bioinformatics, vol. 13, no. Suppl 11, S9, 2012. 51 A. Vlachos and M. Craven. Biomedical event extraction from abstracts and full papers using search-based structured prediction. BMC bioinformatics, vol. 13, no. Suppl 11, S5, 2012. 52 Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of Machine Learning Research 3, pp. 1137-1155, 2003. 53 L. Qiu, Y. Cao, Z. Nie, and Y. Rui. Learning word representation considering proximity and ambiguity. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014. 54 E. Asgari, and M. R. K. Mofrad. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics. PLOS ONE 10, 11, 2015. 55 T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed Representations of Words and Phrases and their Compositionality. In: Advances in neural information processing systems, pp. 3111-3119, 2013. 56 S. Albert, S. Gaudan, H. Knigge, A. Raetsch, A. Delgado, B. Huhse, H. Kirsch, M. Albers, D. Rebholz-Schuhmann, M. Koegl. Computer-assisted generation of a protein-interaction database for nuclear receptors. Mol Endocrinol. 17(8): 1555-1567, 2003. 57 M. Huang, X. Zhu, and Y. Hao. Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics 20, 3604-3612, 2004. 58 R. Bunescu and R. Mooney. A shortest path dependency kernel for relation extraction. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP), pp. 724-731, 2005. 59 C. Li, R. Song, M. Liakata, A. Vlachos, S. Seneff, X. Zhang. Using word embedding for bio-event extraction. In Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP 2015), pp. 121-126, 2015. 60 R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12 (2011), pp. 2493-2537. 61 V.N. Vapnik. The nature of statistical learning theory. Springer-Verlag, 1995. 62 G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the eighth annual conference of the cognitive science society, pp. 1-12, 1986. 63 J. L. Elman. Distributed representations, simple recurrent networks, and grammatical structure. Machine learning, 7(2-3):195–225, 1991.
|