跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林晉毅
研究生(外文):Lin, Jin-Yi
論文名稱:低電壓低功耗連續近似式類比數位轉換器
論文名稱(外文):Low Voltage Low Power SAR ADC
指導教授:謝志成謝志成引用關係
指導教授(外文):Hsieh, Chih-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:117
中文關鍵詞:低電壓低功耗連續近似式類比數位轉換器
外文關鍵詞:Low VoltageLow powerSAR ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:567
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於類比數位轉換器提供真實世界和虛擬數位系統的溝通介面,其在現代單晶片系統中扮演非常重要角色。近年來,隨著可攜式裝置和環境監測網路的成長,低功耗類比數位轉換器的需求也隨之增加。本篇論文提出三種連續近似式類比數位轉換器的設計,其可以操作在低電壓並達到好的能源效率。
本論文的第一部分提出一個十一位元兩步驟切換的連續近似式類比數位轉換器。此轉換器只需要六十四個單位電容,為了操作在低電壓和降低亞穩態,比較器使用電壓抬升技巧。此轉換器實作在一百八十奈米製程,在每秒五十萬次的取樣頻率、0.6伏特的電壓下消耗5.02微瓦,其有效位元數為9.45位元,換算的性能指標為14.34 fJ/conversion-step。
本論文的第二部分提出一個十位元合併和分開切換的連續近似式類比數位轉換器。跟傳統方法相比,此轉換器降低83%的數位類比轉換器能量消耗,由於採用新的兩倍拔靴取樣保持電路,使得操作在低電壓下還能維持好的線性度。測式晶片使用九十奈米製程,操作在0.3伏特的電壓、在每秒九萬次的取樣頻率下消耗35奈瓦,其奈奎斯特輸入的有效位元數為8.38位元,換算的性能指標為1.17 fJ/conversion-step。
本論文的第三部分提出一個十位元前兩位元猜測的連續近似式類比數位轉換器。跟傳統方法相比,此轉換器降低90%的數位類比轉換器能量消耗和改善差動非線性和積分非線性√3/2倍,藉由採用新的堆疊輸入對的比較器和在最低有效位使用多數決比較,比較器的功率可以被降低。此轉換器實現在九十奈米製程,操作在0.3伏特的電壓、在每秒十五萬次的取樣頻率下消耗67.3奈瓦,其奈奎斯特輸入的有效位元數和無雜散動態範圍分別為8.38位元和70.7分貝,換算的性能指標為0.97 fJ/conversion-step。

Analog to digital converter (ADC) plays an important role in the modern system on a chip (SoC) because it provides interfaces between the real world and the virtual digital systems. Recently, the demand on low power ADC has dramatically increased due to the growth of portable devices and environmental monitoring network. This dissertation presents three successive approximation register (SAR) ADCs with good power efficiency at low voltage.
The first part of this dissertation presents an 11-bit two-step switching SAR ADC. It only requires 64 unit capacitors and employs supply-boost technique of comparator to operate at low supply voltage and reduce meta-stability. The prototype, fabricated in 0.18 μm CMOS technology, consumes 5.02 μW at 500 kS/s from a 0.6 V supply and achieves an ENOB of 9.45 bits and a Walden's figure of merit (FoMW) of 14.34 fJ/conversion-step, respectively.
The second part presents a 10-bit merge-and-split (MS) SAR ADC, which reduces DAC switching energy by 83% compared with conventional one. To operate at low voltage with good linearity, a new double-bootstrapped sample and hold (S/H) circuit is proposed. The test chip fabricated in 90 nm CMOS. With a 0.3 V supply and a Nyquist input, it consumes 35 nW at 90 kS/s and achieves an ENOB of 8.38 bits and a FoMW of 1.17 fJ/ conversion-step.
The third part presents a 10-bit first 2-bit guess (F2G) SAR ADC, which reduces DAC switching energy by 90% and improves the DNL and INL by √3/2 compared with conventional one. By the proposed comparator with stacked input pair and majority-vote comparison at the conversions of LSBs, the comparator power is reduced. Implemented in 90 nm CMOS technology, the prototype consumes 67.3 nW at 150 kS/s from a 0.3 V supply and achieves an ENOB of 8.85 bits and an SFDR of 70.7 dB at Nyquist input, respectively. The resultant FoMW are 0.97 fJ/ conversion-step.

摘要 i
Abstract iii
Table of Contents v
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Dissertation Organization 3
Chapter 2 Fundamentals of Analog-to-Digital Converter (ADC) 4
2.1 Background Elements of ADC 4
2.1.1 Nyquist Theorem 4
2.1.2 Resolution 4
2.1.3 Quantization Error 5
2.2 Performance Metrics of ADC 6
2.2.1 Offset Error 6
2.2.2 Gain Error 7
2.2.3 Differential Nonlinearity 8
2.2.4 Integral Nonlinearity 8
2.2.5 Signal-to-Noise Ratio 9
2.2.6 Signal-to-Noise and Distortion Ratio 9
2.2.7 Spurious-Free Dynamic Range 10
2.2.8 Effective Number of Bits 10
2.2.9 Figure of Merit 10
Chapter 3 Overview of Successive Approximation Register ADC 11
3.1 Architecture of Conventional SAR ADC 11
3.2 Operation Procedure of Conventional SAR ADC 12
3.3 Sample and Hold Circuit 13
3.3.1 Charge Injection 14
3.3.2 Clock Feedthrough 15
3.3.3 Sampling Speed 15
3.3.4 kT/C Noise 17
3.4 Capacitive Digital-to-Analog Converter 18
3.4.1 Parasitic Capacitors of DAC 19
3.4.2 Capacitor Mismatch 19
3.4.3 Settling Time 20
3.5 Comparator 21
3.5.1 Input Offset 22
3.5.2 Kickback Noise 23
3.6 SAR Controller and Clock Generator 23
3.7 Summary 25
Chapter 4 A 0.05 mm2 0.6 V 500 kS/s 14.3 fJ/Conversion-step 11-bit Two-Step Switching SAR ADC for 3-Dimensional Stacked CMOS Imager 27
4.1 Introduction 27
4.2 Two-step Switching SAR ADC 30
4.3 Comparator with Supply-Boost 39
4.4 SAR Controller 41
4.5 Measurement Results 43
4.5.1 Static Performance 43
4.5.2 Dynamic Performance 44
4.5.3 Power Consumption and Comparisons 46
4.6 Conclusion 48
Chapter 5 A 0.3 V 10-bit 1.17 f SAR ADC with Merge and Split Switching in 90 nm CMOS 49
5.1 Introduction 49
5.2 Merge and Split Switching 52
5.3 Circuit Implementation 63
5.3.1 Double-Bootstrapped Sample and Hold 63
5.3.2 Dynamic Comparator with Stacked Input Pair 67
5.3.3 Capacitive DAC Network 68
5.3.4 SAR Controller with Asymmetric Logic 70
5.4 Measurement Results 71
5.4.1 Static Performance 72
5.4.2 Dynamic Performance 72
5.4.3 Power Consumption and Comparisons 73
5.5 Conclusion 75
Chapter 6 A 0.3 V 10-bit 0.97 f SAR ADC with First 2-bit Guess in 90 nm CMOS 76
6.1 Introduction 76
6.2 First 2-bit Guess 78
6.3 Circuit Implementation 90
6.3.1 Double-Bootstrapped Sample and Hold 90
6.3.2 Dynamic Comparator with Stacked Input Pair 91
6.3.3 Capacitive DAC Network 94
6.3.4 Virtual Vcm Generation 97
6.4 Measurement Results 98
6.4.1 Static Performance 99
6.4.2 Dynamic Performance 99
6.4.3 Power Consumption and Comparisons 100
6.5 Conclusion 102
Chapter 7 Optimization of Low Voltage Low Power Successive Approximation Register ADC 103
7.1 Sample and Hold Circuit 103
7.2 Capacitive Digital-to-Analog Converter 104
7.3 Comparator 104
7.4 SAR Controller and Clock Generator 105
7.5 Summary 106
Chapter 8 Conclusions and Future Work 107
8.1 Conclusions 107
8.2 Future Work 108
Bibliography 109
Publication List 116
Journals 116
Conferences 116

[1] Murmann. “ADC Performance Survey 1997-2016,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. John Wiley & Sons, 2012.
[3] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999.
[4] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed. John Wiley & Sons, 2010.
[5] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New York: McGraw-Hill, 2000.
[6] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E.A.M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May. 2010.
[7] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
[8] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[9] S. Lim, J. Cheon, Y. Chae, W. Jung, D. Lee, M. Kwon, K. Yoo, S. Ham, and G. Han, “A 240-frames/s 2.1-Mpixel CMOS Image Sensor With Column-Shared Cyclic ADCs,” IEEE J. Solid-State Circuits, vol.46, no. 9, pp. 2073–2083, Sep. 2011.
[10] S.-F. Yeh, J.-Y. Lin, C.-C. Hsieh, K.-Y. Yeh, and C.-C. J. Li, “A new CMOS image sensor readout structure for 3D integrated imagers,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2011, pp. 1–4, 19–21.
[11] K. Kiyoyama, Y. Ohara, K.-W. Lee, T. Fukushima, T. Tanaka, and M. Koyanagi, “A parallel ADC for high-speed CMOS image processing system with 3D structure,” IEEE 3D Systems Integration Conference, Sep. 2009, pp. 1–4, 28–30.
[12] K. Kiyoyama, K.-W. Lee, T. Fukushima, H. Naganuma, H. Kobayashi, T. Tanaka, and M. Koyanagi, “A block-parallel signal processing system for CMOS image sensor with three-dimensional structure,” IEEE 3D Systems Integration Conference, Nov. 2010, pp. 1–4, 16–18.
[13] X.-L. Huang, P.-Y. Kang, J.-L. Huang, Y.-F. Chou, Y.-P. Lee, and D.-M. Kwai, “A Pre- and Post-bond Self-Testing and Calibration Methodology for SAR ADC Array in 3-D CMOS Imager,” IEEE European Test Symposium (ETS), May. 2011, pp. 39–44, 23–27.
[14] M.F. Snoeij, A.J.P. Theuwissen, K.A.A. Makinwa, and J.H. Huijsing, “Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image Sensors,” IEEE J. Solid-State Circuits, vol.42, no. 12, pp. 2968–2977, Dec. 2007.
[15] S. Lim, J. Lee, D. Kim, and G. Han, “A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 393–398, Mar. 2009.
[16] J.-H. Park, S. Aoyama, T. Watanabe, K. Isobe, and S. Kawahito, “A High-Speed Low-Noise CMOS Image Sensor With 13-b Column-Parallel Single-Ended Cyclic ADCs,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2414–2422, Nov. 2009.
[17] M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A Low-Noise High Intrascene Dynamic Range CMOS Image Sensor With a 13 to 19b Variable-Resolution Column-Parallel Folding-Integration/Cyclic ADC,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 272–283, Jan. 2012.
[18] S. Matsuo, T.J. Bales, M. Shoda, S. Osawa, K. Kawamura, A. Andersson, M. Haque, H. Honda, B. Almond, Y. Mo, J. Gleason, T. Chow, and I. Takayanagi, “8.9-Megapixel Video Image Sensor With 14-b Column-Parallel SA-ADC,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2380–2389, Nov. 2009.
[19] Z. Yang, and J. V. d. Spiegel, “A 10-bit 8.3MS/s switched-current successive approximation ADC for column-parallel imagers,” IEEE Int. Symp. Circuit and Systems, May 2008, pp. 224–227.
[20] S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim, “A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE J. Solid-State Circuits, vol.46, no. 3, pp. 651–659, Apr. 2011.
[21] J. H. Cheong, K. L. Chan, P.B. Khannur, K. T. Tiew, and M. Je, “A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 7, pp. 407–411, Jul. 2011.
[22] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun.2011, pp. 262–263.
[23] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol.45, no.4, pp.731–740, Apr. 2010.
[24] M. Yip, and A.P. Chandrakasan, “A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 190–192.
[25] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10b 50MS/s 820µW SAR ADC with on-chip digital calibration,” in IEEE ISSCC Dig. Tech. Papers, pp. 384–385, Feb. 2010.
[26] P. Harpe, Y. Zhang, G. Dolmans, K. Philips, and H.D. Groot, “A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 472–474, 19–23.
[27] P. J. A. Harpe, C. Zhou, Y. Bi, N.P.v.d. Meijs, X. Wang, K. Philips, G. Dolmans, and H.d. Groot, “A 26 μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1585–1595, Jul. 2011.
[28] A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator,” in IEEE ISSCC Dig. Tech. Papers, pp. 246–247, Feb. 2008.
[29] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2009, pp. 279–282, 13–16.
[30] F. Chen, A.P. Chandrakasan, and V. Stojanović, “A low-power area-efficient switching scheme for charge-sharing DACs in SAR ADCs,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2010, pp. 1–4, 19–22.
[31] T.-Z. Chen, S.-J. Chang, and G.-Y. Huang, “A successive approximation ADC with resistor-capacitor hybrid structure,” IEEE VLSI Design, Automation, and Test (VLSI-DAT), April. 2013, pp. 1,4, 22–24.
[32] J.-Y. Lin, H.-Y. Huang, C.-C. Hsieh, and H.-I. Chen, “A 0.05mm2 0.6V 500kS/s 14.3fJ/Conversion-step 11-bit Two-step Switching SAR ADC for 3-DimensionalStacking CMOS Imager,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 165–168.
[33] J. Jin, Y. Gao, and E. Sanchez-Sinencio, “An Energy-Efficient Time-Domain Asynchronous 2 b/Step SAR ADC With a Hybrid R-2R/C-3C DAC Structure,” IEEE J. Solid-State Circuits, vol.49, no. 6, pp. 1383–1396, Jun. 2014.
[34] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no.6, pp. 1111–1121, Jun. 2010.
[35] C.-Y. Liou and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 280–281.
[36] A. Mesgarani, M. N. Alam, F. Z. Nelson, and S. U. Ay,“Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS,” IEEE Midwest Symposium on Circuits and Systems, pp.893–896, Aug. 2010.
[37] M.-H. Wu, Y.-H. Chung, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 157–160.
[38] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, “A 10-bit 500-KS/s low power SAR ADC with splitting capacitor for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 149–152.
[39] L. Chen, A. Sanyal, J. Ma, and N. Sun, “A 24-µW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique,” in Proc. IEEE ESSCIRC, Sep. 2014, pp. 219–222.
[40] C. H. Kuo and C. E. Hsieh, “A high energy-efficiency SAR ADC based on partial floating capacitor switching technique,” in Proc. IEEE ESSCIRC, 2011, pp. 475–478.
[41] P. Harpe, E. Cantatore, and A. van Roermund, “A 2.2/2.7fJ/ conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 270–271.
[42] M. Ahmadi and W. Namgoong, “Comparator Power Reduction in Low-Frequency SAR ADC Using Optimized Vote Allocation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11, pp. 2384–2394, Nov. 2015.
[43] J.‐Y. Lin and C.‐C. Hsieh, “A 0.3V 10‐bit 1.17f SAR ADC with Merge and Split Switching in 90nm CMOS,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, no. 1, pp. 70–79, Jan. 2015.
[44] S.-I. Chang, K. Al-Ashmouny, and Y. Euisik, “A 0.5V 20fJ/Conversion-Step Rail-to-rail SAR ADC with Programmable Time-Delayed Control Units for Low-Power Biomedical Application,” in Proc. IEEE ESSCIRC, Sep. 2011, pp. 339–342.
[45] X. Zhou, and Q. Li, “A 160mV 670nW 8-bit SAR ADC in 0.13μm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2012, pp. 1–4, 9–12.
[46] R. Sekimoto, A. Shikata, K. Yoshioka, T. Kuroda, and H. Ishikuro, “A 0.5-V 5.2-fJ/Conversion-Step Full Asynchronous SAR ADC With Leakage Power Reduction Down to 650 pW by Boosted Self-Power Gating in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2628–2636, Nov. 2013.
[47] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s Subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 196–197.
[48] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, “A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2012, pp. 92–93, 13-15.
[49] H.Y.Huang, J.Y.Lin, C.C. Hsieh, Wen-Hsu Chang, Hann-HueiTsai, and Chin-Fong Chiu“A 9.2b 47fJ/Conversion-Step Asynchronous SAR ADC with Input Range Prediction DAC Switching,” IEEE Int. Symp. Circuit and Systems, May, 2012.
[50] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Trans. Circuits Syst.I: Reg. Papers, vol. 60, no. 3, pp. 570–581, Mar. 2013.
[51] B. Verbruggen, J. Tsouhlarakis, T. Yamamoto, M. Iriguchi, E. Martens, and J. Craninckx, “A 60 dB SNDR 35 MS/s SAR ADC With Comparator-Noise-Based Stochastic Residue Estimation,” IEEE J. Solid-State Circuits, vol. 50, no.9, pp. 2002–2011, Sep. 2015.
[52] L. Chen, X. Tang, A. Sanyal, Y. Yoon, J. Cong, and N. Sun, “A 10.5-b ENOB 645 nW 100kS/s SAR ADC with statistical estimation based noise reduction,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2015, pp. 1–4.
[53] Jin-Yi Lin and Chih-Cheng Hsieh, “A 0.3 V 10-bit SAR ADC with First 2-bit Guess in 90 nm CMOS,” IEEE Trans. Circuits Syst. I: Reg. Papers, accepted.
[54] Y. Chen, S. Tsukamoto, and T. Kuroda, “A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 145–148.
[55] Y.-J. Chen and C.-C. Hsieh, “A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2014, pp. 1–2.
[56] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no.5, pp. 599–606, May 1999.
[57] W.-L. Wu, Y. Zhu, L. Ding, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, “A 0.6V 8b 100MS/s SAR ADC with minimized DAC capacitance and switching energy in 65nm CMOS,” in Proc. IEEE ISCAS, May 2013, pp. 2239–2242.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊