(3.238.186.43) 您好!臺灣時間:2021/03/01 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁雲皓
研究生(外文):Liang, Yun-Hao
論文名稱:EcoMicro: 具自我供電能力之微小型藍芽低功耗無線感測平台
論文名稱(外文):EcoMicro: A Miniature Self-Powered BLE-Based Wireless Sensing Platform
指導教授:周百祥周百祥引用關係周志遠
指導教授(外文):Chou, Pai H.Chou, Jerry
口試委員:蔡明哲韓永楷
口試委員(外文):Tsai, Ming-JerHon, Wing-Kai
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:能量採集藍芽低功耗節點感測網路
外文關鍵詞:Energy harvestingBLELow PowerBluetoothnodeWSN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文描述一個名為EcoMicro並具有能量擷取能力之微小型無線感測節點。 此感測節點具有9軸慣性感測器可以量測物體的姿態與轉向,且經由低耗藍芽(BLE)通訊協定作為與其他裝置溝通的媒介。 感測節點是藉由小型太陽能晶片、最大功率追蹤技術(MPPT)以及可重複充電之能量儲存元件來提供自我供電之能力。 系統架構中也包含了一個時鐘日曆晶片(RTC)用來紀錄時間與作為能量管理的中樞。 本篇論文中的實驗結果證實EcoMicro可以有效率且正確地運作在一些需要小體積且有能量受限因素的應用中,突破了這些應用在之前類似的系統因上述原因而無法有效地達成的限制。
This thesis describes EcoMicro, a miniature, wireless sensor node with energy harvesting ca- pability. It is capable of measuring motion using a 9-DoF (degree-of-freedom) inertial sensor and communication over Bluetooth Low Energy (BLE) protocol. It is self-powered by a solar cell using a maximum power point tracker (MPPT) and a rechargeable energy storage suited for energy har- vesting. The system also includes a real-time clock (RTC) for not only tracking time but also for power management. Experimental results show that EcoMicro to operate correctly and efficiently for a class of wireless sensing applications where the previous system failed to apply due to size or power constraints.
Contents i
Acknowledgments v
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Work 4
2.1 Energy Harvesting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Maximum Power Point Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 System Overview 7
3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Power Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Solar Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Power Management Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Controller and Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.1 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Secondary Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Over-the-Air Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Dynamical Advertising Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.1 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 9-Axial Inertial Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Power and Energy 17
4.1 System Operating Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 Off Load State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Normal State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Solar Cell P-V and I-V Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 System Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 UMAC Self-Discharging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Evaluation 26
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 Operation without the 9-DoF Inertial Sensor . . . . . . . . . . . . . . . . . . 29
5.2.2 Operation with 9-DoF Inertial Sensor . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 RTC countdown timer vs. Da14580 kernel timer power consumption . . . . . 32
5.2.4 Dynamic Advertising Cycle Packets and Duration . . . . . . . . . . . . . . . 33
5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6 Conclusions and Future Work 36
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A Schematic and BOM 42
B Source code 46
[1] “Small Energy Device (UMAC Series) Application Note.” http://www.mouser.com/pdfdocs/ C2M1CXS-226UMACApplicationNoteforQuickCharge.pdf.
[2] C. M. Vigorito, D. Ganesan, and A. G. Barto, “Adaptive control of duty cycling in energy- harvesting wireless sensor networks,” in 2007 4th Annual IEEE Communications Society Con- ference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 21–30, June 2007.
[3] M. H. Ghaed, G. Chen, R. u. Haque, M. Wieckowski, Y. Kim, G. Kim, Y. Lee, I. Lee, D. Fick, D. Kim, M. Seok, K. D. Wise, D. Blaauw, and D. Sylvester, “Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp. 3152–3162, Dec 2013.
[4] Y. T. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, “A 3-μw CMOS glucose sensor for wireless contact-lens tear glucose monitoring,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 335–344, Jan 2012.
[5] TexasInstruments,“2.4-GHzBluetoothTMLowEnergyandProprietarySystem-on-Chip.”http: //www.ti.com/lit/ds/symlink/cc2541.pdf, June 2013.
[6] S. Li, J. Yuan, and H. Lipson, “Ambient wind energy harvesting using cross-flow fluttering,” Journal of Applied Physics, vol. 109, no. 2, p. 026104, 2011.
[7] “A MEMS-based piezoelectric power generator array for vibration energy harvesting,” Micro- electronics Journal, vol. 39, no. 5, pp. 802 – 806, 2008.
[8] H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset, “Efficient power management circuit: From thermal energy harvesting to above-IC microbattery energy storage,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 246–255, Jan 2008.
[9] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,” in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005., pp. 457–462, April 2005.
[10] D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, D. Brunelli, and L. Benini, “A solar energy harvesting circuit for low power applications,” in 2008 IEEE International Conference on Sus- tainable Energy Technologies, pp. 945–949, Nov 2008.
[11] N. J. Guilar, T. J. Kleeburg, A. Chen, D. R. Yankelevich, and R. Amirtharajah, “Integrated solar energy harvesting and storage,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, pp. 627–637, May 2009.
[12] A. Liberale, E. Dallago, and A. L. Barnabei, “Energy harvesting system for wireless body sen- sor nodes,” in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, pp. 416–419, Oct 2014.
[13] C. Alippi, R. Camplani, C. Galperti, and M. Roveri, “A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring,” IEEE Sensors Journal, vol. 11, pp. 45–55, Jan 2011.
[14] D.Brunelli,C.Moser,L.Thiele,andL.Benini,“Designofasolar-harvestingcircuitforbattery- less embedded systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 2519–2528, Nov 2009.
[15] A. L. Barnabei, E. Dallago, P. Malcovati, and A. Liberale, “An improved ultra-low-power wire- less sensor-station supplied by a photovoltaic harvester,” in Proceedings of the 2013 9th Con- ference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 205–208, June 2013.
[16] V. Salas, E. Olías, A. Barrado, and A. Lázaro, “Review of the maximum power point track- ing algorithms for stand-alone photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1555 – 1578, 2006.
[17] H. E. S. A. Ibrahim, F. F. Houssiny, H. M. Z. El-Din, and M. A. El-Shibini, “Microcomputer controlled buck regulator for maximum power point tracker for DC pumping system operates from photovoltaic system,” in Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE ’99. 1999 IEEE International, vol. 1, pp. 406–411 vol.1, Aug 1999.
[18] J. J. Schoeman and J. D. v. Wyk, “A simplified maximal power controller for terrestrial pho- tovoltaic panel arrays,” in 1982 IEEE Power Electronics Specialists conference, pp. 361–367, June 1982.
[19] K. Kadirvel, Y. Ramadass, U. Lyles, J. Carpenter, V. Ivanov, V. McNeil, A. Chandrakasan, and B. Lum-Shue-Chan, “A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting,” in 2012 IEEE International Solid-State Circuits Conference, pp. 106–108, Feb 2012.
[20] IXYS, “CPC1822 4V Output Solar Cell.” http://www.mouser.com/ds/2/205/CPC1822-11351. pdf, December 2012.
[21] IXYS, “CPC1831 8V Output Solar Cell.” http://www.mouser.com/ds/2/205/CPC1831-270400. pdf, December 2012.
[22] Texas Instruments, “BQ25504 Ultra Low-Power Boost Converter With Battery Management for Energy Harvester Applications.” http://www.ti.com/lit/ds/symlink/bq25504.pdf, June 2015.
[23] Murata, “Small Energy Device Cylinder type (UMAC).” http://www.murata.com/zh-cn/ products/productdata/8798117691422/UMAC1DSE.pdf?1468467027000, January 2017.
[24] Dialog Semiconductor, “DA14580 Low Power Bluetooth Smart SoC.” https://support. dialog-semiconductor.com/downloads/DA14580_DS_v1.63.pdf, January 2015.
[25] CYMBET CORPORATION, “AM18X5 Real-Time Clock with Power Management Family.” http://ambiqmicro.com/wp-content/uploads/2016/11/am18x5_data_sheet_ds0003v1p2.pdf, October 2014.
[26] InvenSence, “ICM-20948-World’s Lowest Power 9-Axis MEMS MotionTrackingTM Device.” https://store.invensense.com/datasheets/invensense/DS-000189-ICM-20948-v1.2.pdf, April 2017.
[27] TexasInstruments,“VeryLowNoise,24-BitAnalog-to-DigitalConverter.”http://www.ti.com/ lit/ds/symlink/ads1256.pdf, September 2013.
[28] “ESP8266 WiFi Module Quick Start Guide.” http://rancidbacon.com/files/kiwicon8/ ESP8266_WiFi_Module_Quick_Start_Guide_v_1.0.4.pdf.
[29] “Bluefruit LE Sniffer - Bluetooth Low Energy (BLE 4.0) - nRF51822.” https://www.adafruit. com/product/2269.
[30] “Low cost Bluetooth Smart/Bluetooth Low Energy packet sniffer.” https://www.nordicsemi. com/eng/Products/Bluetooth-low-energy/nRF-Sniffer.
[31] H. Hsu, “EcoMini: Low-power, miniature Bluetooth Low Energy motion sensor node,” Master’s thesis, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔