跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高振哲
研究生(外文):Kao, Chen-Che
論文名稱:使用自適性時間比較器達到雜訊最佳化之低壓十二位元連續近似類比數位轉換器
論文名稱(外文):A 0.5V 12-bit SAR ADC using adaptive time-domain comparator with noise optimization in 90 nm CMOS
指導教授:謝志成謝志成引用關係
指導教授(外文):Hsieh, Chih-Cheng
口試委員:陳巍仁洪浩喬黃柏鈞
口試委員(外文):Chen, Wei-Zen.Hong, Hao-ChiaoHuang, Po-Chiun
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:73
中文關鍵詞:連續近似類比數位轉換器低雜訊低功耗自適性時間比較器
外文關鍵詞:SAR ADCLow noiseLow powerAdaptive time-domain comparator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個使用自適性時間比較器達到雜訊最佳化之低壓高能源效率十二位元連續近似(SAR)類比數位轉換器(ADC)。
為達到良好功率消耗表現,本論文所提出之類比數位轉換器操作於低電壓的 0.5伏特。提出的自適性時間比較器可以隨著不同的輸入訊號調整比較器的雜訊大小,處理較大的輸入訊號時,將比較器的雜訊調大,消耗較少的能源,當輸入訊號較小時,消耗較多的能源壓低比較器的雜訊,提高12位元類比數位轉換器的能源效率。
為驗證本電路,此架構使用90奈米1P9M互補式金氧半導體製程製作,核心電路面積為156.96×693.96μm2,在0.5伏特電源電壓及相對應的100千赫茲取樣頻率操作下,此晶片在Nyquist頻率訊號輸入時實現之SNDR為為66.26dB,其對應的ENOB為10.71 bit,功率消耗為0.81微瓦,等效的figure of merit (FoM)為4.82fJ/conversion-step。
This thesis presents a 0.5V 12-bit successive-approximation register (SAR) analog-to-digital converter (ADC) using adaptive time-domain comparator with noise optimization.
The proposed ADC operates at low supply voltage 0.5V to save power consumption. The proposed adaptive time-domain comparator can adjust comparator noise performance with input value. While input signal is large, the input-referred noise of comparator decreases and the power consumption increases. While input signal is small, the input-referred noise of comparator increases and power consumption decreases, which can save more power during 12bit conversion.
The prototype was fabricated in 90nm 1P9M CMOS technology with a core area of 156.96×693.63μm2. At 0.5V supply voltage and 100kS/s sampling rate, the ADC achieves SNDR from 66.26dB corresponding ENOB from 10.71bit at Nyquist-frequency input and consumes 0.81μW power, resulting in a figure of merit (FoM) from 4.82 fJ/conversion-step.
Abstract ii
Content iii
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Architecture Selection 1
1.2 Performance Metrics of SAR ADC 3
1.2.1 Nyquist Criterion 3
1.2.2 Resolution 4
1.2.3 Quantization Error 4
1.2.4 Offset and Gain Error 5
1.2.5 Differential Nonlinearity 6
1.2.6 Integral Nonlinearity 6
1.2.7 Signal-to-Noise Ratio 7
1.2.8 Signal-to-Noise and Distortion Ratio 8
1.2.9 Effective number of bits 8
1.2.10 Figure of Merit 8
1.3 Target Specifications 8
1.4 Thesis Organization 10
Chapter 2 Successive Approximation Register ADC Overview 11
2.1 Introduction 11
2.2 Operation Procedure of Conventional SAR ADC 12
2.3 Considerations of Sample and Hold 13
2.3.1 On-Resistance of MOS Switch 14
2.3.2 Charge Injection 15
2.3.3 Clock feedthrough 16
2.3.4 KTC Noise 16
2.4 Considerations of Capacitive DAC 17
2.4.1 DAC Parasitic Capacitance 18
2.4.2 DAC Capacitor Mismatch 19
2.4.3 Settling Time 20
2.5 Considerations of Comparator 21
2.5.1 Input Offset 22
2.5.2 Kickback Noise 22
2.6 SAR Control Logic 23
2.7 Consideration of Voltage-to-Time Converter 25
2.7.1 Voltage-Controlled delay line (VCDL) 25
2.7.2 Conversion Gain 26
2.7.3 Noise 27
2.8 Summary 28
Chapter 3 Circuit Design Considerations 30
3.1 Differential SAR ADC 30
3.2 Sample and Hold 31
3.3 CDAC Switching Energy 32
3.4 Proposed Voltage-to-Time Converter 35
3.4.1 VCDL 36
3.4.2 Phase Detector (PD) 37
3.5 Digital SAR Control Logic 38
3.6 Summary 38
Chapter 4 Circuit Implementation of Successive Approximation ADC 39
4.1 Architecture of Proposed SAR ADC 39
4.2 Design of Voltage-to-Time Comparator 40
4.2.1 Design of VCDL 41
4.2.2 Design of Window Control 44
4.2.3 Design of Phase Detector 46
4.3 Design of Sample and Hold 48
4.4 Design of Capacitive DAC 49
4.5 Digital Control Logic 51
4.6 Pre-Layout and Post-Layout Simulations 54
4.7 Summary 56
Chapter 5 Measurement Results 57
5.1 Measurement Environment Setup 57
5.2 Chip Micrograph 58
5.3 Static Performance 58
5.4 Dynamic performance 59
5.5 Noise performance with different window 61
5.6 Performance Discussion 62
5.7 Performance Summary and Comparison 65
5.8 Summary 67
Chapter 6 Conclusion and Future Work 69
6.1 Conclusion 69
6.2 Future Work 69
Bibliography 71
[1] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, “A 3.2 fJ/c.-s. 0.35 V 10b 100 kS/s SAR ADC in 90 nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, 2012, pp. 92–93.
[2] P. Harpe, G. Dolmans, K. Philips, and H. de Groot, “A 0.7 V 7-to-10 bit 0-to-2 MS/s flexible SAR ADC for ultra low-power wireless sensor nodes,” in Proc. ESSCIRC, 2012, pp. 373–376.
[3] B. Murmann. (2015, Jul. 12). ADC Performance Survey 1997-2015 [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[4] J. Fredenburg and M. Flynn, “A 90 MS/s 11 MHz bandwidth 62 dB SNDR noise-shaping SAR ADC,” in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 468–469.
[5] H.-Y. Lee, B. Lee, and U.-K. Moon, “A 31.3 fJ/conversion-step 70.4 dB SNDR 30 MS/s 1.2 V two-step pipelined ADC in 0.13 m CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 474–475.
[6] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1 V 11 fJ/conversion-step 10 bit 10 MS/s asynchronous SAR ADC in 0.18 m CMOS,” in Proc. IEEE Symp. VLSI Circuits, 2010, pp. 241–242.
[7] Y. S. Shu, J. Y. Tsai, P. Chen, T. Y. Lo and P. C. Chiu, "A 28fJ/conv-step CT ΔΣ modulator with 78dB DR and 18MHz BW in 28nm CMOS using a highly digital multibit quantizer," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 268-269.
[8] R. H. Walden, "Analog-to-digital converter survey and analysis," in IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, Apr 1999.
[9] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed.: WILEY, 2012.
[10] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed.: WILEY, 2010.
[11] C.-Y. Liou and C.-C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280-281.
[12] P. Harpe, E. Cantatore and A. van Roermund, "A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3011-3018, Dec. 2013.
[13] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 244-610.
[14] Y.J. Chen and C.-C. Hsieh, "A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
[15] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[16] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
[17] C. C. Liu, S. J. Chang, G. Y. Huang and Y. Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[18] S. K. Lee, S. J. Park, H. J. Park and J. Y. Sim, "A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface," in IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 651-659, March 2011.
[19] G.-Y. Huang, C.-C. Liu, Y.-Z. Lin, and S.-J. Chang, "A 10-bit 12-MS/s successive approximation ADC with 1.2-pF input capacitance," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2009, pp. 157-160.
[20] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, pp. 1111-1121, Jun. 2010.
[21] K. Yoshioka and H. Ishikuro, "A 13b SAR ADC with eye-opening VCO based comparator," ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, 2014, pp. 411-414.
[22] S.-I. Chang, K. Al-Ashmouny, and E. Yoon, "A 0.5V 20fJ/conversion-step rail-to-rail SAR ADC with programmable time-delayed control units for low-power biomedical application," in Proc. ESSCIRC, 2011, pp. 339-342.
[23] P. C. Lee, J. Y. Lin and C. C. Hsieh, "A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with Input-Range-Adaptive Switching," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2149-2157, Dec. 2016.
[24] S. E. Hsieh and C. C. Hsieh, "A 0.3-V 0.705-fJ/Conversion-Step 10-bit SAR ADC With a Shifted Monotonic Switching Procedure in 90-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171-1175, Dec. 2016.
[25] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, "A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, 2012, pp. 92-93.
[26] S. E. Hsieh and C. C. Hsieh, "A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, 2016, pp. 1-2.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊