|
[1] Murmann. “ADC Performance Survey 1997-2016,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html. [2] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. John Wiley & Sons, 2012. [3] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999. [4] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed. John Wiley & Sons, 2010. [5] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New York: McGraw-Hill, 2000. [6] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E.A.M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May. 2010. [7] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006. [8] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006. [9] S. Lim, J. Cheon, Y. Chae, W. Jung, D. Lee, M. Kwon, K. Yoo, S. Ham, and G. Han, “A 240-frames/s 2.1-Mpixel CMOS Image Sensor With Column-Shared Cyclic ADCs,” IEEE J. Solid-State Circuits, vol.46, no. 9, pp. 2073–2083, Sep. 2011. [10] S.-F. Yeh, J.-Y. Lin, C.-C. Hsieh, K.-Y. Yeh, and C.-C. J. Li, “A new CMOS image sensor readout structure for 3D integrated imagers,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2011, pp. 1–4, 19–21. [11] K. Kiyoyama, Y. Ohara, K.-W. Lee, T. Fukushima, T. Tanaka, and M. Koyanagi, “A parallel ADC for high-speed CMOS image processing system with 3D structure,” IEEE 3D Systems Integration Conference, Sep. 2009, pp. 1–4, 28–30. [12] K. Kiyoyama, K.-W. Lee, T. Fukushima, H. Naganuma, H. Kobayashi, T. Tanaka, and M. Koyanagi, “A block-parallel signal processing system for CMOS image sensor with three-dimensional structure,” IEEE 3D Systems Integration Conference, Nov. 2010, pp. 1–4, 16–18. [13] X.-L. Huang, P.-Y. Kang, J.-L. Huang, Y.-F. Chou, Y.-P. Lee, and D.-M. Kwai, “A Pre- and Post-bond Self-Testing and Calibration Methodology for SAR ADC Array in 3-D CMOS Imager,” IEEE European Test Symposium (ETS), May. 2011, pp. 39–44, 23–27. [14] M.F. Snoeij, A.J.P. Theuwissen, K.A.A. Makinwa, and J.H. Huijsing, “Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image Sensors,” IEEE J. Solid-State Circuits, vol.42, no. 12, pp. 2968–2977, Dec. 2007. [15] S. Lim, J. Lee, D. Kim, and G. Han, “A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 393–398, Mar. 2009. [16] J.-H. Park, S. Aoyama, T. Watanabe, K. Isobe, and S. Kawahito, “A High-Speed Low-Noise CMOS Image Sensor With 13-b Column-Parallel Single-Ended Cyclic ADCs,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2414–2422, Nov. 2009. [17] M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A Low-Noise High Intrascene Dynamic Range CMOS Image Sensor With a 13 to 19b Variable-Resolution Column-Parallel Folding-Integration/Cyclic ADC,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 272–283, Jan. 2012. [18] S. Matsuo, T.J. Bales, M. Shoda, S. Osawa, K. Kawamura, A. Andersson, M. Haque, H. Honda, B. Almond, Y. Mo, J. Gleason, T. Chow, and I. Takayanagi, “8.9-Megapixel Video Image Sensor With 14-b Column-Parallel SA-ADC,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2380–2389, Nov. 2009. [19] Z. Yang, and J. V. d. Spiegel, “A 10-bit 8.3MS/s switched-current successive approximation ADC for column-parallel imagers,” IEEE Int. Symp. Circuit and Systems, May 2008, pp. 224–227. [20] S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim, “A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE J. Solid-State Circuits, vol.46, no. 3, pp. 651–659, Apr. 2011. [21] J. H. Cheong, K. L. Chan, P.B. Khannur, K. T. Tiew, and M. Je, “A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 7, pp. 407–411, Jul. 2011. [22] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun.2011, pp. 262–263. [23] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol.45, no.4, pp.731–740, Apr. 2010. [24] M. Yip, and A.P. Chandrakasan, “A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 190–192. [25] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10b 50MS/s 820µW SAR ADC with on-chip digital calibration,” in IEEE ISSCC Dig. Tech. Papers, pp. 384–385, Feb. 2010. [26] P. Harpe, Y. Zhang, G. Dolmans, K. Philips, and H.D. Groot, “A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 472–474, 19–23. [27] P. J. A. Harpe, C. Zhou, Y. Bi, N.P.v.d. Meijs, X. Wang, K. Philips, G. Dolmans, and H.d. Groot, “A 26 μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1585–1595, Jul. 2011. [28] A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator,” in IEEE ISSCC Dig. Tech. Papers, pp. 246–247, Feb. 2008. [29] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2009, pp. 279–282, 13–16. [30] F. Chen, A.P. Chandrakasan, and V. Stojanović, “A low-power area-efficient switching scheme for charge-sharing DACs in SAR ADCs,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2010, pp. 1–4, 19–22. [31] T.-Z. Chen, S.-J. Chang, and G.-Y. Huang, “A successive approximation ADC with resistor-capacitor hybrid structure,” IEEE VLSI Design, Automation, and Test (VLSI-DAT), April. 2013, pp. 1,4, 22–24. [32] J.-Y. Lin, H.-Y. Huang, C.-C. Hsieh, and H.-I. Chen, “A 0.05mm2 0.6V 500kS/s 14.3fJ/Conversion-step 11-bit Two-step Switching SAR ADC for 3-DimensionalStacking CMOS Imager,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 165–168. [33] J. Jin, Y. Gao, and E. Sanchez-Sinencio, “An Energy-Efficient Time-Domain Asynchronous 2 b/Step SAR ADC With a Hybrid R-2R/C-3C DAC Structure,” IEEE J. Solid-State Circuits, vol.49, no. 6, pp. 1383–1396, Jun. 2014. [34] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no.6, pp. 1111–1121, Jun. 2010. [35] C.-Y. Liou and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 280–281. [36] A. Mesgarani, M. N. Alam, F. Z. Nelson, and S. U. Ay,“Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS,” IEEE Midwest Symposium on Circuits and Systems, pp.893–896, Aug. 2010. [37] M.-H. Wu, Y.-H. Chung, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 157–160. [38] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, “A 10-bit 500-KS/s low power SAR ADC with splitting capacitor for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 149–152. [39] L. Chen, A. Sanyal, J. Ma, and N. Sun, “A 24-µW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique,” in Proc. IEEE ESSCIRC, Sep. 2014, pp. 219–222. [40] C. H. Kuo and C. E. Hsieh, “A high energy-efficiency SAR ADC based on partial floating capacitor switching technique,” in Proc. IEEE ESSCIRC, 2011, pp. 475–478. [41] P. Harpe, E. Cantatore, and A. van Roermund, “A 2.2/2.7fJ/ conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 270–271. [42] M. Ahmadi and W. Namgoong, “Comparator Power Reduction in Low-Frequency SAR ADC Using Optimized Vote Allocation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11, pp. 2384–2394, Nov. 2015. [43] J.‐Y. Lin and C.‐C. Hsieh, “A 0.3V 10‐bit 1.17f SAR ADC with Merge and Split Switching in 90nm CMOS,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, no. 1, pp. 70–79, Jan. 2015. [44] S.-I. Chang, K. Al-Ashmouny, and Y. Euisik, “A 0.5V 20fJ/Conversion-Step Rail-to-rail SAR ADC with Programmable Time-Delayed Control Units for Low-Power Biomedical Application,” in Proc. IEEE ESSCIRC, Sep. 2011, pp. 339–342. [45] X. Zhou, and Q. Li, “A 160mV 670nW 8-bit SAR ADC in 0.13μm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2012, pp. 1–4, 9–12. [46] R. Sekimoto, A. Shikata, K. Yoshioka, T. Kuroda, and H. Ishikuro, “A 0.5-V 5.2-fJ/Conversion-Step Full Asynchronous SAR ADC With Leakage Power Reduction Down to 650 pW by Boosted Self-Power Gating in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2628–2636, Nov. 2013. [47] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s Subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 196–197. [48] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, “A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2012, pp. 92–93, 13-15. [49] H.Y.Huang, J.Y.Lin, C.C. Hsieh, Wen-Hsu Chang, Hann-HueiTsai, and Chin-Fong Chiu“A 9.2b 47fJ/Conversion-Step Asynchronous SAR ADC with Input Range Prediction DAC Switching,” IEEE Int. Symp. Circuit and Systems, May, 2012. [50] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Trans. Circuits Syst.I: Reg. Papers, vol. 60, no. 3, pp. 570–581, Mar. 2013. [51] B. Verbruggen, J. Tsouhlarakis, T. Yamamoto, M. Iriguchi, E. Martens, and J. Craninckx, “A 60 dB SNDR 35 MS/s SAR ADC With Comparator-Noise-Based Stochastic Residue Estimation,” IEEE J. Solid-State Circuits, vol. 50, no.9, pp. 2002–2011, Sep. 2015. [52] L. Chen, X. Tang, A. Sanyal, Y. Yoon, J. Cong, and N. Sun, “A 10.5-b ENOB 645 nW 100kS/s SAR ADC with statistical estimation based noise reduction,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2015, pp. 1–4. [53] Jin-Yi Lin and Chih-Cheng Hsieh, “A 0.3 V 10-bit SAR ADC with First 2-bit Guess in 90 nm CMOS,” IEEE Trans. Circuits Syst. I: Reg. Papers, accepted. [54] Y. Chen, S. Tsukamoto, and T. Kuroda, “A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 145–148. [55] Y.-J. Chen and C.-C. Hsieh, “A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2014, pp. 1–2. [56] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no.5, pp. 599–606, May 1999. [57] W.-L. Wu, Y. Zhu, L. Ding, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, “A 0.6V 8b 100MS/s SAR ADC with minimized DAC capacitance and switching energy in 65nm CMOS,” in Proc. IEEE ISCAS, May 2013, pp. 2239–2242.
|