( 您好!臺灣時間:2021/03/03 10:02
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chen, Ya-Han
論文名稱(外文):Implementation and Testing of a Transient Evoked Otoacoustic Emission Measurement System
指導教授(外文):Liu, Yi-Wen
口試委員(外文):Li, Pei-ChunChi, Tai-Shih
外文關鍵詞:Transient Evoked Otoacoustic EmissionTEOAE
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
Otoacoustic emission (OAE) is commonly used for infants hearing screening. Its main application is to check if the cochlear outer hair cells function normally. Advantages of the OAE include non-invasiveness and correlation to the condition of the outer hair cells. Transient evoked otoacoustic emission (TEOAE) comes from the cochlea when it is stimulated by an acoustic impulse. Within 20ms after the impulse, OAE components occur sequentially from higher to lower frequencies, and the delay time of the 1kHz, 2kHz, 4kHz and 8kHz emission are 11ms, 7.1ms, 4.6ms and 3.0ms respectively. Nowadays, TEOAE is mainly judged by the amplitude instead of the delay time of each frequency for medical care. This study implements a TEOAE system and obtains TEOAE waveforms by averaging across approximately 3000 repetitions. Afterwards, group delay was calculated to view the latency of each frequency, while Hilbert transform is conducted to analyze the instantaneous frequency, and thereby the success was confirmed regarding the acquisition of TEOAE signals. Moreover, by using ConceFT analysis, we can visualize the transient state of each frequency with high precision. It is expected that in the future, TEOAE will be collected effectively within 5 minutes in the clinics. According to current measurement, the average SNR is 13.2dB. This study measures 20 ears repeatedly, acquiring 100 cases of TEOAE waveforms. Classified by the K nearest neighbor, the recognition rate between different ears reaches 94% accuracy, and by principal component analysis, it is found that each data can be sufficiently represented by just 35 dimensions, which is in prospect of applying to biometrics in the future.
摘要 I
Abstract II
第一章 緒論 1
1.1 耳聲傳射簡介 1
1.2 研究動機與文獻探討 4
第二章 實驗器材與訊號擷取流程 6
2.1 實驗器材與設計 6
2.2 實驗方法與流程 8
第三章 訊號分析方法及結果 9
3.1 訊號前處理 9
3.2 訊號群延遲 15
3.3 利用希爾伯特轉換分析瞬時頻率 17
3.4 利用ConceFT分析瞬時頻率 19
第四章 結果分析與討論 23
4.1 瞬態誘發耳聲傳射量測結果分析 23
4.2 利用瞬態誘發耳聲傳射作為生物辨識 27
4.3 前3ms訊號處理討論 35
第五章 結論與未來發展 41
參考文獻 42
[1] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. LaMantia, J. O. McNamara, and S. M. Williams, “Neuroscience: Third Edition,” Sinauer Associates, Inc., pp. 287-293, 2004.
[2] S. S. Goodman, D. F. Fitzpatrick, J. C. Ellison, W. Jesteadt, and D. H. Keefe, “High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans,” J. Acoust. Soc. Am., Vol. 125, No. 2, pp. 1014-1032, February 2009.
[3] B. Boashash, “Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals,” Proceedings of the IEEE, Vol. 80, No. 4, pp. 520-538, April 1992.
[4] I. Daubechies, Y. Wang, and H. T. Wu, “ConceFT: concentration of frequency and time via a multitapered synchrosqueezed transform,” Phil. Trans. R. Soc. A, Vol. 374, pp. 1-19, December 2015.
[5] J. Xiao and P. Flandrin, “Multitaper Time-Frequency Reassignment for Nonstationary Spectrum Estimation and Chirp Enhancement,” IEEE Transactions on Signal Processing, Vol. 55, No. 6, pp. 2851-2860, June 2007.
[6] G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between Euclidean and cosine angle distance for nearest neighbor queries,” Proceedings of the ACM symposium on Applied computing, pp. 1232-1237, March 2004.
[7] D. H. Keefe, “Moments of click-evoked otoacoustic emissions in human ears- Group delay and spread, instantaneous frequency and bandwidth,” J. Acoust. Soc. Am., Vol. 132, No. 5, pp. 3319-3350, November 2012.
[8] J. Shlens, “A Tutorial on Principal Component Analysis,” Systems Neurobiology Laboratory, Salk Institute for Biological Studies, pp. 1-13, December 2005.
[9] D. T. Kemp, “Stimulated acoustic emissions from within the human auditory system,” J. Acoust. Soc. Am., Vol. 64, No. 5, pp. 1386-1391, November 1978.
[10] J. Gao, F. Agrafioti, S. Wang, and D. Hatzinakos, “Transient Otoacoustic Emissions for Biometric Recognition,” IEEE ICASSP, pp. 2249-2252, 2012.
[11] R. Fettiplace and C. M. Hackney, “The sensory and motor roles of auditory hair cells,” Nature Reviews Neuroscience, Vol. 7, No. 1, pp. 19-29, January 2006.
[12] P. Dallas, “The Active Cochlea,” The Journal of Neuroscience, Vol. 12, No. 12, pp. 4575-4585, December 1992.
[13] W. E. Brownell, “Outer Hair Cell Electromotility and Otoacoustic Emissions,” Ear and Hearing, Vol. 11, No. 2, pp. 82-92, April 1990.
[14] S. Yongbing and W. Martin, “Spontaneous Otoacoustic Emissions in Tinnitus Patients,” Journal of Otology, Vol. 1, No. 1, pp. 35-39, 2006.
[15] K. K. Charaziak and J. H. Siegel, “Estimating Cochlear Frequency Selectivity with Stimulus-frequency Otoacoustic Emissions in Chinchillas,” Journal of the Association for Research in Otolaryngology, Vol. 15, No. 6, pp. 883-896, December 2014.
[16] L. Bian and S. Chen, “Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions,” J. Acoust. Soc. Am., Vol. 124, No. 6, pp. 3739-3750, December 2008.
[17] Joint Committee on Infant Hearing, “Year 2007 position statement: Principles and guidelines for early hearing detection and intervention programs,” American Academy of Pediatrics, Vol. 120, No. 4, pp. 898–921, October 2007.
[18] A. Starr, Y. Sininger, T. Nguyen, H. J. Michalewski, S. Oba, and C. Abdala, “Cochlear receptor (microphonic and summating potentials, otoacoustic emissions, and auditory pathway (auditory brain stem potentials) activity in auditory neuropathy,” Ear and Hearing, Vol. 22, No. 2, pp. 91-99, April 2001.
[19] W. M. van Huffelen, N. J. Mateijsen, and H. P. Wit, “Classification of patients with Meniere's disease using otoacoustic emissions,” Audiology and Neurotology, Vol. 3, No. 6, pp. 419-430, December 1998.
[20] E. de Kleine, D. J. Mateijsen, H. P. Wit, and F. W. Albers, “Evoked otoacoustic emissions in patients with Meniere's disease,” Otology and Neurotology, Vol. 23, No. 4, pp. 510-516, July 2002.
[21] P. Stavroulaki, N. Apostolopoulos, D. Dinopoulo, I. Vossinakis, M. Tsakanikos, and D. Douniadakis, “Otoacoustic emissions--an approach for monitoring aminoglycoside induced ototoxicity in children,” International Journal of Pediatric Otorhinolaryngology, Vol. 50, No. 3, pp. 177-184, November 1999.
[22] P. G. Zorowka, H. J. Schmitt, and P. Gutjahr, “Evoked otoacoustic emissions and pure tone threshold audiometry in patients receiving cisplatinum therapy,” International Journal of Pediatric Otorhinolaryngology, Vol. 25, pp. 73-80, January 1993.
[23] A. Beck, J. Maurer, H. J. Welkoborsky, and W. Mann, “Changes in transitory evoked otoacoustic emissions in chemotherapy with cisplatin and 5FU,” HNO, Vol. 40, No. 4, pp. 123-127, April 1992.
[24] N. J. Grabham, M. A. Swabey, P. Chambers, M. E. Lutman, N. M. White, J. E. Chad, and S. P. Beeby, “An Evaluation of Otoacoustic Emissions as a Biometric,” IEEE Transactions on Information Forensics and Security, Vol. 8, No. 1, pp. 174-183, January 2013.
[25] C. A. Shera, J. J. Jr. Guinan, and A. J. Oxenham, “Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements,” Proceedings of the National Academy of Sciences, Vol. 99, No. 5, pp. 3318-3323, March 2002.
[26] C. A. Shera and J. J. Jr. Guinan, “Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning,” J. Acoust. Soc. Am., Vol. 113, No. 5, pp. 2762-2772, May 2003.
[27] R. Kalluri and C. A. Shera, “Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions,” J. Acoust. Soc. Am., Vol. 121, No. 4, pp. 2097-2110, April 2007.
[28] K. A. Silva, J. G. Urosas, S. G. Sanches, and R. M. Carvallo, “Wideband reflectance in newborns with present transient-evoked otoacoustic emissions,” Communication Disorders, Audiology and Swallowing, Vol. 25, No. 1, pp. 29-33, 2013.
[29] B. A. Prieve, M. P. Gorga, A. Schmidt, S. Neely, J. Peters, L. Schultes, and W. Jesteadt, “Analysis of Transient-Evoked Otoacoustic Emissions in Normal-Hearing and Hearing-Impaired Ears,” J. Acoust. Soc. Am., Vol. 93, No. 6, pp. 3308-3319, June 1993.
[30] K. M. Kochanek, L. K. Śliwa, K. Puchacz, and A. Piłka, “Repeatability of Transient-Evoked Otoacoustic Emissions in Young Adults,” Medical Science Monitor, Vol. 21, pp. 36-43, January 2015.
[31] C. A. Shera
and C. Bergevin, “Obtaining reliable phase-gradient delays from otoacoustic emission data,” J. Acoust. Soc. Am., Vol. 132, No. 2, pp. 927-943, August 2012.
[32] P. Avan, H. P. Wit, M. Guitton, T. Mom, and P. Bonfils, “On the spectral periodicity of transient-evoked otoacoustic emissions from normal and damaged cochleas,” J. Acoust. Soc. Am., Vol. 108, No. 3, pp. 1117-1127, September 2000.
[33] R. H. Withnell, C. Hazlewood, and A. Knowlton, “Reconciling the origin of the transient evoked ototacoustic emission in humans,” J. Acoust. Soc. Am., Vol. 123, No. 1, pp. 214-215, January 2008.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔