(3.231.29.122) 您好!臺灣時間:2021/02/25 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林益光
研究生(外文):Lin, Yi-Guang
論文名稱:無位置感測永磁同步馬達驅動風渦輪機模擬器之開發
論文名稱(外文):DEVELOPMENT OF A POSITION SENSORLESS PMSM DRIVEN WIND TURBINE EMULATOR
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Liaw, Chang-Ming
口試委員:許源浴陳盛基劉添華
口試委員(外文):Hsu, Yuan-YihChen, Seng-ChiLiu, Tian-Hua
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:132
中文關鍵詞:風渦輪機模擬器風力發電機永磁同步馬達無位置感測控制延伸型反電動勢估測內置磁石式永磁同步發電機無橋切換式整流器維也納切換式整流器最大功率追蹤
外文關鍵詞:wind turbine emulatorwind generatorPMSMsensorless controlextended back-EMFIPMSGbridgeless SMRVienna SMRmaximum power point tracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在開發一無位置感測永磁同步馬達驅動之風渦輪機模擬器,並從事其與微電網之聯網操作。首先探究了解微電網、風力發電機、渦輪機、永磁同步馬達與切換式整流器之一些基本事務。接著,建構一標準表面貼磁式永磁同步馬達驅動風渦輪機模擬器。其可操控成一般速度驅動型渦輪機,或具特定轉矩-速度之風渦輪機,可模擬不同風速下之風渦輪機轉矩-速度曲線。接著,開發一延伸型反電動勢估測法之無位置感測表面貼磁式永磁同步馬達驅動風輪機模擬器。經由適當之啟動與動態控制,其具有媲美於標準驅動模擬器之驅控特性。
為從事所建風渦輪機模擬器之忠實加載測試,建立一具後接三相維也納切換式整流器之內置磁石式永磁同步發電機。應用擾動觀察法,從事風渦輪機模擬器驅動發電機之最大功率追蹤控制。同時亦施行換相移位調適以得內置磁石式永磁同步發電機之最佳產生功率,以及維也納切換式整流器之故障容錯操作。
另外,為使所開發之渦輪機模擬器可從電網供電而具良好入電品質,設計製作一單相無橋式升壓型切換式整流器。接著,組建一完整切換式整流器供電風渦輪機模擬器驅動之永磁同步發電機系統,並從事其操控性能實測評估,驗證其良好之操作特性。最後,從事所建渦輪機模擬器之微電網聯網操作應用研究,取代微電網中之風力發電機以展現其效能。
This thesis develops a position sensorless permanent-magnet synchronous motor (PMSM) driven wind turbine emulator and performs its micro-grid connected operation. First, the basics concerning micro-grids, wind generators, turbines, PMSMs and switch-mode rectifiers (SMRs) are explored. Then a standard surface mounted PMSM (SPMSM) driven wind turbine emulator is established. The SPMSM drive can be operated in conventional turbine speed mode or specific wind turbine torque-speed mode. Various wind turbine torque-speed curves under different wind speeds can be faithfully emulated. Next, an observed extended-EMF (EEMF) based sensorless controlled SPMSM driven wind turbine emulator is developed. Through proper starting and dynamic controls, it possesses good driving characteristics being comparable to those of the standard one.
For performing faithful loading test for the wind turbine emulator, an interior permanent-magnet synchronous generator (IPMSG) followed by a three-phase Vienna SMR is established. The maximum power point tracking (MPPT) function for the wind turbine emulator driven IPMSG with Vienna SMR is achieved using perturbation and observation (P&O) method. The commutation tuning to optimize the IPMSG developed power and the fault-tolerant operation of the Vienna SMR are also conducted.
Additionally, to let the developed turbine emulator be powered from the utility grid with good power quality, a single-phase bridgeless boost SMR is designed and implemented. Then a complete SMR-fed wind turbine emulator driven IPMSG system is established and evaluated. Satisfactory operating characteristics are verified experimentally. Finally, the micro-grid powering application of the developed turbine emulator is presented. It is used to replace the wind generator in the studied micro-grid to express its effectiveness.
ABSTRACT (i)
ACKNOWLEDGEMENT (ii)
LIST OF CONTENTS (iii)
LIST OF FIGURES (vii)
LIST OF TABLES (xv)
LIST OF SYMBOLS (xvi)
CHAPTER 1 INTRODUCTION (1)
CHAPTER 2 INTRODUCTORY WIND GENERATORS AND INTERFACE CONVERTERS(6)
2.1 Introduction (6)
2.2 Micro-grid and Wind Generator (6)
2.3 Turbine Emulators (10)
2.4 Permanent Magnet Synchronous Machines (11)
2.5 Switch-mode Rectifiers (22)
CHAPTER 3 STANDARD AND POSITION SENSORLESS SPMSM DRIVEN WIND
TURBINE EMULATORS (26)
3.1 Introduction (26)
3.2 Standard SPMSM Drive (26)
3.3 The Designed Controllers (32)
3.4 Experimental Evaluation (33)
3.5 The Designed Turbine Emulator (36)
3.6 Extended Back-EMF Position Sensorless Controlled SPMSM
Driven Wind Turbine Emulator (42)
CHAPTER 4 A WIND IPMSG WITH VIENNA SMR (56)
4.1 Introduction (56)
4.2 Design and Implementation of Three-phase Vienna SMR (56)
4.3 Performance Evaluation of the Wind Turbine Emulator
Driven IPMSG (68)
4.4 Control Strategy of the Wind Turbine Emulator
Driven IPMSG (72)
4.5 Fault-tolerant Operation (79)
CHAPTER 5 SINGLE-PHASE BOOST SMR POWERED SPMSM
DRIVEN WIND TURBINE EMULATOR (84)
5.1 Introduction (84)
5.2 System Configuration and Problem Statements (84)
5.3 Single-phase SMRs (84)
5.4 Establishment of a Bridgeless Boost SMR (87)
5.5 Experimental Performance Evaluation (93)
5.6 Experimental Evaluation for the Developed Wind Turbine
Emulator Driven Generator System (95)
CHAPTER 6 MICRO-GRID CONNECTED APPLICATION OF THE DEVELOPED WIND
TURBINE EMULATOR (110)
6.1 Introduction (110)
6.2 The Studied DC Micro-grid (110)
6.3 Experimental Evaluation of the DC Micro-grid (116)
CHAPTER 7 CONCLUSIONS (122)
REFERENCES (123)
[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag, vol. 5, no. 4, pp. 78-94, 2007.
[2] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[3] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[4] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[5] T. Ma, M. H. Cintuglu and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[6] O. Anaya-Lara, N. Jenkins, J. Ekanayake, P. Cartwright and M. Hughes, Wind Energy Generation: Modeling and Control, Chichester: John Wiley and Sons, 2009.
[7] Z. Chen, J. M. Guerrero and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
[8] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 3, pp. 139-152, 2013.
[9] N. A. Orlando, M. Liserre, R. A. Mastromauro and A. Dell'Aquila, “A survey of control issues in PMSG-based small wind-turbine systems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529-539, 2013.
[10] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: state-of-the-art and emerging technologies,” Proc. IEEE, vol. 103, no. 5, pp. 740-788, May 2015.
[11] C. N. Bhende, S. Mishra and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011.
[12] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771.
[13] P. Roshanfekr, T. Thiringer and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047.
[14] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
[15] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[16] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[17] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1417-1425, 2004.
[18] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3485-3499, July 2011.
[19] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[20] F. Musavi, W. Eberle, and W. G. Dunford, “Efficiency evaluation of single-phase solutions for AC-DC PFC boost converters for plug-in-hybrid electric vehicle battery chargers,” in Proc. 2010 IEEE VPPC, 2010, pp. 1-6.
[21] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[22] J. W. Kolar, T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[23] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems—Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[24] R. Tonkoski, L. A. C. Lopes and F. D. Reis. “A single-switch three-phase boost rectifier to reduce the generator losses in wind energy conversion systems,” in Proc. IEEE EPEC, 2009, pp. 1-8.
[25] J. W. Kolar, U. Drofenik, and P. K. Jain, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[26] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal of three-phase three level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[27] H. Chen, N. David and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 154-163, 2013.
[28] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp. 1619-1626.
[29] A. Rajaei, M. Mohamadian and A. Y. Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013.
[30] A. Mahdy S. M. El-Hakim and H. H. Hanafy, “Small wind turbine emulator with separately excited DC motor using analog electronic circuit,” in Proc. IET Conference on Renewable Power Generation, 2011, pp. 1-6.
[31] H. M. Kojabadi, L. Chang and T. Boutot, “Development of a novel wind turbine simulator for wind energy conversion Systems using an inverter-controlled induction motor,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 547-552, 2004.
[32] J. M. Nye, J. G. de la Bat, M. A. Khan and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065.
[33] G. Henz, G. Koch, C. M. Franchi and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. COBEP, 2013, pp. 737-742.
[34] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832.
[35] D. Llano, M. Tatlow and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD, 2014, pp. 1-7.
[36] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
[37] Y. Xia, K. H. Ahmed and B.W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, 2011.
[38] Z. M. Dalala, Z. U. Zahid, W. S. Yu and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013.
[39] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, pp. 697-705, 2016.
[40] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[41] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[42] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
[43] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
[44] T. Ishikawa, M. Yamada, and N. Kurita, “Design of magnet arrangement in interior permanent synchronous motor by response surface methodology in consideration of torque and vibration,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1290-1293, 2011.
[45] M. Franko, J. Ondrejicka and J. Kuchta, “Development and examination of interior permanent magnet synchronous traction motor,” in Proc. ELEKTRO, 2012, pp. 179-184.
[46] V. Simon-Sempere, M. Burgos-Payan, and J. Cerquides-Bueno, “Spatial filtering: A tool for selective harmonics elimination in the design of permanent-magnet synchronous motors,” IEEE Trans. Magn., vol. 48, no. 6, pp. 2056-2067, 2012.
[47] S. Chaithongsuk, B. Nahid-Mobarakeh, J. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484 - 2494, 2012
[48] K. Yamazaki, M. Kumagai, T. Ikemi, and S. Ohki, “A novel rotor design of interior permanent magnet synchronous motors to cope with both maximum torque and iron-loss reduction,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2478-2486, 2013.
[49] E. Carraro and N. Bianchi, “Design and comparison of interior permanent magnet synchronous motors with non-uniform airgap and conventional rotor for electric vehicle applications,” IET Electr. Power Appl., vol. 8, no. 6, pp. 240-249, 2014.
[50] S. Morimoto, O. Shohei, Y. Inoue, M. Sanada, “Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5749-5756, 2014.
[51] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed. Canada: John Wiley and Sons, 2013.
[52] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 645-650, 2002.
[53] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[54] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[55] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
[56] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
[57] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[58] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[59] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[60] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[61] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[62] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007.
[63] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
[64] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 59, no. 2, pp. 1323-1325, 2012.
[65] A. Sabanovic and F. Bilalovic, “Sliding mode control of AC drives,” IEEE Trans. Ind. Appl., vol. 25, no. 1, pp. 70-75, 1989.
[66] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[67] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
[68] M. N. Uddin, M. A. Abido and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004.
[69] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[70] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[71] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
[72] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013.
[73] T. Tarczewski and L. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867-3875, 2015.
[74] K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 524-535, 2002.
[75] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003.
[76] R. Errouissi, M. Ouhrouche, W. H. Chen and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012.
[77] A. Mora, A. Orellana, J. Juliet, and R. Cardenas, “Model predictive torque control for torque ripple compensation in variable speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[78] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016
[79] A. Ahmed, Y. Sozer, M. Hamdan, “Maximum torque per ampere control for buried magnet PMSM based on DC-Link power measurement,” IEEE Trans. Power Electron., vol. 32, no.2, pp. 1299-1311, 2016.
[80] J. S. Lee and R. D. Lorenz, “Robustness analysis of deadbeat-direct torque and flux control for IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2775-2784, 2016.
[81] F. Aghili, M. Buehler and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000.
[82] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[83] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006.
[84] J. Fang, W. Li and H. Li, “Self-compensation of the commutation angle based on DC-Link current for high-speed brushless DC motors with low inductance,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 428-439, 2014.
[85] Y. S. Lin, K. W. Hu, T. H. Yeh and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, pp. 4493-4504, 2016.
[86] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
[87] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON, 1998, vol. 1, pp. 508-512.
[88] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
[89] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performance in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[90] D. Strojan, D. Drevensek, Z.Plantic, B. Grcar, and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012.
[91] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
[92] W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
[93] A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29.
[94] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 793-798.
[95] E. Sato, “Permanent magnet synchronous motor drives for hybrid electric vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 162-168, 2007.
[96] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1773, 2014.
[97] H. Matsumoto and Y. Neba, “A boost driver with an improved charge-pump circuit” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3178-3191, 2014.
[98] B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 811-818, 2003.
[99] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no. 1, pp. 297-303.
[100] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[101] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
[102] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[103] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, 2011.
[104] M. C. Huang, A. J. Moses, and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659.
[105] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[106] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for Sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
[107] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014.
[108] J. Choi, K. Nam, A. Bobtsov, A. Pyrkin and R. Ortega, “Robust adaptive sensorless control for permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3989-3997, 2017.
[109] N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended kalman filters,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6574-6582, 2014.
[110] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
[111] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
[112] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
[113] P. Damodharan and K. Vasudevan, “ Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Covers., vol. 25, no. 3, pp. 661-668, 2010.
[114] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[115] R. D. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
[116] Z. Wang, K. Lu, and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
[117] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[118] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
[119] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[120] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[121] Y. Jeong, R. D. Lorenz, T. M. Jahns, and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[122] D. Raca, M. C. Harke, and R. D. Lorenz, “Robust magnet polarity estimation for initialization of PM synchronous machines with near-zero saliency,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1199-1209, 2008.
[123] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[124] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[125] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[126] M. Seilmeier, S. Ebersberger, and B. Piepenbreier, “HF test current injection-based self-sensing control of PMSM for low- and zero-speed range using two-degree-of-freedom current control,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2268-2278, 2015.
[127] K. Ide, H. Iura, and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method,” in Proc. IEEE IECON, 2010, pp. 2236-2241.
[128] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[129] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[130] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[131] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
[132] U. R. Prasanna and A. K. Rathore, “A novel single-reference six-pulse-modulation (SRSPM) technique-based interleaved high-frequency three-phase inverter for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5547-5556, 2013.
[133] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
[134] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” Proc. Inst. Elect. Eng. Elect. Power Appl., vol. 153, no. 5, pp. 750-762, 2006.
[135] P. Y. Chen, “A permanent-magnet synchronous motor driven prime mover emulator,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2014.
[136] P. H. Jhou, “A wind switched-reluctance generator based grid-connected micro-grid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔